Oddtown, Eventown, and Fisher's inequality

Applications of Linear Algebra

László Miklós Lovász
MIT

March 30, 2020

In a town, residents are allowed to form clubs. In order to restrict the number of clubs, the following rules are implemented:

- Every club must have an even number of members.
- Two clubs must not have the exact same set of members.
- Any two clubs must share an even number of members.

If there are n residents, how many clubs are possible?
$2^{n / 2}$!

Odd-even town

What if each club is odd, and intersection of any two is even?
Then there can be at most n.
We show that the vectors 1_{A} for $A \in \mathcal{F}$ are linearly independent over \mathbb{F}_{2}.
Suppose $\sum \alpha_{A} 1_{A}=0$. We then have, for any \widetilde{A},

$$
0=\left\langle\sum \alpha_{A} 1_{A}, 1_{\widetilde{A}}\right\rangle=\sum \alpha_{A}\left\langle 1_{A}, 1_{\widetilde{A}}\right\rangle=\alpha_{\widetilde{A}}
$$

Fisher's inequality

What if the rules say that any pair of clubs must have the same intersection size?
Fisher's inequality: There are at most n clubs.
Take 1_{A} but this time over \mathbb{R}.
Will show that the vectors 1_{A} are linearly independent.

$$
\begin{aligned}
& 0=\left\|\sum_{A \in \mathcal{F}} \alpha_{A} 1_{A}\right\|^{2}=\left\langle\sum_{A \in \mathcal{F}} \alpha_{A} 1_{A}, \sum_{B \in \mathcal{F}} \alpha_{B} 1_{B}\right\rangle \\
& =\sum_{A \in \mathcal{F}} \alpha_{A}^{2}|A|+\sum_{A \neq B \in \mathcal{F}} \alpha_{A} \alpha_{B} k=k\left(\sum_{A \in \mathcal{F}} \alpha_{A}\right)^{2}+\sum_{A \in \mathcal{F}}(|A|-k) \alpha_{A}^{2} .
\end{aligned}
$$

Fisher's inequality application

Theorem: If we have a set P of n points in the plane, not all on a line, there are at least n lines between them.
Proof: For each point $x \in P$, let A_{x} be the set of lines that contain x.
Then each $\left|A_{x}\right| \geq 2$, for $x \neq y$, we have $\left|A_{x} \cap A_{y}\right|=1$. By Fisher's inequality, we are done!

