
L1 penalized LAD estimator for high dimensional linear

regression

Lie Wang∗

Abstract

In this paper, the high-dimensional sparse linear regression model is considered,

where the overall number of variables is larger than the number of observations. We

investigate the L1 penalized least absolute deviation method. Different from most of

other methods, the L1 penalized LAD method does not need any knowledge of standard

deviation of the noises or any moment assumptions of the noises. Our analysis shows

that the method achieves near oracle performance, i.e. with large probability, the L2

norm of the estimation error is of order O(
√
k log p/n). The result is true for a wide

range of noise distributions, even for the Cauchy distribution. Numerical results are

also presented.
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1 Introduction

High dimensional linear regression model, where the number of observations is much less

than the number of unknown coefficients, has attracted much recent interests in a number

of fields such as applied math, electronic engineering, and statistics. In this paper, we

consider the following classical high dimensional linear model:

Y = Xβ + z. (1)

where Y = (y1, y2, · · · , yn)′ is the n dimensional vector of outcomes, X is the n× p design

matrix, and z = (z1, z2, · · · , zn)′ is the n dimensional vector of measurement errors (or

noises). We assume X = (X1, X2, · · · , Xp) where Xi ∈ Rn denotes the ith regressor or

variable. Throughout, we assume that each vector Xi is normalized such that ∥Xi∥22 = n

for i = 1, 2, · · · , p. We will focus on the high dimensional case where p ≥ n and our goal is

to reconstruct the unknown vector β ∈ Rp.

Since we are considering a high dimensional linear regression problem, a key assumption

is the sparsity of the true coefficient β. Here we assume,

T = supp(β) has k < n elements.

The set T of nonzero coefficients or significant variables is unknown. In what follows, the

true parameter value β and p and k are implicitly indexed by the sample size n, but we

omit the index in our notation whenever this does not cause confusion.

Ordinary least square method is not consistent in the setting of p > n. In recent years,

many new methods have been proposed to solve the high dimensional linear regression

problem. Methods based on L1 penalization or constrained L1 minimization have been

extensively studied. Dantzig selector was proposed in [10], which can be written as

β̂DS = arg min
γ∈Rp

∥γ∥1, subject to ∥X ′(Y −Xγ)∥∞ ≤ cσ
√

2n log p,
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for some constant c > 1. It is clear that the Dantzig selector depends on the standard

deviation of the noise and the Gaussian assumption. General constrained L1 minimization

methods for noiseless case and Gaussian noise were studied in [7]. More results about the

constrained L1 minimization can be found in for example [9], [12], [8] and the references

therein.

Besides the constrained minimization methods, the lasso (L1 penalized least square)

type methods have been studied in a number of papers, for example, [22], [4], and [18]. The

classical lasso estimator can be written as

β̂lasso = argmin
γ

1

2
∥Y −Xγ∥22 + λ∥γ∥1,

where λ is the penalty level (tuning parameter). In the setting of Gaussian noise and known

variance, it is suggested in [4] that the penalty could be

λ = 2cσ
√
nΦ−1(1− α/2p),

where c > 1 is a constant and α is small chosen probability. By using this penalty value, it

was shown that the lasso estimator can achieve near oracle performance, i.e. ∥β̂lasso−β∥2 ≤

C(k log(2p/α)/n)1/2 for some constant C > 0 with probability at least 1− α.

The lasso method has nice properties, but it also replies heavily on the Gaussian as-

sumption and a known variance. In practice, the Gaussian assumption may not hold and

the estimation of the standard deviation σ is not a trivial problem. In a recent paper, [3]

proposed the square-root lasso method, where the knowledge of the distribution or variance

are not required. Instead, some moment assumptions of the errors and design matrix are

needed. Other than the constrained optimization or penalized optimization methods, the

stepwise algorithm are also studied, see for example [24] and [6]. It is worth noting that to

properly apply the stepwise methods, we also need assumptions on the noise structure or

standard deviation of the noises.
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It is now seen that for most of the proposed methods, the noise structure plays an

important role in the estimation of the unknown coefficients. In most of the existing lit-

eratures, either an assumption on the error distribution or a known variance is required.

Unfortunately, in the high dimensional setup, these assumptions are not always true. More-

over, in cases where heavy-tailed errors or outliers are found in the response, the variance

of the errors may be unbounded. Hence the above methods cannot be applied.

To deal with the cases where the error distribution is unknown or may has heavy tail.

We propose the following L1 penalized least absolute deviation (L1 PLAD) estimator,

β̂ ∈ argmin{γ : ∥Y −Xγ∥1 + λ∥γ∥1}. (2)

The least absolute deviation (LAD) type of methods are important when heavy-tailed

errors present. These methods have desired robust properties in linear regression models,

see for example [1], [15] and [19].

Recently, the penalized version of the LAD method was studied in several papers and

the variable selection and estimation properties were discussed. In [13], the asymptotic

properties of variable selection consistency were discussed under strong conditions such

that the entries of the design matrix X are uniformly bounded. Also, how to find the

tuning parameter that will generate the consistent estimator is still unclear. The estimation

consistency of the penalized LAD estimator were discussed in for example [23] and [16],

where the number of variables p is assumed to be fixed. It is worth noting that in the

proof of lemma 1 of [23], the authors did not prove the convergence in the last step is

uniform, hence the proof is incomplete. In a recent paper [2], the quantile regression

model was considered and L1 penalized method was proposed. Properties of the estimator

were presented under restricted eigenvalue type conditions and smooth assumptions on the

density function of the noise. It is worth pointing out that in our paper, we discuss both

the noisy and noiseless cases and a more general noise structure is considered. Besides, we
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will discuss the conditions on matrix X under the case of Gaussian random design in the

Appendix.

Here in this paper, we present analysis for the L1 PLAD method and we discuss the

selection of penalty level, which does not depend on any unknown parameters or the noise

distribution. Our analysis shows that the L1 PLAD method has surprisingly good proper-

ties. The main contribution of the present paper has twofold. (1) We proposed a rule for

setting the penalty level, it is simply

λ = c
√

2A(α)n log p,

where c > 1 is a constant, α is a chosen small probability, and A(α) is a constant such

that 2p−(A(α)−1) ≤ α. In practice, we can simply choose λ =
√
2n log p, see the numerical

study section for more discussions. This choice of penalty is universal and we only assume

that the noises have median 0 and P (zi = 0) = 0 for all i. (2) We show that with high

probability, the estimator has near oracle performance, i.e. with high probability

∥β̂ − β∥2 = O(

√
k log p

n
).

It is important to notice that we do not have any assumptions on the distribution or

moments of the noise, we only need a scale parameter to control the tail probability of the

noise. Actually, even for Cauchy distributed noise, where the first order moment does not

exist, our results still hold.

Importantly, the problem retains global convexity, making the method computationally

efficient. Actually, we can use ordinary LAD method package to solve the L1 penalized

LAD estimator. This is because if we consider the penalty terms as new observations, i.e.

