Oddtown, Eventown, and Fisher's inequality

Applications of Linear Algebra

László Miklós Lovász
MIT

March 30, 2020

Eventown

Eventown

In a town, residents are allowed to form clubs. In order to restrict the number of clubs, the following rules are implemented:

Eventown

Eventown
In a town, residents are allowed to form clubs. In order to restrict the number of clubs, the following rules are implemented:

- Every club must have an even number of members.

Eventown

Eventown

In a town, residents are allowed to form clubs. In order to restrict the number of clubs, the following rules are implemented:

- Every club must have an even number of members.
- Two clubs must not have the exact same set of members.

Eventown

In a town, residents are allowed to form clubs. In order to restrict the number of clubs, the following rules are implemented:

- Every club must have an even number of members.
- Two clubs must not have the exact same set of members.
- Any two clubs must share an even number of members.

Eventown

In a town, residents are allowed to form clubs. In order to restrict the number of clubs, the following rules are implemented:

- Every club must have an even number of members.
- Two clubs must not have the exact same set of members.
- Any two clubs must share an even number of members.

If there are n residents, how many clubs are possible?

Eventown

In a town, residents are allowed to form clubs. In order to restrict the number of clubs, the following rules are implemented:

- Every club must have an even number of members.
- Two clubs must not have the exact same set of members.
- Any two clubs must share an even number of members.

If there are n residents, how many clubs are possible?

Can form $2^{n / 2}$ different clubs!

Odd-even town

Odd-even town

In a town, residents are allowed to form clubs. In order to restrict the number of clubs, the following rules are implemented:

Odd-even town

Odd-even town

In a town, residents are allowed to form clubs. In order to restrict the number of clubs, the following rules are implemented:

- Every club must have an odd number of members.

Odd-even town

Odd-even town

In a town, residents are allowed to form clubs. In order to restrict the number of clubs, the following rules are implemented:

- Every club must have an odd number of members.
- Any two clubs must share an even number of members.

Odd-even town

Odd-even town

In a town, residents are allowed to form clubs. In order to restrict the number of clubs, the following rules are implemented:

- Every club must have an odd number of members.
- Any two clubs must share an even number of members.

How many clubs are possible?

Odd-even town

Odd-even town

In a town, residents are allowed to form clubs. In order to restrict the number of clubs, the following rules are implemented:

- Every club must have an odd number of members.
- Any two clubs must share an even number of members.

How many clubs are possible?
We can prove $\leq n$ as an upper bound!

Odd-even town

Odd-even town

In a town, residents are allowed to form clubs. In order to restrict the number of clubs, the following rules are implemented:

- Every club must have an odd number of members.
- Any two clubs must share an even number of members.

How many clubs are possible?
We can prove $\leq n$ as an upper bound!

Theorem

Let $\mathcal{F} \subset 2^{[n]}$ be a collection of sets such that each $A \in \mathcal{F}$ has $|A|$ odd, and each $|A \cap B|$ is even for $A, B \in \mathcal{F}$. Then $|\mathcal{F}| \leq n$.

Notation
For each $A \in \mathcal{F}$, take $1_{A} \in \mathbb{F}_{2}^{n}$, its incidence vector, where \mathbb{F}_{2} is the field with 2 elements.

Notation

For each $A \in \mathcal{F}$, take $1_{A} \in \mathbb{F}_{2}^{n}$, its incidence vector, where \mathbb{F}_{2} is the field with 2 elements.

To prove the theorem, we prove the following.

Notation

For each $A \in \mathcal{F}$, take $1_{A} \in \mathbb{F}_{2}^{n}$, its incidence vector, where \mathbb{F}_{2} is the field with 2 elements.

To prove the theorem, we prove the following.

Claim

The vectors 1_{A} for $A \in \mathcal{F}$ are linearly independent.

