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Odd-even town
In a town, residents are allowed to form clubs. In order to
restrict the number of clubs, the following rules are
implemented:

@ Every club must have an odd number of members.

@ Any two clubs must share an even number of members.

<

How many clubs are possible?
We can prove < n as an upper bound!

Let F c 2[" be a collection of sets such that each A € F has
|A| odd, and each |AN B is even for A, B € F. Then |F| < n.
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2
=Y aGlA+ Y kaaas = k(Z aA> +> (|Al = K)o
AeF A#BeF AeF AeF

Observation
Each |A| > k, and |A| = k for at most one set A € F.

We then have s = 0, unless |A| = k. All but one ay = 0.

Since k > 1, we also have

E ap = 0.
AcF
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Suppose that we have k points in the plane. At least how
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line. Then pairs of points from P define at least k lines.

Proof: Let L be the set of lines, and for each point x € P, let
A, be the set of lines in L that contain x.

Each set A, has |A,| > 2. I

For x # y € P, we have |A, N A,| = 1. In particular, the sets
A, for distinct points x € P are distinct.

Fisher's inequality now implies that k = |P| < |L|.
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