What is a proof?

Claim (e.g., theorem, lemma, corollary)

- **hypotheses**
 - imply
 - **conclusion**

Sample Proof

- **hypothesis**
 - intermediate result
 - internal definition
 - claim proved earlier in paper
 - temporary assumption
 - tool
 - intermediate result
 - intermediate result

- **outside fact**
 - intermediate result
 - internal definition
 - claim proved earlier in paper
 - temporary assumption
 - tool
 - intermediate result
 - intermediate result

Key: logical implications

All hypotheses should be used

Example:

Theorem

- proof
 - lemma
 - proof
 - lemma
 - proof
 - **theorem**
 - proof

Connections:

- **current state of mathematics**
 - mathematical objects
 - classes of objects
 - associated with
 - facts and properties
 - justified
 - tools
 - **proves:**
 - theorems
 - with
 - linear independence
 - linearity of products

Examples & Counterexamples

- intermediate result
 - intermediate result
 - intermediate result
 - intermediate result
 - conclusion

Patterns & Difficulties

- intermediate result
 - intermediate result
 - intermediate result
 - intermediate result
 - conclusion

Approach

- intermediate result
 - intermediate result
 - intermediate result
 - conclusion

Theorem

- proof
 - lemma
 - proof
 - lemma
 - proof
 - **theorem**
 - proof

Connections:

- **current state of mathematics**
 - mathematical objects
 - classes of objects
 - associated with
 - facts and properties
 - justified
 - tools
 - **proves:**
 - theorems
 - with
 - linear independence
 - linearity of products

Examples & Counterexamples

- intermediate result
 - intermediate result
 - intermediate result
 - intermediate result
 - conclusion

Patterns & Difficulties

- intermediate result
 - intermediate result
 - intermediate result
 - intermediate result
 - conclusion

Approach

- intermediate result
 - intermediate result
 - intermediate result
 - conclusion

Theorem

- proof
 - lemma
 - proof
 - lemma
 - proof
 - **theorem**
 - proof

What is a proof?

Claim (e.g., theorem, lemma, corollary)

- **hypotheses**
 - imply
 - **conclusion**

Sample Proof

- **hypothesis**
 - intermediate result
 - internal definition
 - claim proved earlier in paper
 - temporary assumption
 - tool
 - intermediate result
 - intermediate result

- **outside fact**
 - intermediate result
 - internal definition
 - claim proved earlier in paper
 - temporary assumption
 - tool
 - intermediate result
 - intermediate result

Key: logical implications

All hypotheses should be used
PROOF:

Hypothesis
\[\mathcal{F} \subset 2^{[n]} \]

Internal Claim
Take \(Z_2^n \), where \(Z_2 = \{0,1\} \) is a finite field with operations mod 2.

Internal Def.
For \(A \in \mathcal{F} \), define \(\mathbf{1}_A \in Z_2^n \), where
\[\mathbf{1}_A(i) = 1 \text{ exactly if } i \in A \]

Internal Goal
Show \(\{ \mathbf{1}_A : \forall A \in \mathcal{F} \} \) are lin. ind.

Internal Def.
\[z = \sum_{A \in \mathcal{F}} \alpha_A \mathbf{1}_A = 0 \]

Internal Def
Fix \(B \in \mathcal{F} \)

Intermediate Claim
\[z \cdot \mathbf{1}_B = 0 \]

Fact/Tool
Linearity of Inner product

Hypothesis
\[|A| \text{ odd} \]

Hypothesis
\[|A \cap B| \text{ even} \]

Intermediate Claim
\[0 = z \cdot \mathbf{1}_B = \sum_{A \in \mathcal{F}} \alpha_A (\mathbf{1}_A \cdot \mathbf{1}_B) = \alpha_B \]

Intermediate Claim
\[\alpha_B = 0, \forall B \in \mathcal{F} \]

Intermediate Claim
\[\mathbf{1}_A : \forall A \in \mathcal{F} \] are lin. ind.

Fact
Cannot have more lin. ind vectors than dim. of space

Conclusion
\[|\mathcal{F}| \leq n \]