Notation

For each $A \in \mathcal{F}$, take $1_{A} \in \mathbb{F}_{2}^{n}$, its incidence vector, where \mathbb{F}_{2} is the field with 2 elements.

To prove the theorem, we prove the following.

Claim

The vectors 1_{A} for $A \in \mathcal{F}$ are linearly independent.
Given $A, B \in \mathscr{F}$, we have

$$
\left\langle 1_{A}, 1_{B}\right\rangle= \begin{cases}1 & A=B \\ 0 & A \neq B\end{cases}
$$

Notation

For each $A \in \mathcal{F}$, take $1_{A} \in \mathbb{F}_{2}^{n}$, its incidence vector, where \mathbb{F}_{2} is the field with 2 elements.

To prove the theorem, we prove the following.

Claim

The vectors 1_{A} for $A \in \mathcal{F}$ are linearly independent.
Given $A, B \in \mathscr{F}$, we have

$$
\left\langle 1_{A}, 1_{B}\right\rangle= \begin{cases}1 & A=B \\ 0 & A \neq B\end{cases}
$$

Suppose $\sum_{A \in \mathcal{F}} \alpha_{A} 1_{A}=0$.

Notation
For each $A \in \mathcal{F}$, take $1_{A} \in \mathbb{F}_{2}^{n}$, its incidence vector, where \mathbb{F}_{2} is the field with 2 elements.

To prove the theorem, we prove the following.

Claim

The vectors 1_{A} for $A \in \mathcal{F}$ are linearly independent.
Given $A, B \in \mathscr{F}$, we have

$$
\left\langle 1_{A}, 1_{B}\right\rangle= \begin{cases}1 & A=B \\ 0 & A \neq B\end{cases}
$$

Suppose $\sum_{A \in \mathcal{F}} \alpha_{A} 1_{A}=0$. We then have, for any $\widetilde{A} \in \mathcal{F}$,

$$
0=\left\langle\sum_{A \in \mathcal{F}} \alpha_{A} 1_{A}, 1_{\tilde{A}}\right\rangle
$$

Notation
For each $A \in \mathcal{F}$, take $1_{A} \in \mathbb{F}_{2}^{n}$, its incidence vector, where \mathbb{F}_{2} is the field with 2 elements.

To prove the theorem, we prove the following.

Claim

The vectors 1_{A} for $A \in \mathcal{F}$ are linearly independent.
Given $A, B \in \mathscr{F}$, we have

$$
\left\langle 1_{A}, 1_{B}\right\rangle= \begin{cases}1 & A=B \\ 0 & A \neq B\end{cases}
$$

Suppose $\sum_{A \in \mathcal{F}} \alpha_{A} 1_{A}=0$. We then have, for any $\widetilde{A} \in \mathcal{F}$,

$$
0=\left\langle\sum_{A \in \mathcal{F}} \alpha_{A} 1_{A}, 1_{\widetilde{A}}\right\rangle=\sum_{A \in \mathcal{F}} \alpha_{A}\left\langle 1_{A}, 1_{\widetilde{A}}\right\rangle
$$

Notation
For each $A \in \mathcal{F}$, take $1_{A} \in \mathbb{F}_{2}^{n}$, its incidence vector, where \mathbb{F}_{2} is the field with 2 elements.

To prove the theorem, we prove the following.

Claim

The vectors 1_{A} for $A \in \mathcal{F}$ are linearly independent.
Given $A, B \in \mathscr{F}$, we have

$$
\left\langle 1_{A}, 1_{B}\right\rangle= \begin{cases}1 & A=B \\ 0 & A \neq B\end{cases}
$$

Suppose $\sum_{A \in \mathcal{F}} \alpha_{A} 1_{A}=0$. We then have, for any $\widetilde{A} \in \mathcal{F}$,

$$
0=\left\langle\sum_{A \in \mathcal{F}} \alpha_{A} 1_{A}, 1_{\widetilde{A}}\right\rangle=\sum_{A \in \mathcal{F}} \alpha_{A}\left\langle 1_{A}, 1_{\widetilde{A}}\right\rangle
$$

Proof

Notation

For each $A \in \mathcal{F}$, take $1_{A} \in \mathbb{F}_{2}^{n}$, its incidence vector, where \mathbb{F}_{2} is the field with 2 elements.