Yn+i = 0 and xn+i,j = λ × I(j = i) for i, j = 1, 2, · · · , p. Here I(j = i) is the indicator

function such that I(j = i) = 1 if j = i and I(j = i) = 0 if not. Then our L1 penalized

estimator can be considered as an ordinary LAD estimator with p unknown coefficients and
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p+ n observations. Hence it can be solved efficiently.

The rest of the paper is organized as follows. Section 2 discusses the choice of penalty

level. In section 3, the main results about the estimation error and several critical lemmas

are presented. We also briefly explain the main idea of the proofs. Section 4 presents

the simulation study results, which shows the L1 penalized LAD method has very good

numerical performance regardless the noise distribution. Technical lemmas and the proofs

of theorems are given in section 5. The Appendix presents the discussion of conditions on

matrix X under Gaussian random design.

2 Choice of Penalty

In this section, we discuss the choice of the penalty level for the L1 PLAD estimator. For

any γ ∈ Rp, let Q(γ) = ∥Y −Xγ∥1. Then the L1 PLAD estimator can be written as

β̂ ∈ argmin{γ : Q(γ) + λ∥γ∥1}.

An important quantity to determine the penalty level is the sub-differential of Q evaluated

at the point of true coefficient β. Here we assume that the measurement errors zi satisfy

P (zi = 0) = 0 and the median of zi is 0 for i = 1, 2, · · · , n. Assume that zi ̸= 0 for all i,

then the sub-differential of Q(γ) = ∥Y −Xγ∥1 at point γ = β can be written as

S = X ′(sign(z1), sign(z2), · · · , sign(zn))′,

where sign(x) denotes the sign of x, i.e. sign(x) = 1 if x > 0, sign(x) = −1 if x < 0, and

sign(0) = 0. Let I = sign(z), then I = (I1, I2, · · · , In)′ where Ii = sign(zi). Since zi’s are

independent and have median 0, we know that P (Ii = 1) = P (Ii = −1) = 0.5 and Ii are

independent.

The sub-differential of Q(γ) at the point of β, S = X ′I, summaries the estimation error

in the setting of linear regression model. We will choose a penalty λ that dominates the
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estimation error with large probability. This principle of selecting the penalty λ is motivated

by [4] and [3]. It is worth noting that this is a general principle of choosing the penalty

and can be applied to many other problems. To be more specific, we will choose a penalty

λ such that it is greater than the maximum absolute value of S with high probability, i.e.

we need to find a penalty level λ such that

P (λ ≥ c∥S∥∞) ≥ 1− α, (3)

for a given constant c > 1 and a given small probability α. Note that c is a theoretical

constant and in practice we can simply take c = 1.1. Since the distribution of I is known,

the distribution of ∥S∥∞ is known for any given X and does not depend on any unknown

parameters.

Now for any random variable W let qα(W ) denote the 1 − α quantile of W . Then

in theory, qα(∥S∥∞) is known for any given X. Therefore if we choose λ = cqα(∥S∥∞),

inequality (3) is satisfied.

In practice, it might be hard to calculate the exact quantile qα(∥S∥∞) for a givenX. One

possible way to calculate or approximate it is by simulation, but this will cause additional

computation time. Here we propose the following choice of penalty.

λ = c
√

2A(α)n log p, (4)

where A(α) > 0 is a constant such that 2p−(A(α)−1) ≤ α.

To show that the above choice of penalty satisfies (3), we need to bound the tail proba-

bility of
∑n

i=1XijIi for i = 1, 2, · · · , p. This can be done by using the Hoeffding’s inequality,

see for example [14], and union bounds. We have the following lemma.

Lemma 1 The choice of penalty λ = c
√

2A(α)n log p as in (4) satisfies

P (λ ≥ c∥S∥∞) ≥ 1− α.
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From the proof of the previous lemma, we can see that if we use the following special

choice of λ,

λ = 2c
√
n log p, (5)

Then we have that

P (λ ≥ c∥S∥∞) ≥ 1− 2

p
. (6)

The above penalties are simple and have good theoretical properties. Moreover, they

do not require any conditions on matrix X or value of p and n. But in practice, since

the bounds here are not very tight, these penalty levels tend to be relatively large and

can cause additional bias to the estimator. It is worth pointing out that if there exists an

i ∈ {1, 2, · · · , p} such that ∥Xi∥1 < λ, then β̂i must be 0. Otherwise we can replace β̂i by

0, and the value of Q(β̂) + λ∥β̂∥1 will reduce by at least (λ−∥Xi∥1)|β̂i|. This means if the

penalty level λ is too large, the L1 PLAD method may kill some of the significant variables.

To deal with this issue, we propose the following refined asymptotic choice of penalty level,

provided some moment conditions on design matrix X.

Lemma 2 Suppose

B = sup
n

sup
1≤j≤p

1

n
∥Xj∥qq <∞, (7)

for some constant q > 2. Assume Φ−1(1 − α/2p) ≤ (q − 2)
√
log n. Then the choice of

penalty λ = c
√
nΦ−1(1− α

2p) satisfies

P (λ ≥ c∥S∥∞) ≥ 1− α(1 + ωn),

where ωn goes to 0 as n goes to infinity.

This choice of penalty replies on moment conditions of X and relative size of p and n,

but it could be smaller than the previous ones and in practice it will cause less bias. We

investigate the effect of different penalties in the numerical study section.
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To simplify our arguments, in the following theoretical discussion we will use (5) as the

default choice of penalty. It can be seen that the above choices of penalty levels do not

depend on the distribution of measurement errors zi or unknown coefficient β. As long

as zi’s are independent random variables with median 0 and P (zi = 0) = 0, the choices

satisfy our requirement. This is a big advantage over the traditional lasso method, which

significantly relies on the Gaussian assumption and the variance of the errors.

3 Properties of the Estimator

In this section, we present the properties of the L1 PLAD estimator. We shall state the

upper bound for estimation error h = β̂ − β under L2 norm ∥h∥2. We shall also present

the variable selection properties for both noisy and noiseless cases. The choice of penalty

is described in the previous section. Throughout the discussion in this section, we assume

the penalty λ satisfies λ ≥ c∥S∥∞ for some fixed constant c > 1. In what follows, for any

set E ⊂ {1, 2, · · · , p} and vector h ∈ Rp, let hE = hI(E) denote the p dimensional vector

such that we only keep the coordinates of h when their indexes are in E and replace others

by 0.

3.1 Conditions on design matrix X

We will first introduce some conditions on design matrix X. Recall that we assume λ ≥

c∥S∥∞, this implies the following event, namely h = β̂−β belongs to the restricted set ∆C̄ ,

where

∆C̄ = {δ ∈ Rp : ∥δT ∥1 ≥ C̄∥δT c∥1,

where T ⊂ {1, 2, · · · , p} and T contains at most k elements.},

and C̄ = (c− 1)/(c+ 1). To show this important property of the L1 PLAD estimator,
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recall that β̂ minimizes ∥Xγ − Y ∥1 + λ∥γ∥1. Hence

∥Xh+ z∥1 + λ∥β̂∥1 ≤ ∥z∥1 + λ∥β∥1.

