Multivariate Normal Distribution

September 30, 2008

1 Random Vector

A random vector $X=\left(X_{1}, x_{2}, \cdots, X_{k}\right)^{T}$ is a vector of random variables.

1. Discrete Case

If X takes value on a finite or countable set (or each X_{i} is a discrete random variable), we say X is a discrete random vector. In this case, the distribution of X is driven by the joint probability function.

$$
p\left(t_{1}, t_{2}, \cdots, t_{k}\right)=P\left(X_{1}=t_{1}, \cdots, X_{k}=t_{k}\right) .
$$

2. Continuous Case

In this case, the distribution of X is driven by the joint probability density function $f\left(x_{1}, \cdots, x_{k}\right)$. The joint density function f satisfies that for any measurable set $A \subset R^{k}$.

$$
P(X \in A)=\int_{A} f\left(x_{1}, \cdots, x_{k}\right) d x
$$

We can also define the joint cdf, F, of X

$$
F\left(t_{1}, \cdots, t_{k}\right)=P\left(X_{1} \leq t_{1}, \cdots, X_{k} \leq t_{k}\right)=\int_{-\infty}^{t_{1}} \cdots \int_{-\infty}^{t_{k}} f\left(x_{1}, \cdots, x_{k}\right) d x_{1} \cdots d x_{k}
$$

It is easy to see that

$$
f\left(x_{1}, \cdots, x_{k}\right)=\frac{\partial^{k}}{\partial x_{1} \cdots \partial x_{k}} F\left(x_{1}, \cdots, x_{k}\right) .
$$

3. Moments

$$
\begin{gathered}
E(X)=\left(E\left(X_{1}\right), \cdots, E\left(X_{k}\right)\right)^{T} \\
\operatorname{COV}(X)=E\left((X-E X)(X-E X)^{T}\right)=E\left(X X^{T}\right)-E(X) E(X)^{T} .
\end{gathered}
$$

It can be seen that for any matrix A,

$$
\operatorname{COV}(A X)=A \operatorname{COV}(X) A^{T} .
$$

The moment generating function of X is defined as (for $t \in R^{k}$)

$$
M_{X}(t)=E\left(e^{\left.t^{T} X\right)}\right) .
$$

2 Multivariate Normal Distribution

Suppose $X=\left(X_{1}, \cdots, X_{k}\right)$ and X_{i} are i.i.d. standard normal random variables. Then it is obviously that

$$
E(X)=(0,0, \cdots, 0), \operatorname{COV}(X)=I_{k} .
$$

Then for a n dimensional vector μ and $n \times k$ matrix A

$$
E(\mu+A X)=\mu, \operatorname{COV}(\mu+A X)=A A^{T} .
$$

Denote $A A^{T}$ by Σ, we have the following definition.

Definition 1 The distribution of random vector $A X$ is called a multivariate normal distribution with covariance matrix Σ and is denoted by $N(0, \Sigma)$. And the distribution of $\mu+A X$ is called a multivariate normal distribution with mean μ and covariance matrix $\Sigma, N(\mu, \Sigma)$.

To make the definition valid, we need to verify that the distribution of $A X$ depend on A only throuth $A A^{T}$. We can use the moment generating function to do this.

Suppose the moment generateing function of X is $M(t)$, we know that $M(t)=e^{t^{T} t / 2}$. So the m.g.f. of $A X$ is

$$
M_{A X}(t)=E\left(e^{t^{T} A X}\right)=M\left(t^{T} A\right)=e^{t^{T} A A^{T} t} .
$$

This means the m.g.f. of $A X$ depend on A only through $A A^{T}$, so the distribution of $A X$ only depends on $A A^{T}$.

Based on the definition, we can also calculate the joint pdf of $N(\mu, \Sigma)$ (when Σ is full rank),

$$
f(x)=\left(\frac{1}{\sqrt{2 \pi}}\right)^{n}(\operatorname{det}|\Sigma|)^{-1 / 2} e^{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)}
$$

where $x=\left(x_{1}, \cdots, x_{n}\right)^{T}$ is a n dimensional vector. We can also see that if Y follows $N(\mu, \Sigma)$ distribution then for any matrix B

$$
B Y \sim N\left(B \mu, B \Sigma B^{T}\right)
$$