To prove the theorem, we prove the following.

Claim

The vectors 1_{A} for $A \in \mathcal{F}$ are linearly independent.
Given $A, B \in \mathscr{F}$, we have

$$
\left\langle 1_{A}, 1_{B}\right\rangle= \begin{cases}1 & A=B \\ 0 & A \neq B\end{cases}
$$

Suppose $\sum_{A \in \mathcal{F}} \alpha_{A} 1_{A}=0$. We then have, for any $\widetilde{A} \in \mathcal{F}$,

$$
0=\left\langle\sum_{A \in \mathcal{F}} \alpha_{A} 1_{A}, 1_{\tilde{A}}\right\rangle=\sum_{A \in \mathcal{F}} \alpha_{A}\left\langle 1_{A}, 1_{\widetilde{A}}\right\rangle=\alpha_{\widetilde{A}} .
$$

Fisher's inequality

What if the rules say that any pair of clubs must have the same intersection size?

Fisher's inequality

What if the rules say that any pair of clubs must have the same intersection size?

Fisher's inequality
Suppose that $\mathcal{F} \subseteq 2^{[n]}$ is a family of nonempty sets such that for some fixed k, each $|A \cap B|=k$ for $A, B \in \mathcal{F}$ with $A \neq B$. Then $|\mathcal{F}| \leq n$.

Fisher's inequality

What if the rules say that any pair of clubs must have the same intersection size?
Fisher's inequality
Suppose that $\mathcal{F} \subseteq 2^{[n]}$ is a family of nonempty sets such that for some fixed k, each $|A \cap B|=k$ for $A, B \in \mathcal{F}$ with $A \neq B$. Then $|\mathcal{F}| \leq n$.

Proof: Assume $k \geq 1$. ($k=0$ case: exercise)

Fisher's inequality

What if the rules say that any pair of clubs must have the same intersection size?

Fisher's inequality

Suppose that $\mathcal{F} \subseteq 2^{[n]}$ is a family of nonempty sets such that for some fixed k, each $|A \cap B|=k$ for $A, B \in \mathcal{F}$ with $A \neq B$. Then $|\mathcal{F}| \leq n$.

Proof: Assume $k \geq 1$. ($k=0$ case: exercise)
For $A \in \mathcal{F}$, take $1_{A} \in \mathbb{R}^{n}$ (Note: field is now \mathbb{R}).

Fisher's inequality

What if the rules say that any pair of clubs must have the same intersection size?

Fisher's inequality

Suppose that $\mathcal{F} \subseteq 2^{[n]}$ is a family of nonempty sets such that for some fixed k, each $|A \cap B|=k$ for $A, B \in \mathcal{F}$ with $A \neq B$. Then $|\mathcal{F}| \leq n$.

Proof: Assume $k \geq 1$. ($k=0$ case: exercise)
For $A \in \mathcal{F}$, take $1_{A} \in \mathbb{R}^{n}$ (Note: field is now \mathbb{R}).

Claim

Under the assumptions that for any $A, B \in \mathcal{F}, A \neq B$, we have $|A \cap B|=k$, the vectors 1_{A} for $A \in \mathcal{F}$ are linearly independent.

Fisher's inequality

Claim

Under the assumptions that for any $A, B \in \mathcal{F}, A \neq B$, we have $|A \cap B|=k$, the vectors 1_{A} for $A \in \mathcal{F}$ are linearly independent.

Fisher's inequality

Claim

Under the assumptions that for any $A, B \in \mathcal{F}, A \neq B$, we have $|A \cap B|=k$, the vectors 1_{A} for $A \in \mathcal{F}$ are linearly independent.