Let T denote the set of significant coefficients. Then

∥Xh+ z∥1 − ∥z∥1 ≤ λ(∥hT ∥1 − ∥hT c∥1). (8)

Since the sub-differential of Q(γ) at the point of β is X ′I, where I = sign(z).

∥Xh+ z∥1 − ∥z∥1 ≥ (Xh)′I ≥ h′X ′I ≥ −∥h∥1∥X ′I∥∞ ≥ −λ
c
(∥hT ∥1 − ∥hT c∥1).

So

∥hT ∥1 ≥ C̄∥hT c∥1, (9)

where C̄ = c−1
c+1 .

The fact that h ∈ ∆C̄ is extremely important for our arguments. This fact is also

important for the arguments of classical lasso method and the square-root lasso method,

see for example, [4] and [3].

Now we shall define some important quantities of design matrix X. Let λuk be the

smallest number such that for any k sparse vector d ∈ Rp,

∥Xd∥22 ≤ nλuk∥d∥22.

Here k sparse vector d means that the vector d has at most k nonzero coordinates, or

∥d∥0 ≤ k. Similarly, let λlk be the largest number such that for any k sparse vector d ∈ Rp,

∥Xd∥22 ≥ nλlk∥d∥22.

Let θk1,k2 be the smallest number such that for any k1 and k2 sparse vector c1 and c2 with

disjoint support,

|⟨Xc1, Xc2⟩| ≤ nθk1,k2∥c1∥2∥c2∥2.
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The definition of the above constants are essentially the Restricted Isometry Constants,

see for example [11], but we use different notations for upper and lower bounds. We also

need to define the following restricted eigenvalue of design matrix X. These definitions are

based on the idea of [4]. Let

κlk(C̄) = min
h∈∆C̄

∥Xh∥1
n∥hT ∥2

.

To show the properties of the L1 penalized LAD estimator, we need κlk(C̄) to be bounded

away from 0. To simplify the notations, when it is not causing any confusion, we will simply

write κlk(C̄) as κ
l
k.

3.2 Important Lemmas

Before presenting the main theorem, we first state a few critical lemmas. From (8), we

know that

∥Xh+ z∥1 − ∥z∥1 ≤ λ∥hT ∥1.

To bound the estimation error, we shall first investigate the random variable 1√
n
(∥Xh +

z∥1 − ∥z∥1). For any vector d ∈ Rp, let

B(d) =
1√
n
|(∥Xd+ z∥1 − ∥z∥1)− E(∥Xd+ z∥1 − ∥z∥1)| .

We introduce the following important result.

Lemma 3 Suppose zi’s are independent random variables. Assume p > n and p > 3κuk

then

P

(
sup

∥d∥0=k,∥d∥2=1
B(d) ≥ (1 + 2C1

√
λuk)
√

2k log p

)
≤ 2p−4k(C2

1−1), (10)

where C1 > 1 is a constant.
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From the above lemma, we know that with probability at least 1− 2p−4k(C2
1−1), for any

k sparse vector d ∈ Rp,

1√
n
(∥Xd+ z∥1 − ∥z∥1) ≥

1√
n
E(∥Xd+ z∥1 − ∥z∥1)− C

√
2k log p∥h∥2, (11)

where C = 1 + 2C1

√
λuk . This lemma shows that with high probability, the value of the

random variable 1√
n
(∥Xd+z∥1−∥z∥1) is very close to its expectation. Since the expectation

is fixed and much easier to analysis than the random variable itself, this lemma plays an

important role in our proof of the main theorem.

Next, we will investigate the properties of E(∥Xd+ z∥1 −∥z∥1). We have the following

lemmas.

Lemma 4 For any continuous random variable zi, we have that

dE(|zi + x| − |zi|)
dx

= 1− 2P (zi ≤ −x).

Now we will introduce the scale assumptions on the measurement errors zi. suppose

there exists a constant a > 0 such that

P (zi ≥ x) ≤ 1

2 + ax
for all x ≥ 0

P (zi ≤ x) ≤ 1

2 + a|x|
for all x < 0. (12)

Here a served as a scale parameter of the distribution of zi. This is a very weak condition

and even Cauchy distribution satisfies it. Based on this assumption, we have that for any

c > 0,

E(|zi + c| − |zi|) = c− 2

∫ c

0
P (zi < −x)dx

≥ c− 2

∫ c

0

1

2 + ax
dx = c− 2

a
log(1 +

a

2
c).

Hence we have the following lemma.
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Lemma 5 Suppose random variable z satisfies condition (12), then

E(|zi + c| − |zi|) ≥
a

16
|c|(|c| ∧ 6

a
). (13)

Remark 1 This is just a weak bound and can be improved easily. But for simplicity, we

use this one in our discussion.

3.3 Main Theorems

Now we shall propose our main result. Here we assume that the measurement errors zi are

independent and identically distributed random variables with median 0. We also assume

that zis satisfy condition (12). Moreover, we assume λlk > θk,k(
1
C̄
+ 1

4) and

3
√
n

16
κlk > λ

√
k/n+ C1

√
2k log p(

5

4
+

1

C̄
), (14)

for some constant C1 such that C1 > 1 + 2
√
λuk . We have the following theorem.

Theorem 1 Under the previous assumptions, the L1 penalized LAD estimator β̂ satisfies

with probability at least 1− 2p−4k(C2
2−1)+1

∥β̂ − β∥2 ≤
√

2k log p

n

16(c
√
2 + 1.25C1 + C1/C̄)

a(λlk − θk,k(
1
C̄
+ 1

4))
2/λuk

√
1 +

1

C̄
.

where C1 = 1 + 2C2

√
λuk and C2 > 1 is a constant.

Remark 2 From the proof of the theorem, we can see that the identically distributed as-

sumption of the measurement errors is not essential. We just need that there exist a constant

a > 0 such that for all i, P (zi ≥ x) ≤ 1
2+ax for x ≥ 0 and P (zi ≤ x) ≤ 1

2+a|x| for x < 0.

This is also verified in the section of simulation study.

Remark 3 Actually, θk,k can be bounded by λlk and λuk and the condition λlk > θk,k(
1
C̄
+ 1

4)

can be replaced by a number of similar RIP conditions, see for example [8]. We keep it here

just to simplify the arguments.
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Remark 4 Condition (14) implies that the columns of X cannot be too sparse. This is

because if the columns of X are sparse then the L1 norm of columns of X will be small,

hence the value κlk will be small.

From the theorem we can easily see that asymptotically, with high probability,

∥β̂ − β∥2 = O(

√
2k log p

n
). (15)

This means that asymptotically, the L1 PLAD estimator has near oracle performance and

hence it matches the asymptotic performance of the lasso method with known variance.

A simple consequence of the main theorem is that the L1 PLAD estimator will select

most of the significant variables with high probability. We have the following theorem.

