Multivariate Normal Distribution

September 30, 2008

1 Random Vector

A random vector $X = (X_1, x_2, \cdots, X_k)^T$ is a vector of random variables.

1. Discrete Case

If X takes value on a finite or countable set (or each X_i is a discrete random variable),we say X is a discrete random vector. In this case, the distribution of X is driven by the joint probability function.

$$p(t_1, t_2, \cdots, t_k) = P(X_1 = t_1, \cdots, X_k = t_k)$$

2. Continuous Case

In this case, the distribution of X is driven by the joint probability density function $f(x_1, \dots, x_k)$. The joint density function f satisfies that for any measurable set $A \subset \mathbb{R}^k$.

$$P(X \in A) = \int_A f(x_1, \cdots, x_k) dx.$$

We can also define the joint cdf, F, of X

$$F(t_1, \dots, t_k) = P(X_1 \le t_1, \dots, X_k \le t_k) = \int_{-\infty}^{t_1} \dots \int_{-\infty}^{t_k} f(x_1, \dots, x_k) dx_1 \dots dx_k$$

It is easy to see that

$$f(x_1, \cdots, x_k) = \frac{\partial^k}{\partial x_1 \cdots \partial x_k} F(x_1, \cdots, x_k).$$

3. Moments

$$E(X) = (E(X_1), \cdots, E(X_k))^T$$
$$COV(X) = E((X - EX)(X - EX)^T) = E(XX^T) - E(X)E(X)^T.$$

It can be seen that for any matrix A,

$$COV(AX) = ACOV(X)A^T.$$

The moment generating function of X is defined as (for $t \in \mathbb{R}^k$)

$$M_X(t) = E(e^{t^T X)}).$$

2 Multivariate Normal Distribution

Suppose $X = (X_1, \dots, X_k)$ and X_i are i.i.d. standard normal random variables. Then it is obviously that

$$E(X) = (0, 0, \cdots, 0), COV(X) = I_k.$$

Then for a *n* dimensional vector μ and $n \times k$ matrix *A*

$$E(\mu + AX) = \mu, COV(\mu + AX) = AA^{T}.$$

Denote AA^T by Σ , we have the following definition.

Definition 1 The distribution of random vector AX is called a multivariate normal distribution with covariance matrix Σ and is denoted by $N(0, \Sigma)$. And the distribution of $\mu + AX$ is called a multivariate normal distribution with mean μ and covariance matrix Σ , $N(\mu, \Sigma)$.

To make the definition valid, we need to verify that the distribution of AX depend on A only throuth AA^{T} . We can use the moment generating function to do this.

Suppose the moment generateing function of X is M(t), we know that $M(t) = e^{t^T t/2}$. So the m.g.f. of AX is

$$M_{AX}(t) = E(e^{t^T A X}) = M(t^T A) = e^{t^T A A^T t}$$

This means the m.g.f. of AX depend on A only through AA^T , so the distribution of AX only depends on AA^T .

Based on the definition, we can also calculate the joint pdf of $N(\mu, \Sigma)$ (when Σ is full rank),

$$f(x) = \left(\frac{1}{\sqrt{2\pi}}\right)^n (det|\Sigma|)^{-1/2} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$$

where $x = (x_1, \dots, x_n)^T$ is a *n* dimensional vector. We can also see that if *Y* follows $N(\mu, \Sigma)$ distribution then for any matrix *B*

$$BY \sim N(B\mu, B\Sigma B^T).$$