Again, assume $\sum_{A \in \mathcal{F}} \alpha_{A} 1_{A}=0$. We then have

Fisher's inequality

Claim

Under the assumptions that for any $A, B \in \mathcal{F}, A \neq B$, we have $|A \cap B|=k$, the vectors 1_{A} for $A \in \mathcal{F}$ are linearly independent.

Again, assume $\sum_{A \in \mathcal{F}} \alpha_{A} 1_{A}=0$. We then have

$$
0=\left\|\sum_{A \in \mathcal{F}} \alpha_{A} 1_{A}\right\|^{2}
$$

Fisher's inequality

Claim

Under the assumptions that for any $A, B \in \mathcal{F}, A \neq B$, we have $|A \cap B|=k$, the vectors 1_{A} for $A \in \mathcal{F}$ are linearly independent.

Again, assume $\sum_{A \in \mathcal{F}} \alpha_{A} 1_{A}=0$. We then have

$$
0=\left\|\sum_{A \in \mathcal{F}} \alpha_{A} 1_{A}\right\|^{2}=\left\langle\sum_{A \in \mathcal{F}} \alpha_{A} 1_{A}, \sum_{B \in \mathcal{F}} \alpha_{B} 1_{B}\right\rangle
$$

Fisher's inequality

Claim

Under the assumptions that for any $A, B \in \mathcal{F}, A \neq B$, we have $|A \cap B|=k$, the vectors 1_{A} for $A \in \mathcal{F}$ are linearly independent.

Again, assume $\sum_{A \in \mathcal{F}} \alpha_{A} 1_{A}=0$. We then have

$$
\begin{aligned}
& \quad 0=\left\|\sum_{A \in \mathcal{F}} \alpha_{A} 1_{A}\right\|^{2}=\left\langle\sum_{A \in \mathcal{F}} \alpha_{A} 1_{A}, \sum_{B \in \mathcal{F}} \alpha_{B} 1_{B}\right\rangle \\
& = \\
& \sum_{A \in \mathcal{F}} \alpha_{A}^{2}|A|+
\end{aligned}
$$

Fisher's inequality

Claim

Under the assumptions that for any $A, B \in \mathcal{F}, A \neq B$, we have $|A \cap B|=k$, the vectors 1_{A} for $A \in \mathcal{F}$ are linearly independent.

Again, assume $\sum_{A \in \mathcal{F}} \alpha_{A} 1_{A}=0$. We then have

$$
\begin{aligned}
& \quad 0=\left\|\sum_{A \in \mathcal{F}} \alpha_{A} 1_{A}\right\|^{2}=\left\langle\sum_{A \in \mathcal{F}} \alpha_{A} 1_{A}, \sum_{B \in \mathcal{F}} \alpha_{B} 1_{B}\right\rangle \\
& =\sum_{A \in \mathcal{F}} \alpha_{A}^{2}|A|+\sum_{A \neq B \in \mathcal{F}} \alpha_{A} \alpha_{B} k
\end{aligned}
$$

Fisher's inequality

Claim

Under the assumptions that for any $A, B \in \mathcal{F}, A \neq B$, we have $|A \cap B|=k$, the vectors 1_{A} for $A \in \mathcal{F}$ are linearly independent.

Again, assume $\sum_{A \in \mathcal{F}} \alpha_{A} 1_{A}=0$. We then have

$$
\begin{aligned}
& 0=\left\|\sum_{A \in \mathcal{F}} \alpha_{A} 1_{A}\right\|^{2}=\left\langle\sum_{A \in \mathcal{F}} \alpha_{A} 1_{A}, \sum_{B \in \mathcal{F}} \alpha_{B} 1_{B}\right\rangle \\
& =\sum_{A \in \mathcal{F}} \alpha_{A}^{2}|A|+\sum_{A \neq B \in \mathcal{F}} \alpha_{A} \alpha_{B} k=k\left(\sum_{A \in \mathcal{F}} \alpha_{A}\right)^{2}+\sum_{A \in \mathcal{F}}(|A|-k) \alpha_{A}^{2} .
\end{aligned}
$$