Theorem 2 Suppose T̂ = supp(β̂) be the estimated support of the coefficients. Then under

the same conditions as in Theorem 1, with probability at least 1− 2p−4k(C2
2−1)+1,{

i : |βi| ≥
√

2k log p

n

16(c
√
2 + 1.25C1 + C1/C̄)

a(λlk − θk,k(
1
C̄
+ 1

4))
2/λuk

}
⊂ T̂ , (16)

where C1 = 1 + 2C2

√
λuk and C2 > 1 is a constant.

Remark 5 This theorem shows that the L1 PLAD method will select a model that contains

all the variables with large coefficients. If in the main model, all the nonzero coefficients

are large enough in terms of absolute value, then the L1 PLAD method can select all of

them into the model.

A special but important case in high dimensional linear regression is the noiseless case.

The next theorem shows that the L1 PLAD estimator has nice variable selection property

in the noiseless case.

Theorem 3 Consider the noiseless case. Suppose we use a penalty level λ such that λ <

nκlk(1), the L1 penalized LAD estimator β̂ satisfies β̂ = β.
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Remark 6 Suppose κlk(1) are bounded away from 0 for all n and we use the penalty level

λ = 2
√
n log p. Then when

√
log p = o(n) and n large enough. The L1 penalized LAD

estimator β̂ satisfies β̂ = β.

Remark 7 From the discussion in the Appendix we know that if we use the i.i.d. Gaussian

random design and log p = o(n1/6), then for n large enough the L1 PLAD estimator satisfies

β̂ = β with high probability.

4 Numerical Study

In this section, we will show some numerical results. Throughout this section, we use

n = 200, p = 400 and k = 5 and set β = (3, 3, 3, 3, 3, 0, · · · , 0). We will study both the

estimation properties and variable selection properties of the L1 PLAD estimator under

various noise structures. In our simulation study, we generate the design matrix X by i.i.d.

N(0, 1) random variables and then normalize the columns.

We first investigate the effect of different choices of penalty levels. Then we compare

the L1 PLAD method and the lasso method in the Gaussian noise case. We also study

the numerical properties of L1 PLAD estimator under different noise structures, including

the heteroscedastic cases. We use the quantreg package and lars package in R to run the

simulation.

4.1 Effect of Penalty levels

Section 2 discusses the choice of penalty levels. It is known that our desired choice is

cqα(∥S∥∞). But since this value is hard to calculate, we propose several upper bounds

and asymptotic choices. Now we will investigate the effect of different choices of penalty

levels on the L1 PLAD estimator. To be specific, we consider the following four penalties,

λ1 =
√
1.5n log p, λ2 =

√
2n log p, λ3 =

√
3n log p, and λ4 =

√
4n log p. Note that they are
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Table 1: The average of estimation error ∥β̂ − β∥22 over 200 simulations under different

penalty levels and error distributions. Numbers in the parentheses are the medians of the

estimation errors of post L1 PLAD method, i.e. results of ordinary LAD estimators on the

selected subset.

λ1 λ2 λ3 λ4

N(0, 1) noise 0.658 (0.356) 1.054 (0.239) 3.189 (0.095) 23.730 (4.586)

t(2) noise 1.263 (0.552) 2.351 (0.299) 10.121 (0.081) 33.018 (18.771)

Cauchy noise 2.176 (0.861) 4.736 (0.334) 21.417 (0.103) 39.351 (26.241)

all fixed choices and do not depend on any assumptions or parameters. For noises, we use (a)

N(0, 1) noise, (b) t(2) noise, and (c) Cauchy noise. For each setting, we run the simulation

200 times and the average L2 norm square of the estimation errors are summarized in the

following table.

From table 1 we can see that λ4 is too large in our setup and it kills most of the

variables. (It is worth noting that if we increase the sample size to for example n = 400

and p = 800, λ4 becomes a reasonable choice.) Moreover, larger λ cause more bias to the

estimator. In practice, an ordinary least square method or least absolute deviation method

could be applied to the selected variables to correct the bias (post L1 PLAD method). We

summarized the median of the ordinary LAD estimators on the selected subset in the above

table. It can be seen that among the four penalty levels, λ1 has the best results in terms

of the estimation error ∥β̂ − β∥22, and λ3 has the best results in terms of post L1 PLAD

estimation error. The post L1 PLAD results are very good for all three noise distributions

even though the t(2) distribution does not have bounded variance and Cauchy distribution

does not have bounded expectation.
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4.2 Gaussian Noise

Now consider the Gaussian noise case, i.e. zi are independent and identically normal random

variables. The standard deviation σ of zi is varied between 0 and 1. Here we also include

the noiseless case (where the traditional lasso cannot select the model correctly) and the

Cauchy distribution case (to compare). We will use penalty level λ =
√
2n log p and run

200 times for each value of σ. For each simulation, we use both the L1 PLAD method and

the classical lasso method. For the lasso method, we consider to ways to select the penalty.

One is to use σ× λ as the penalty, where we assume the standard deviation is known. The

other one is by cross validation. In the noiseless case, we use 0.01×λ or the cross validation

to select the penalty levels for the lasso method. For the Cauchy distribution case, only

the cross validation is considered. Here we summaries the average estimation error and the

variable selection results of both methods for different distributions.

In table 2, the average type I error means the average number of significant variables

that are unselected over 200 runs. The average type II error means the average number

of insignificant variables that are selected over 200 runs. The results show that in terms

of estimation, the classical lasso method with known standard deviation does better than

L1 PLAD method, except the noiseless case. This is partly because that lasso knows the

standard deviation and L1 PLAD does not. Also, the penalty level for L1 PLAD method

has stronger shrinkage effect and hence cause more bias. The lasso with cross validation

did a fine job in terms of estimation in the Gaussian noise case, but it performs poorly in

the noiseless case and Cauchy distribution case.

In term of variable selection, the L1 PLAD method does better than classical lasso

method. The two methods both select all the significant variables in all the 200 simulations

for the Gaussian noise cases. The L1 PLAD method has smaller average type II errors which

means the lasso method tends to select more incorrect variables than the L1 PLAD method.
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On the other hand, the lasso with cross validation selects a large amount of variables into

the model, its average type II errors is huge. It is worth noting that L1 PLAD method does

a perfect job in noiseless case, it selects the perfect model in every run. While the lasso

method never have a correct variable selection result.

4.3 Heavy tail and Heteroscedastic Noise

In the proof of Theorem 1 and all the discussions, the identically distribution assumption

is not essential for our arguments. Now we will study the performance of the L1 PLAD

estimator when the noises zi are just independent and not identically distributed. We will

consider three cases: (a) Half of the zi are N(0, 1) random variables and half of them are

N(0, 4) random variables. (b) Half of the zi are t(2) random variables and half of them are

Table 2: The average of estimation error ∥β̂ − β∥22 over 200 replications and the variable

selection results for lasso and L1 penalized LAD method.

