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Eventown

Eventown

In a town, residents are allowed to form clubs. In order to

restrict the number of clubs, the following rules are

implemented:

Every club must have an even number of members.

Two clubs must not have the exact same set of members.

Any two clubs must share an even number of members.

If there are n residents, how many clubs are possible?

Can form 2n/2 different clubs!
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Odd-even town

Odd-even town

In a town, residents are allowed to form clubs. In order to

restrict the number of clubs, the following rules are

implemented:

Every club must have an odd number of members.

Any two clubs must share an even number of members.

How many clubs are possible?

We can prove ≤ n as an upper bound!

Theorem

Let F ⊂ 2[n] be a collection of sets such that each A ∈ F has

|A| odd, and each |A∩B | is even for A,B ∈ F . Then |F| ≤ n.

3 / 10
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Proof

Notation

For each A ∈ F , take 1A ∈ Fn
2, its incidence vector, where F2

is the field with 2 elements.

To prove the theorem, we prove the following.

Claim

The vectors 1A for A ∈ F are linearly independent.

Given A,B ∈ F , we have

〈1A, 1B〉 =

{
1 A = B

0 A 6= B

Suppose
∑

A∈F αA1A = 0. We then have, for any Ã ∈ F ,

0 = 〈
∑
A∈F

αA1A, 1Ã〉 =
∑
A∈F

αA〈1A, 1Ã〉 = αÃ.
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0 = 〈
∑
A∈F

αA1A, 1Ã〉 =
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Fisher’s inequality

What if the rules say that any pair of clubs must have the

same intersection size?

Fisher’s inequality

Suppose that F ⊆ 2[n] is a family of nonempty sets such that

for some fixed k , each |A ∩ B | = k for A,B ∈ F with A 6= B .

Then |F| ≤ n.

Proof: Assume k ≥ 1. (k = 0 case: exercise)

For A ∈ F , take 1A ∈ Rn (Note: field is now R).

Claim

Under the assumptions that for any A,B ∈ F , A 6= B , we have

|A∩B | = k , the vectors 1A for A ∈ F are linearly independent.

5 / 10
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Fisher’s inequality

Claim

Under the assumptions that for any A,B ∈ F , A 6= B , we have

|A∩B | = k , the vectors 1A for A ∈ F are linearly independent.

Again, assume
∑

A∈F αA1A = 0. We then have

0 = ‖
∑
A∈F

αA1A‖2 = 〈
∑
A∈F

αA1A,
∑
B∈F

αB1B〉

=
∑
A∈F

α2
A|A|+

∑
A6=B∈F

αAαBk = k

(∑
A∈F

αA

)2

+
∑
A∈F

(|A|−k)α2
A.
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Fisher’s inequality

0 = ‖
∑
A∈F

αA1A‖2 = 〈
∑
A∈F

αA1A,
∑
B∈F

αB1B〉

=
∑
A∈F

α2
A|A|+

∑
A 6=B∈F

kαAαB = k

(∑
A∈F

αA

)2

+
∑
A∈F

(|A| − k)α2
A.

Observation

Each |A| ≥ k , and |A| = k for at most one set A ∈ F .

We then have αA = 0, unless |A| = k . All but one αA = 0.

Since k ≥ 1, we also have∑
A∈F

αA = 0.
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Fisher’s inequality application

Question

Suppose that we have k points in the plane. At least how

many lines do the points “define”?

In other words, what is the

minimum number of lines that go through at least two points?
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Fisher’s inequality application

Theorem

Suppose P is a set of k points in the plane, not all on a single

line. Then pairs of points from P define at least k lines.

Proof: Let L be the set of lines, and for each point x ∈ P , let

Ax be the set of lines in L that contain x .

Claim 1

Each set Ax has |Ax | ≥ 2.

x

Claim 2

For x 6= y ∈ P , we have |Ax ∩ Ay | = 1. In particular, the sets

Ax for distinct points x ∈ P are distinct.

x

y

Fisher’s inequality now implies that k = |P | ≤ |L|.
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