Exploratory data analysis
Statistics: Draw useful information from dataset using everything that we know. Gain insight into what probability model suits the dataset.

In this lecture, we present several graphical methods. 

Dataset 1: the Old Faithful data. The old faithful geyser at Yellowstone was observed, and data were collected on the duration of eruption. There were 298 eruptions observed. 
In the following discussion, we use R language.

geyser<-read.table("geyser.txt",header=T)
attach(geyser)
Durations
We want to study the randomness of this dataset. For example, we would like to know which durations are more likely to occur than others; “typical duration”; symmetric?.....

We can calculate some basic statistics of the data, but there is a lot more information.

mean(Durations)
var(Durations)
median(Durations)
Order the data can provide more information.

sort(Durations)
Q: what two elements split the dataset into three groups of equal size?

sort(Durations)[100]

sort(Durations)[201]

But we a better tool to get insight into the distribution on the durations.

15.2 Histogram
Histogram is a classical method to graphically represent the dataset. It is an estimation of the probability density function or probability mass function. 

It shows what proportion of samples fall into each of several bins. The bins are usually specified as non-overlapping intervals. The bins must be adjacent, generally of the same size, but not necessarily so.
Data: x1,x2,…,xn.   Bin: B1,B2,…,Bm.  Calculate the number of samples in each bin. The height of bin Bi is: (the number of xj in Bi)/(n|Bi|).
hist(Durations)
It is important to choose a proper bin width (or number of bins). 

hist(Durations,breaks=6)
hist(Durations,breaks=15)
hist(Durations,breaks=50)
15.3 Kernel density estimates.

One drawback of the histogram is that it is not a continuous function. Although it shows the shape of the density, it is sometimes not what we want.

x<-rnorm(500)

hist(x,breaks=15)
y<-rexp(500)

hist(y).

Kernel density estimate is another way to represent the density function. 
If x1, x2, ..., xn ~ ƒ is an independent and identically-distributed sample of a random variable, then the kernel density approximation of its probability density function is
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where K is a kernel function typically satisfies the following conditions (not necessarily):

(1) K is a probability density function.

(2) K is symmetric around zero.

(3) K(u)>0 for u>1.

For example: 
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(Epanechnikov, triweight, Gaussian)

density(Durations,kernel="gaussian",bw=20)
plot(density(Durations,kernel="gaussian",bw=20))
The choice of bandwidth for kernel estimates is just as the choice of bin width got histograms. The choice of kernel is less important, since when n goes to infinity, all the kernel estimates with same bandwidth converge to the true density function. 

plot(density(Durations,kernel="triangular",bw=20))
plot(density(Durations,kernel="biweight",bw=20))
plot(density(Durations,kernel="rectangular",bw=20))
15.4 Empirical distribution function

We can estimate the distribution function of a distribution by the empirical distribution function. Suppose we observe i.i.d. sample 
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ecdf(Durations)
plot(ecdf(Durations))
x<-c(4,3,9,1,7)

plot(ecdf(x))

15.5 Scatterplot

In some situations one wants to investigate the relationship between two or more random variables. The dataset contains paired observations. 
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, i=1,2,…,n. Such a dataset is called bivariate dataset.

Attitude data: This data set was from a study of the performance of supervisors and was collected from a survey of the clerical employees of a large financial organization. The questions were about the employees' satisfaction with their supervisors. This survey was designed to measure the overall performance of a supervisor, as well as questions that related to specific characteristic of the supervisor. 

The data are aggregated from the questionnaires of the approximately 35 employees for each of the 30 departments. The numbers give the percent proportion of favorable responses to seven questions in each department.
Rating: Overall rating 

Complaints: Handling of employee complaints

Privileges: Does not allow special privileges 

Learning: Opportunity to learn

Raises: Raises based on performance

Critical: Too critical

Advancel: Advancement
data(attitude)
attach(attitude)

plot(complaints,rating)

plot(privileges,rating)

plot(learning,rating)

plot(raises,rating)

plot(critical,rating)

plot(advance,rating)

plot(attitude)
Q: How would you predict the rating of a supervisor if the complaints is around 80?

Chapter 16

1. Sample mean, sample variance, sample standard deviation, sample median, median of absolute deviation.

2. Recall the quantileof a random variable (or a distribution): The 
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Suppose we have dataset 
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, suppose the ordered statistics is 
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.  Or similarly, the empirical quantile can be defined as the quantile of the empirical distribution. 
The lower and upper quartiles are the 0.25 and 0.75 empirical quantile of data.

x<-c(41,41,41,41,41,42,43,43,43,58,58)

quantile(x)
quantile(x, 0.51)
Quantile plot: Scatterplot of the empirical quantiles of two samples. If they are from the same distribution (family), then the plot should be close to a straight line.

x<-rnorm(50)

y<-rnorm(50)

qqplot(x,y)
z<-rexp(50)

qqplot(x,z)

Normal quantile plot: Scatterplot of the empirical quantiles of 
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 with the theoretical quantiles of standard normal distribution. If 
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 are i.i.d. normal samples, then the plot should be close a straight line.

qqnorm(x)

qqnorm(z).

Box plot: Box plot is a five-number summary of empirical quantiles.

boxplot(x)

boxplot(z)

boxplot(Durations)
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