Distribution N(0, 0) N(0, 0.252) N(0, 0.52) N(0, 1) Cauchy

L1 PLAD: Average of ∥β̂ − β∥2 0 0.065 0.269 1.057 4.731

L1 PLAD: Average type I error 0 0 0 0 0.002

L1 PLAD: Average type II error 0 0.185 0.150 0.120 0.161

Lasso: Average of ∥β̂ − β∥2 11.419 0.062 0.106 0.344 NA

Lasso: Average type I error 0 0 0 0 NA

Lasso: Average type II error 24.125 0.825 0.875 0.710 NA

CV Lasso: Average of ∥β̂ − β∥2 2.788 0.122 0.241 0.455 6.862

CV Lasso: Average type I error 0.05 0 0 0 2.18

CV Lasso: Average type II error 31.775 65.960 61.875 53.035 20.8
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t(2) random variables multiple by 2. (c) One third of the zi are N(0, 1) random variables;

one third of them are t(2) random variables; the rest of them follow exponential distribution

with parameter 1 (relocated such that the median is 0). We use penalty λ =
√
2n log p for all

cases. It is worth noting that in all the cases, traditional lasso method and the constrained

minimization methods cannot be properly applied since the variances of the noises are

unbounded.

Table 3 summaries the average estimation errors and variable selection properties of the

L1 PLAD method over 200 runs. We also summarize the estimation errors of the post L1

PLAD method in the parentheses. It can be seen that the L1 PLAD method has very nice

estimation and variable selection properties for all cases. Compare the variable selection

results here with the Gaussian noise case in table 2, we can see that although we have

many different noise structures, the L1 PLAD method can always select a good model. Its

variable selection results here are comparable to the Gaussian noise case.

5 Proofs

We will first show some technical lemmas and then prove the main results.

Table 3: The average of estimation error ∥β̂ − β∥2 over 200 replications and the variable

selection results for the L1 PLAD method. Numbers in the parentheses are the medians of

the estimation errors of post L1 PLAD method.

Case (a) Case (b) Case (c)

Average of ∥β̂ − β∥22 1.701 (0.234) 3.545 (0.228) 1.808 (0.210)

Average type I error 0 0 0.004

Average type II error 0.141 0.152 0.161
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5.1 Technical Lemmas

We first state the Slastnikov-Rubin-Sethuraman Moderate Deviation Theorem. LetXni, i =

1, . . . , kn;n ≥ 1 be a double sequence of row-wise independent random variables with

E(Xni) = 0, E(X2
ni) < ∞, i = 1, . . . , kn; n ≥ 1, and B2

n =
∑kn

i=1E(X2
ni) → ∞ as n → ∞.

Let Fn(x) = P
(∑kn

i=1Xni < xBn

)
. We have

Lemma 6 (Slastnikov, Theorem 1.1) If for sufficiently large n and some positive constant

c,
kn∑
i=1

E(|Xni|2+c
2
)ρ(|Xni|) log−(1+c2)/2(3 + |Xni|) ≤ g(Bn)B

2
n,

where ρ(t) is slowly varying function monotonically growing to infinity and g(t) = o(ρ(t))

as t→ ∞, then

1− Fn(x) ∼ 1− Φ(x), Fn(−x) ∼ Φ(−x), n→ ∞,

uniformly in the region 0 ≤ x ≤ c
√

logB2
n.

Corollary 1 (Slastnikov, Rubin-Sethuraman) If q > c2 + 2 and

kn∑
i=1

E[|Xni|q] ≤ KB2
n,

then there is a sequence γn → 1, such that∣∣∣∣1− Fn(x) + Fn(−x)
2(1− Φ(x))

− 1

∣∣∣∣ ≤ γn − 1 → 0, n→ ∞,

uniformly in the region 0 ≤ x ≤ c
√

logB2
n.

Remark. Rubin-Sethuraman derived the corollary for x = t
√

logB2
n for fixed t. Slast-

nikov’s result adds uniformity and relaxes the moment assumption. We refer to [21] for

proofs.
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Next, we will state a couple of simple yet useful results. Suppose U > 0 is a fixed

constant. For any x = (x1, x2, · · · , xn) ∈ Rn, let

G(x) =

n∑
i=1

|xi|(|xi| ∧ U),

where a ∧ b denotes the minimum of a and b. Then we have the following results.

Lemma 7 For any x = (x1, x2, · · · , xn) ∈ Rn, we have that

G(x) ≥


U∥x∥1

2 if ∥x∥1 ≥ nU/2

∥x∥22 if ∥x∥1 < nU/2.

Proof. Let y = x/U , then it is easy to see that

G(x)

U2
=

n∑
i=1

|yi|(|yi| ∧ 1).

We first consider the case where ∥y∥1 ≥ n/2. Now suppose |yi| < 1 for i = 1, 2, · · · , k (note

that k might be 0 or n), and |yi| > 1 for i > k. Then

G(x)

U2
= ∥y∥1 +

k∑
i=1

y2i −
k∑
i=1

|yi| ≥ ∥y∥1 −
k

4
≥ ∥y∥1

2
.

Now let us consider the case where ∥y∥1 < n/2. Suppose there exists an i such that |yi| > 1,

then there must be a j such that |yj | < 1/2. If we replace yi and yj by y′i = |yi| − ϵ ≥ 1

and y′j = |yj |+ ϵ ≤ 1/2 for some ϵ > 0, the value of G(x)/U2 decreases. This means that if

G(x)/U2 is minimized, all the yi must satisfy that |yi| ≤ 1. In this case,

G(x)/U2 = ∥y∥22.

Putting the above inequalities together, the lemma is proved.

The following lemma is from [8].

Lemma 8 For any x ∈ Rn,

∥x∥2 −
∥x∥1√
n

≤
√
n

4

(
max
1≤i≤n

|xi| − min
1≤i≤n

|xi|
)
.
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Remark 8 A interesting consequence of the above lemma is: for any x ∈ Rn,

∥x∥2 ≤
∥x∥1√
n

+

√
n∥x∥∞
4

5.2 Proof of Lemma 1

In this section, we will prove lemma 1 by union bound and Hoeffding’s inequality. Firstly,

by the union bound, it can be seen that

P (c
√

2A(α)n log p ≤ c∥S∥∞) ≤
p∑
i=1

P (
√

2A(α)n log p ≤ |X ′
iI|).

For each i, by Hoeffiding inequality,

P (
√

2A(α)n log p ≤ |X ′
iI|) ≤ 2 exp{−4A(α)n log p

4∥Xi∥22
} = 2p−A(α),

since ∥Xi∥22 = n for all i. Therefore,

P (c
√

2A(α)n log p ≤ c∥S∥∞) ≤ p2p−A(α) ≤ α.

Hence the lemma is proved.

5.3 Proof of Lemma 2

By the union bound, it can be seen that

P (c
√
nΦ−1(1− α/(2p)) ≤ c∥S∥∞) ≤

p∑
i=1

P (
√
nΦ−1(1− α/(2p)) ≤ |X ′

iI|).