Fisher's inequality

$$
\begin{aligned}
& 0=\left\|\sum_{A \in \mathcal{F}} \alpha_{A} 1_{A}\right\|^{2}=\left\langle\sum_{A \in \mathcal{F}} \alpha_{A} 1_{A}, \sum_{B \in \mathcal{F}} \alpha_{B} 1_{B}\right\rangle \\
= & \sum_{A \in \mathcal{F}} \alpha_{A}^{2}|A|+\sum_{A \neq B \in \mathcal{F}} k \alpha_{A} \alpha_{B}=k\left(\sum_{A \in \mathcal{F}} \alpha_{A}\right)^{2}+\sum_{A \in \mathcal{F}}(|A|-k) \alpha_{A}^{2} .
\end{aligned}
$$

Fisher's inequality

$$
\begin{aligned}
& 0=\left\|\sum_{A \in \mathcal{F}} \alpha_{A} 1_{A}\right\|^{2}=\left\langle\sum_{A \in \mathcal{F}} \alpha_{A} 1_{A}, \sum_{B \in \mathcal{F}} \alpha_{B} 1_{B}\right\rangle \\
= & \sum_{A \in \mathcal{F}} \alpha_{A}^{2}|A|+\sum_{A \neq B \in \mathcal{F}} k \alpha_{A} \alpha_{B}=k\left(\sum_{A \in \mathcal{F}} \alpha_{A}\right)^{2}+\sum_{A \in \mathcal{F}}(|A|-k) \alpha_{A}^{2} .
\end{aligned}
$$

Observation

Each $|A| \geq k$, and $|A|=k$ for at most one set $A \in \mathcal{F}$.

Fisher's inequality

$$
\begin{aligned}
& 0=\left\|\sum_{A \in \mathcal{F}} \alpha_{A} 1_{A}\right\|^{2}=\left\langle\sum_{A \in \mathcal{F}} \alpha_{A} 1_{A}, \sum_{B \in \mathcal{F}} \alpha_{B} 1_{B}\right\rangle \\
= & \sum_{A \in \mathcal{F}} \alpha_{A}^{2}|A|+\sum_{A \neq B \in \mathcal{F}} k \alpha_{A} \alpha_{B}=k\left(\sum_{A \in \mathcal{F}} \alpha_{A}\right)^{2}+\sum_{A \in \mathcal{F}}(|A|-k) \alpha_{A}^{2} .
\end{aligned}
$$

Observation

Each $|A| \geq k$, and $|A|=k$ for at most one set $A \in \mathcal{F}$.
We then have $\alpha_{A}=0$, unless $|A|=k$.

Fisher's inequality

$$
\begin{aligned}
& 0=\left\|\sum_{A \in \mathcal{F}} \alpha_{A} 1_{A}\right\|^{2}=\left\langle\sum_{A \in \mathcal{F}} \alpha_{A} 1_{A}, \sum_{B \in \mathcal{F}} \alpha_{B} 1_{B}\right\rangle \\
= & \sum_{A \in \mathcal{F}} \alpha_{A}^{2}|A|+\sum_{A \neq B \in \mathcal{F}} k \alpha_{A} \alpha_{B}=k\left(\sum_{A \in \mathcal{F}} \alpha_{A}\right)^{2}+\sum_{A \in \mathcal{F}}(|A|-k) \alpha_{A}^{2} .
\end{aligned}
$$

Observation

Each $|A| \geq k$, and $|A|=k$ for at most one set $A \in \mathcal{F}$.
We then have $\alpha_{A}=0$, unless $|A|=k$. All but one $\alpha_{A}=0$.

