
Decoupling seminar – problem set after lectures 5-6

We have been studying using the multilinear restriction estimate to prove decou-
pling estimates. Here are two problems to think about. These problems fill in steps
from the argument in lecture.

1. In the proof of the first decoupling theorem in class, we used the following result
as part of the inductive argument covering the narrow contribution.

Suppose that we have a decoupling estimate in Rn−1. If g : Rn−1 → C and supp f̂ ⊂
N1/RS

n−2, for a certain p ≥ 2, and if θ denote R−1/2 caps covering N1/RS
n−1, then
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)1/2

.

Suppose that f : Rn → C and that supp f̂ ⊂ N1/RS
n−1 ∩NR−1/2Sn−2. Prove that

we get the following similar decoupling estimate for f :

‖f‖Lp
avg(B

n
R) ≤ CM

(∑
θ
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avg(B

n
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)1/2

.

Here θ denote R−1/2 caps covering N1/RS
n−1 ∩NR−1/2Sn−2.

Here is a hint to get started. Choose coordinates so that Sn−2 ⊂ Sn−1 is defined
by the equation ωn = 0. Consider the plane xn = h, and define fh : Rn−1 → C by

fh(x1, ..., xn−1) := f(x1, ..., xn−1, h).

Next check that f̂h has support in N10/RS
n−2. So our first estimate applies to fh.

Choose caps θ covering N10/RS
n−2. Cover N1/RS

n−1∩NR−1/2Sn−2 with corresponding
caps θ. If we do this carefully, then fθ,h and fh,θ will correspond. So we will get for
each h,

‖fh‖Lp
avg(B
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R ) ≤M

(∑
θ

‖fθ,h‖2Lp
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)1/2

.

Next integrate in h and use Minkowski’s inequality to control ‖f‖Lp
avg(B

n
R).

(1’. If S is a positively curved compact C2 surface, but not a sphere, find the right
analogue of an equator, and prove a generalization of this result.)

2. In class, we proved a decoupling theorem for 2 ≤ p ≤ 2n
n−1

. A similar argument
shows that the linear decoupling problem is essentially equivalent to a multilinear
decoupling problem.
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Define Dn,p(R) to be the smallest constant so that the following decoupling in-
equality holds:

If supp f̂ ⊂ N1/RS = ∪θ, where θ are disjoint R−1/2-caps, then

‖f‖Lp
avg(B

n
R) ≤ Dn,p(R)

(∑
θ

‖fθ‖2Lp
avg(µBR

)

)1/2

.

Define D̃n,p(R) to be the smallest constant so that the following multilinear de-
coupling inequality holds:

Whenever

• For i = 1, ..., n, supp f̂i ⊂ N1/RSi
• Si ⊂ Rn are compact positively curved C2 hypersurfaces (with implicit fixed

bounds on the curvature and the second fundamental form).
• The normal vector to Si at any point makes an angle of at most (10n)−1 with

the ith coordinate axis.

Then we have the following inequality:

‖
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.

Prove the following result connecting linear decoupling and multilinear decoupling.
(You should use the standard white lies and ignore the weights, at least on the first
version.)

Theorem 1. (Bourgain-Demeter) Suppose Dn−1,p(R) .δ R
δ for all δ > 0. Then for

any ε > 0,

Dn,p(R) .ε R
εD̃n,p(R).

Hint: Decompose N1/RS into K−1-caps τ for K = Rε. Cover BR by cubes Q of side
length K. Define significant indices for each cube, broad cubes, and narrow cubes.
Control the contribution of the broad region by using the multilinear decoupling
inequality. (It may require a coordinate change to move the 100nK−1-transverse
caps into a position where D̃n,p applies, but this will introduce a factor of the form

KC .) Control the contribution of the narrow region by bringing in D̃n−1,p(K) on
each cube Q.

We will use this Theorem in the proof of the sharp l2-decoupling conjecture.


