Efficiency and Mean Squared Error
In previous lecture, we introduced the notion of unbiased estimator. If we have several unbiased estimators, we need a criterion for comparison of them. For unbiased estimators, we will use variance. For arbitrary estimators, we will use mean squared error.

Suppose we have i.i.d. samples 
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When 
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 is an unbiased estimator, the MSE of 
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Example 1: Estimating the number of German tanks.

During WWII, information about Germany’s war potential was essential to the Allied force. In order to obtain reliable estimates of German war production, experts started to analyze serial numbers obtained from captured German equipment.
Now we consider the serial numbers on tanks. Suppose the serial number s ran from 1 to some unknown large number 
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. Our goal is to estimate 
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 based on the observed serial numbers 
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 (from captured German tanks). 
Note that in this case, the samples are not independent. They are weakly correlated. We will propose two unbiased estimators based on sample meam and sample maximum, respectively. We will use the idea of Method of Moment.

1. An estimator based on sample mean

We first compute the expectation of the sample mean. Let
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Example 1: Estimating the number of German tanks.

Method 1: An estimator based on the sample mean.

sample1<-c(61,19,56,24,16)

T1<-2*mean(sample1)-1

Method 2: An estimator based on the sample maximum.

T2<-(length(sample1)+1)*max(sample1)/length(sample1)-1;

Variance of the estimators
Now take N=1000 and n=10 fixed. We draw 10 random samples from 1,2,…,1000 without replacement and compute the estimators T1 and T2. We repeat this 2000 times, so we have 2000 values of both estimators.
est1<-rep(0,2000)

est2<-rep(0,2000)

for (i in 1:2000) {

x<-sample(1:1000, 10);

est1[i]<-2*mean(x)-1;

est2[i]<-11*max(x)/10-1;

}

par(mfrow=c(1,2))

hist(est1,xlim=c(300,1700))

hist(est2,xlim=c(300,1700))

var(est1)

var(est2)

sample2<-c(7,3,10,45,15);

2*mean(sample2)+1

Example 2: Uniform distribution.
Suppose we have samples 
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 from uniform distribution 
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 and we want to estimate 
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. Consider two methods from method of moment.
Method 1: An estimator based on expectation.

unif1<-c(0.84, 1.39, 1.04, 1.10, 2.24, 1.93)

T1<-2*mean(unif1)

Method 2: An estimator based on the second moment.

T2<-sqrt(3*mean(unif1^2))

Variance of the estimators

Now take 
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 and n=10 fixed. We draw 10 independent random samples from 
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 and compute the estimators T1 and T2. We repeat this 2000 times, so we have 2000 values of both estimators.

est1<-rep(0,2000)

est2<-rep(0,2000)

for (i in 1:2000) {

x<-10*runif(10);

est1[i]<-2*mean(x);

est2[i]<-sqrt(3*mean(x^2));

}

par(mfrow=c(1,2))

hist(est1,xlim=c(3,15))

hist(est2,xlim=c(3,15))

var(est1)

var(est2)
mean((est2-10)^2)
*Actually, if we use the third moment, we can have a better result.

Example 3: Poisson distribution.
Suppose we have samples
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 from Poisson distribution with parameter 
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, we want to estimate 
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T1<-mean(x==0);

T2<-exp(-mean(x))

T1 is unbiased but T2 is always biased.

Now we compare the MSE of them. 

Now take 
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 and n=30 fixed. We draw 30 independent random samples from Poisson distribution with parameter 1.5 and compute the estimators T1 and T2. We repeat this 1000 times, so we have 1000 values of both estimators.

est1<-rep(0,1000)

est2<-rep(0,1000)

for (i in 1:1000) {

x<-rpois(30,1.5);

est1[i]<-mean(x==0);

est2[i]<-exp(-mean(x));

}

exp(-1.5)
0.2231302

par(mfrow=c(1,2))

hist(est1,xlim=c(0,0.5))

hist(est2,xlim=c(0,0.5))

mean((est1-exp(-1.5))^2)
mean((est2-exp(-1.5))^2)
Example: MLE of uniform distribution.

Suppose we have samples 
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. Now take 
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 and n=10 fixed. We draw 10 independent random samples from 
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 and compute the estimators T1, T2 and the MLE. We repeat this 2000 times.

est1<-rep(0,2000)

est2<-rep(0,2000)
mle<-rep(0,2000)
for (i in 1:2000) {

x<-10*runif(10);

est1[i]<-2*mean(x);

est2[i]<-sqrt(3*mean(x^2));
mle[i]<-max(x);
}

par(mfrow=c(1,3))

hist(est1,xlim=c(3,15))

hist(est2,xlim=c(3,15))
hist(mle,xlim=c(3,15))
var(est1)

mean((est2-10)^2)
mean((mle-10)^2)

Example: MLE of Bernoulli samples

Suppose we have a sequence of Bernoulli samples. We want to estimate the probability of success, p. 
For each p, there is a probability of observing these samples.

x<-(runif(50)<0.8)

s<-sum(x)

Prob<-rep(0,101);

for (p in (0:100)/100) {

Prob[100*p+1]<-(p^s)*((1-p)^(50-s));

}

plot((0:100)/100,Prob)

Example: MLE of exponential distribution 
Suppose we have a sequence of Exponential samples. We want to estimate the parameter.. 

x<-rexp(30,2)

Prob<-rep(1,100);

for (lambda in (1:100)/20) {

Prob[20*lambda]<-(lambda^30)*exp(-lambda*sum(x));

}

plot((1:100)/20,Prob)
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