Fisher's inequality

$$
\begin{aligned}
& 0=\left\|\sum_{A \in \mathcal{F}} \alpha_{A} 1_{A}\right\|^{2}=\left\langle\sum_{A \in \mathcal{F}} \alpha_{A} 1_{A}, \sum_{B \in \mathcal{F}} \alpha_{B} 1_{B}\right\rangle \\
= & \sum_{A \in \mathcal{F}} \alpha_{A}^{2}|A|+\sum_{A \neq B \in \mathcal{F}} k \alpha_{A} \alpha_{B}=k\left(\sum_{A \in \mathcal{F}} \alpha_{A}\right)^{2}+\sum_{A \in \mathcal{F}}(|A|-k) \alpha_{A}^{2} .
\end{aligned}
$$

Observation

Each $|A| \geq k$, and $|A|=k$ for at most one set $A \in \mathcal{F}$.
We then have $\alpha_{A}=0$, unless $|A|=k$. All but one $\alpha_{A}=0$.
Since $k \geq 1$, we also have

$$
\sum_{A \in \mathcal{F}} \alpha_{A}=0
$$

Fisher's inequality application

Question

Suppose that we have k points in the plane. At least how many lines do the points "define"?

Fisher's inequality application

Question

Suppose that we have k points in the plane. At least how many lines do the points "define"? In other words, what is the minimum number of lines that go through at least two points?

Fisher's inequality application

Question

Suppose that we have k points in the plane. At least how many lines do the points "define"? In other words, what is the minimum number of lines that go through at least two points?

Fisher's inequality application

Question

Suppose that we have k points in the plane. At least how many lines do the points "define"? In other words, what is the minimum number of lines that go through at least two points?

Fisher's inequality application

Question
Suppose that we have k points in the plane, not all on a single line. What is the minimum number of lines that go through at least two points?

Fisher's inequality application

Question
Suppose that we have k points in the plane, not all on a single line. What is the minimum number of lines that go through at least two points?

Fisher's inequality application

Question

Suppose that we have k points in the plane, not all on a single line. What is the minimum number of lines that go through at least two points?

Fisher's inequality application

Question

Suppose that we have k points in the plane, not all on a single line. What is the minimum number of lines that go through at least two points?

Fisher's inequality application

Question

Suppose that we have k points in the plane, not all on a single line. What is the minimum number of lines that go through at least two points?

Fisher's inequality application

Question

Suppose that we have k points in the plane, not all on a single line. What is the minimum number of lines that go through at least two points?

Fisher's inequality application

Question

Suppose that we have k points in the plane, not all on a single line. What is the minimum number of lines that go through at least two points?

Fisher's inequality application

Theorem

Suppose P is a set of k points in the plane, not all on a single line. Then pairs of points from P define at least k lines.

Fisher's inequality application

Theorem

Suppose P is a set of k points in the plane, not all on a single line. Then pairs of points from P define at least k lines.

Proof: Let L be the set of lines, and for each point $x \in P$, let A_{x} be the set of lines in L that contain x.

Fisher's inequality application

Theorem

Suppose P is a set of k points in the plane, not all on a single line. Then pairs of points from P define at least k lines.

Proof: Let L be the set of lines, and for each point $x \in P$, let A_{x} be the set of lines in L that contain x.

Claim 1
Each set A_{x} has $\left|A_{x}\right| \geq 2$.

Fisher's inequality application

Theorem

Suppose P is a set of k points in the plane, not all on a single line. Then pairs of points from P define at least k lines.

Proof: Let L be the set of lines, and for each point $x \in P$, let A_{x} be the set of lines in L that contain x.

Claim 1
Each set A_{x} has $\left|A_{x}\right| \geq 2$.
${ }_{-}$

Fisher's inequality application

Theorem

Suppose P is a set of k points in the plane, not all on a single line. Then pairs of points from P define at least k lines.

Proof: Let L be the set of lines, and for each point $x \in P$, let A_{x} be the set of lines in L that contain x.