For each i, from Corollary 1,

P (
√
nΦ−1(1− α/(2p)) ≤ |X ′

iI|)

≤ 2(1− Φ(Φ−1(1− α/(2p))))(1 + ωn) = α/p(1 + ωn),

where ωn goes to 0 as n goes to infinity, provided that Φ−1(1 − α/2p) ≤ (q − 2)
√
log n.

Hence

P (c
√
nΦ−1(1− α/(2p)) ≤ c∥S∥∞) ≤ α(1 + ωn).
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5.4 Proof of Lemma 5

It is easy to see that when c ≥ 6
a ,

c− 2

a
log(1 +

a

2
c) ≥ c− 2

a

ac

4
=
c

2
,

and when c ≤ 6
a ,

c− 2

a
log(1 +

a

2
c) ≥ c− 2

a
(
ac

2
− 1

8
(
ac

2
)2) =

ac2

16
.

Similarly, we can show that for any real number c, when |c| ≥ 6
a ,

E(|zi + c| − |zi|) ≥
|c|
2
,

and when |c| ≤ 6
a ,

E(|zi + c| − |zi|) ≥
ac2

16
.

Putting the above inequalities together, the lemma is proved.

5.5 Proof of Lemma 3

First, it can be seen that for any 1 ≤ i ≤ n, ||(Xd)i−zi|−|zi|| ≤ |(Xd)i|. So |(Xd)i−zi|−|zi|

is a bounded random variable for any fixed d. Hence for any fixed k sparse signal d ∈ Rp,

by Hoeffding’s inequality, we have

P (B(d) ≥ t) ≤ 2 exp{− t2n

2∥Xd∥22
},

for all t > 0. From the definition of λuk , we know that

P (B(d) ≥ t) ≤ 2 exp{− t2

2λuk∥d∥22
}.

In the above inequality, let t = C
√
2k log p∥d∥2, we have

P
(
B(d) ≥ C

√
2k log p∥d∥2

)
≤ 2p−kC

2/λuk , (17)
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for all C > 0. Next we will find an upper bound for supd∈RP ,∥d∥0=k,∥d∥2=1 |B(d)|. We shall

use the ϵ-Net and covering number argument. Consider the ϵ-Net of the set {d ∈ RP , ∥d∥0 =

k, ∥d∥2 = 1}. From the standard results of covering number, see for example [5], we know

that the covering number of {d ∈ Rk, ∥d∥2 = 1} by ϵ balls (i.e. {y ∈ Rk : ∥y − x∥2 ≤ ϵ}) is

at most (3/ϵ)k for ϵ < 1. So the covering number of {d ∈ RP , ∥d∥0 = k, ∥d∥2 = 1} by ϵ balls

is at most (3p/ϵ)k for ϵ < 1. Suppose N is such a ϵ-Net of {d ∈ RP , ∥d∥0 = k, ∥d∥2 = 1}.

By union bound,

P (sup
d∈N

|B(d)| ≥ C
√

2k log p) ≤ 2(3/ϵ)kpkp−kC
2/λuk ,

for all C > 0. Moreover, it can be seen that,

sup
d1,d2∈Rp,∥d1−d2∥0≤k,∥d1−d2∥2≤ϵ

|B(d1)−B(d2)| ≤
2√
n
∥X(d1 − d2)∥1 ≤ 2

√
nκukϵ.

Therefore

sup
d∈RP ,∥d∥0=k,∥d∥2=1

|B(d)| ≤ sup
d∈N

|B(d)|+ 2
√
nκukϵ.

Let ϵ =
√

2k log p
n

1
2κuk

, we know that

P

(
sup

d∈RP ,∥d∥0=k,∥d∥2=1

|B(d)| ≥ C
√

2k log p

)

≤ P

(
sup
d∈N

|B(d)| ≥ (C − 1)
√

2k log p

)
≤ 2(

3p
√
nκuk

p(C−1)2/λuk
)k.

Under the assumption that p > n and p > 3κuk , let C = 1 + 2C1

√
λuk for some C1 > 1, we

know that

P

(
sup

d∈RP ,∥d∥0=k,∥d∥2=1

|B(d)| ≥ (1 + 2C1

√
λuk)
√

2k log p

)
≤ 2p−4k(C2

1−1). (18)

Hence the lemma is proved.
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5.6 Proof of Lemma 4

Since ||zi + x| − |zi|| ≤ |x| is bounded, the expectation always exists. Suppose the density

function of zi is f(z) and x > 0. It is easy to see that

E(|zi + x| − |zi|) =

∫ ∞

0
f(t)xdt+

∫ 0

−x
f(t)(2t+ x)dt−

∫ −x

−∞
f(t)xdt

= x(

∫ ∞

−x
f(t)dt−

∫ −x

−∞
f(t)dt) + 2

∫ 0

−x
tf(t)dt

= x(1− 2P (zi ≤ −x)) + 2

∫ 0

−x
tf(t)dt.

Hence it is easy to see that

dE(|zi + x| − |zi|)
dx

= 1− 2P (zi ≤ −x).

5.7 Proof of Theorem 1 and 3

Now we will bound the estimation error of the L1 penalized LAD estimator. Recall that

h = β − β̂ and h ∈ ∆C̄ = {δ ∈ Rp : ∥δT ∥1 ≥ C̄∥δT c∥1}. Without loss of generality,

assume |h1| ≥ |h2| ≥ · · · ,≥ |hp|. Let S0 = {1, 2, · · · , k}, we have hS0 ≥ C̄hSc
0
. Partition

{1, 2, · · · , p} into the following sets:

S0 = {1, 2, · · · , k}, S1 = {k + 1, · · · , 2k}, S2 = {2k + 1, · · · , 3k}, · · · .

Then it follows from lemma 8 that

∑
i≥1

∥hSi∥2 ≤
∑
i≥1

∥hSi∥1√
k

+

√
k

4
|hk+1| ≤

1√
k
∥hSc

0
∥1 +

1

4
√
k
∥hS0∥1

≤ (
1√
kC̄

+
1

4
√
k
)∥hS0∥1 ≤ (

1

4
+

1

C̄
)∥hS0∥2. (19)

It is easy to see that

1√
n
(∥Xh+ z∥1 − ∥z∥1) ≥

1√
n
(∥XhS0 + z∥1 − ∥z∥1)

+
∑
i≥1

1√
n
(∥X(

i∑
j=0

hSj ) + z∥1 − ∥X(
i−1∑
j=0

hSj ) + z∥1) (20)
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Now for any fixed vector d, let

M(d) =
1√
n
E(∥Xd+ z∥1 − ∥z∥1).

By lemma 3, we know that with probability at least 1− 2p−4k(C2
2−1),

1√
n
(∥XhS0 + z∥1 − ∥z∥1) ≥M(hS0)− C1

√
2k log p∥hS0∥2,

and for i ≥ 1 with probability at least 1− 2p−4k(C2
2−1),

1√
n
(∥X(

i∑
j=0

hSj ) + z∥1 − ∥X(

i−1∑
j=0

hSj ) + z∥1) ≥M(hSi)− C1

√
2k log p∥hSi∥2,

where C1 = 1+2C2

√
λuk and C2 > 1 is a constant. Put the above inequalities together, we

know that with probability at least 1− 2p−4k(C2
2−1)+1,

1√
n
(∥Xh+ z∥1 − ∥z∥1) ≥M(h)− C1

√
2k log p

∑
i≥0

∥hSi∥2. (21)

By this and inequality (8) and (19), we have that with probability at least 1−2p−4k(C2
2−1)+1,

M(h) ≤ λ
√
k√
n
∥hS0∥2 + C1

√
2k log p(1.25 +

1

C̄
)∥hS0∥2. (22)

Next, we consider two cases. First, if ∥Xh∥1 ≥ 3n/a, then from lemma 7 and inequality

(13),

1√
n
E(∥Xh+ z∥1 − ∥z∥1) ≥

3

16
√
n
∥Xh∥1 ≥

3
√
n

16
κlk∥hS0∥2. (23)

From assumption (14), we must have ∥hS0∥2 = 0 and hence β̂ = β.

On the other hand, if ∥Xh∥1 < 3n/a, from lemma 7 and inequality (13),

1√
n
E(∥Xh+ z∥1 − ∥z∥1) ≥

a

16
√
n
∥Xh∥22. (24)

By the same argument as in the proofs of Theorem 3.1 and Theorem 3.2 in [8], we know

that

|⟨XhS0 , Xh⟩| ≥ nλlk∥hS0∥22 − nθk,k∥hS0∥2
∑
i≥1

∥hSi∥2 ≥ n(λlk − θk,k(
1

C̄
+

1

4
))∥hS0∥22.
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And

|⟨XhS0 , Xh⟩| ≤ ∥XhS0∥2∥Xh∥2 ≤ ∥Xh∥2
√
nλuk∥hS0∥2.

Therefore

∥Xh∥22 ≥ n
(λlk − θk,k(

1
C̄
+ 1

4))
2

λuk
∥hS0∥22.

Hence by (22) and (24), we know that with probability at least 1− 2p−4k(C2
2−1)+1,

∥hS0∥2 ≤
16λ

√
k

naηlk
+

√
2k log p

n

16C1(1.25 + 1/C̄)

aηlk
, (25)

where ηlk = (λlk − θk,k(
1
C̄
+ 1

4))
2/λuk . In particular, when λ = 2c

√
n log p. Putting the above

discussion together, we have

∥hS0∥2 ≤
√

2k log p

n

16(c
√
2 + 1.25C1 + C1/C̄)

aηlk
. (26)

Since

∑
i≥1

∥hSi∥22 ≤ |hk+1|
∑
i≥1

∥hSi∥1 ≤
1

C̄
∥hS0∥22,

We know that with probability at least 1− 2p−4k(C2
2−1)+1,

∥β̂ − β∥2 ≤
√

2k log p

n

16(c
√
2 + 1.25C1 + C1/C̄)

aηlk

√
1 +

1

C̄
.

where ηlk = (λlk − θk,k(
1
C̄
+ 1

4))
2/λuk , C1 = 1 + 2C2

√
λuk and C2 > 1 is a constant.

The proof of Theorem 3 is simple. In the noiseless case, we know that

∥Xh∥1 ≤ λ(∥hT ∥1 − ∥hT c∥1).

This means ∥hT ∥1 ≥ ∥hT c∥1 and hence h ∈ ∆1. So

∥Xh∥1 ≥ nκlk(1)∥hT ∥1.

Since we assume that nκlk(1) > λ, we must have ∥h∥1 = 0. Therefore β̂ = β.
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Appendix

In the appendix, we consider the value of κlk(C̄) under the Gaussian random design case.

Sufficient Conditions

We will first give a set of sufficient conditions under which the value κlk(C̄) can be bounded

below. Let Φ = (X ′
TXT )

−1X ′
T and

M = ∥(X ′
TXT )

−1X ′
TXT c∥1.

Here for any n×mmatrix A, the matrix norm ∥A∥1 = suph∈Rm
∥Ah∥1
∥h∥1 denotes the maximum

absolute column sum of A. Suppose h ∈ ∆c, i.e. ∥hT ∥1 ≥ 1
C̄
∥hT c∥1. We have

∥ΦXh∥1 ≥ ∥ΦXThT ∥1 − ∥ΦXT chT c∥1 ≥ ∥hT ∥1 −M∥hT c∥1 ≥ (1−MC̄)∥hT ∥1.

Note that M < 1 is called exact recovery condition (ERC), see for example [6]. It is also

the irrepresentable condition discussed in for example [18]. On the other hand

∥ΦXh∥1 ≤ ∥Φ∥1∥Xh∥1.

So,

∥Xh∥1 ≥
1−MC̄

∥Φ∥1
∥hT ∥1 ≥

1−MC̄

∥Φ∥1
∥hT ∥2.

We have the following lemma.

Lemma 9 Suppose MC̄ < 1, then κlk(C̄) ≥
(1−MC̄)
n∥Φ∥1 .

The values of M can be bounded by the mutual incoherence constant µ defined as

µ = maxi,j | ⟨Xi,Xj⟩
n |. The following lemma can be found in [6].

Lemma 10 Assume µ < 1
k−1 , then M < kµ

1−(k−1)µ .
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Gaussian Random Design

Now suppose X is generated by Gaussian random design, i.e. we generate the entries of X

by i.i.d. N(0, 1) random variables and then normalize it. We will show some asymptotical

bounds on the value of κlk(C̄).

Lemma 11 Under the previous assumptions, when log p = o(n1/6), we know that for any

constant c > 0.

P (µ <

√
2c log p

n
) ≥ 1− 4p−(c−2)(1 + o(1)).

Proof. By lemma 14, we know that for any i, j and b = o(n1/6),

P (| ⟨Xi, Xj⟩
n

| > b√
n
) ≤ 4e−b

2/2(1 + o(1)).

This means

P (µ >
b√
n
) ≤ 4p2e−b

2/2(1 + o(1)).

Hence when log p = o(n1/6), we know that

P (µ <

√
2c log p

n
) ≥ 1− 4p−(c−2)(1 + o(1)).

A simple consequence of the previous lemma is

P (M ≤
k
√

2c log p/n

1− (k − 1)
√

2c log p/n
) ≥ 1− 4p−(c−2)(1 + o(1)). (27)

Asymptotically, when log p = o(n1/n), we know that M → 0 as n goes to infinity.