Claim 1
Each set A_{x} has $\left|A_{x}\right| \geq 2$.
${ }^{X}$

Fisher's inequality application

Theorem

Suppose P is a set of k points in the plane, not all on a single line. Then pairs of points from P define at least k lines.

Proof: Let L be the set of lines, and for each point $x \in P$, let A_{x} be the set of lines in L that contain x.

Claim 1
Each set A_{x} has $\left|A_{x}\right| \geq 2$.

Fisher's inequality application

Theorem

Suppose P is a set of k points in the plane, not all on a single line. Then pairs of points from P define at least k lines.

Proof: Let L be the set of lines, and for each point $x \in P$, let A_{x} be the set of lines in L that contain x.

Claim 1
Each set A_{x} has $\left|A_{x}\right| \geq 2$.

Fisher's inequality application

Theorem

Suppose P is a set of k points in the plane, not all on a single line. Then pairs of points from P define at least k lines.

Proof: Let L be the set of lines, and for each point $x \in P$, let A_{x} be the set of lines in L that contain x.

Claim 1
Each set A_{x} has $\left|A_{x}\right| \geq 2$.

Fisher's inequality application

Theorem

Suppose P is a set of k points in the plane, not all on a single line. Then pairs of points from P define at least k lines.

Proof: Let L be the set of lines, and for each point $x \in P$, let A_{x} be the set of lines in L that contain x.

Claim 1

Each set A_{x} has $\left|A_{x}\right| \geq 2$.

Claim 2

For $x \neq y \in P$, we have $\left|A_{x} \cap A_{y}\right|=1$. In particular, the sets A_{x} for distinct points $x \in P$ are distinct.

Fisher's inequality application

Theorem

Suppose P is a set of k points in the plane, not all on a single line. Then pairs of points from P define at least k lines.

Proof: Let L be the set of lines, and for each point $x \in P$, let A_{x} be the set of lines in L that contain x.

Claim 1

Each set A_{x} has $\left|A_{x}\right| \geq 2$.

Claim 2

For $x \neq y \in P$, we have $\left|A_{x} \cap A_{y}\right|=1$. In particular, the sets A_{x} for distinct points $x \in P$ are distinct.

Fisher's inequality application

Theorem

Suppose P is a set of k points in the plane, not all on a single line. Then pairs of points from P define at least k lines.

Proof: Let L be the set of lines, and for each point $x \in P$, let A_{x} be the set of lines in L that contain x.

Claim 1

Each set A_{x} has $\left|A_{x}\right| \geq 2$.

Claim 2

For $x \neq y \in P$, we have $\left|A_{x} \cap A_{y}\right|=1$. In particular, the sets A_{x} for distinct points $x \in P$ are distinct.

Fisher's inequality application

Theorem

Suppose P is a set of k points in the plane, not all on a single line. Then pairs of points from P define at least k lines.

Proof: Let L be the set of lines, and for each point $x \in P$, let A_{x} be the set of lines in L that contain x.

Claim 1

Each set A_{x} has $\left|A_{x}\right| \geq 2$.
Claim 2
For $x \neq y \in P$, we have $\left|A_{x} \cap A_{y}\right|=1$. In particular, the sets A_{x} for distinct points $x \in P$ are distinct.

Fisher's inequality application

Theorem

Suppose P is a set of k points in the plane, not all on a single line. Then pairs of points from P define at least k lines.

Proof: Let L be the set of lines, and for each point $x \in P$, let A_{x} be the set of lines in L that contain x.

Claim 1

Each set A_{x} has $\left|A_{x}\right| \geq 2$.
Claim 2
For $x \neq y \in P$, we have $\left|A_{x} \cap A_{y}\right|=1$. In particular, the sets A_{x} for distinct points $x \in P$ are distinct.

Fisher's inequality now implies that $k=|P| \leq|L|$.