Lemma 12 Under the previous assumptions, we have that for any c > 0,

P (∥Φ∥1 ≤
k(1 +

√
(1+c) logn

k )(1 +

√
(1+c) logn

n )

(
√
n−

√
k −

√
2c log n)2

) ≥ 1− 3

nc
.
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Proof. Since X is generate randomly, we assume N is a n × k matrix such that Nij

are i.i.d. N(0, 1) random variables for i = 1, 2, · · · , n and j = 1, 2, · · · , k. The we gen-

erate XT by XT = N × Diag(1/l1, 1/l2, · · · , 1/lk) where lj =

√
N2

1j+N
2
2j+···+N2

nj

n . Let

L = Diag(1/l1, 1/l2, · · · , 1/lk), we have Φ = L−1(N ′N)−1N ′. Let N ′ = (N1, N2, · · · , Nn)

where N ′
i is the ith row of N . Then

∥Φ∥1 = max
i

{∥L−1(N ′N)−1Ni∥1} ≤ max
i

{
√
k∥L−1(N ′N)−1Ni∥2}.

By χ2 tail bound, see for example [17], we know that for any r ≥ 0,

P (∥Ni∥22 ≤ k(1 + r/2)2) ≥ 1− e−kr
2/4 and P (li ≤ (1 + r/2)) ≥ 1− e−nr

2/4.

By union bounds,

P (sup
i

∥Ni∥2 ≤ k(1 + r/2)2) ≥ 1− ne−kr
2/4,

P (∥L−1∥2 ≤ (1 + r/2)) ≥ 1− ke−nr
2/4.

Also, by standard result of Gaussian random matrix (see for example [20]),

P (∥(N ′N)−1∥2 ≤
1

(
√
n−

√
k − t)2

) ≥ 1− e−t
2/2.

Therefore

P (∥Φ∥1 ≤
k(1 + r1/2)(1 + r2/2)

(
√
n−

√
k − t)2

) ≥ 1− ne−kr
2
1/4 − ke−nr

2
2/4 − e−t

2/2,

given that r1 ≥ 0, r2 ≥ 0. Specially, let r1 = 2

√
(1+c) logn

k , r2 = 2

√
(1+c) logn

n , and t =

√
2c log n for some c > 0,

P (∥Φ∥1 ≤
k(1 +

√
(1+c) logn

k )(1 +

√
(1+c) logn

n )

(
√
n−

√
k −

√
2c log n)2

) ≥ 1− 3

nc
.
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Hence asymptotically, when k = o(n), ∥Φ∥1 = Op(
k
√
logn
n ). Combine the about results

together, we have that for the Gaussian random design case, when log p = o(n1/6) and

k = o(n), asymptotically,

κlk(C̄) = O(
1

k
√
log n

). (28)

The following lemma shows the tail bound for sample covariance.

Lemma 13 Suppose (Xi, Yi) for i = 1, 2, · · · , n are i.i.d. bivariate normal random vectors

such that E(Xi) = E(Yi) = 0, V ar(Xi) = V ar(Yi) = 1 and Cov(Xi, Yi) = ρ. Let ρ̂ =∑n
i=1XiYi be the sample covariance, then we have

P (|ρ̂− ρ| > b√
n
) ≤ 2 exp{− b2

2(1 + 3ρ2)
}(1 + o(1)), (29)

provided that b = o(n1/6).

Proof. Suppose Zi = XiYi − ρ and let Z = 1
n

∑n
i=1 Zi. Then the moment generating

function of Zi is

E(et(XiYi−ρ)) =

∫ ∫
e−tρ

2π
√

1− ρ2
exp{−x

2 + y2 − 2(ρ+ t(1− ρ2))xy

2(1− ρ2)
}dxdy

=
e−tρ√

1− 2ρt− (1− ρ2)t2
. (30)

Hence the moment generating function of Z is

E(etZ) = e−ρt(1− 2ρt/n− (1− ρ2)t2/n2)−n/2.

Let ψ(t) = logE(etZ) = −n
2 log(1 − 2ρt/n − (1 − ρ2)t2/n2) − ρt. We know that for any

a > 0 and t > 0,

P (Z > a) = P (etz > eta) ≤ E(etZ)e−ta = eψ(t)−at.

Now due to the fact that − log(1− x) ≤ x/(1− x), we know that

ψ(t)− at ≤ n

2

2ρt/n+ (1− ρ2)t2/n2

1− 2ρt/n− (1− ρ2)t2/n2
− ρt− at

=
1
2n(1 + 3ρ2)t2 + (1− ρ2)t3/n2

1− 2ρt/n− (1− ρ2)t2/n2
− at.
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Now let t = na/(1 + 3ρ2) and let a = b/
√
n, we have

P (Z >
b√
n
) ≤ exp

{(
− b2

2(1 + 3ρ2)
+

1− ρ2 + 2ρ(1 + 3ρ2)

(1 + 3ρ2)3
b3√
n
+

1− ρ2

(1 + 3ρ2)3
b4

n

)
× C

}
,

where

C =

(
1− 2ρ

1 + 3ρ2
b2

n
− 1− ρ2

(1 + 3ρ2)2
b3

n3

)
.

Therefore it is easy to see that if b = o(n1/6), then

P (Z >
b√
n
) ≤ exp{− b2

2(1 + 3ρ2)
}(1 + o(1)).

By similar argument, we can show that

P (|Z| > b√
n
) ≤ 2 exp{− b2

2(1 + 3ρ2)
}(1 + o(1)).

Next, we have the following tails bounds for sample correlation

Lemma 14 Suppose (Xi, Yi) for i = 1, 2, · · · , n are i.i.d. bivariate normal random vectors

such that E(Xi) = E(Yi) = 0, V ar(Xi) = σ2x, V ar(Yi) = σ2y and Cov(Xi, Yi) = 0. Let

ρ̂ =

∑n
i=1XiYi√∑n

i=1X
2
i

∑n
i=1 Y

2
i

.

Then we have

P (|ρ̂| ≥ b√
n
) ≤ 4 exp{−b

2

2
}(1 + o(1)), (31)

provided that b = o(n1/6).

Proof. Suppose rn = b/(b +
√
n/2), then we know that b2rn = o(1) and n

4 r
2
n = b2(1−rn)2

2 .

We have

P (|ρ̂| ≥ b√
n
) ≤ P (|

∑n
i=1XiYi

n(1− rn)σxσy
| ≥ b√

n
)

+ P (

∑n
i=1X

2
i

n
< (1− rn)σ

2
x) + P (

∑n
i=1 Y

2
i

n
< (1− rn)σ

2
y).
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Since b = o(n1/6) , we know that

P (|
∑n

i=1XiYi
n(1− rn)σxσy

| ≥ b√
n
) ≤ 2 exp{−b

2(1− rn)
2

2
}(1 + o(1)),

and the Chi-square tail bound (see for example lemma 1 in [17])

P (
n∑
i=1

X2
i /n < (1− rn)σ

2
x) ≤ exp{−n

4
r2n},

P (

n∑
i=1

Y 2
i /n < (1− rn)σ

2
y) ≤ exp{−n

4
r2n}.

Putting the above terms together, we have

P (|ρ̂| ≥ b√
n
) ≤ 4 exp{−b

2(1− rn)
2

2
}(1 + o(1)) = 4 exp{−b

2

2
}(1 + o(1)),

where the last equality is due to the fact that b2rn = o(1). Therefore the lemma is proved.
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