
BEZOUT THEOREM

One of the most fundamental results about the degrees of polynomial surfaces is
the Bezout theorem, which bounds the size of the intersection of polynomial surfaces.
The simplest version is the following:

Theorem 0.1. (Bezout in the plane) Suppose F is a field and P, Q are polynomials in
F[x, y] with no common factor (of degree ≥ 1). Let Z(P, Q) := {(x, y) ∈ F2|P (x, y) =
Q(x, y) = 0}. Then the number of points in Z(P, Q) is ≤ (degP )(degQ).

There are several approaches to proving the Bezout theorem. I found one approach
that feels closely related to the methods we’ve been studying. (It appears in Joe
Harris’s book Algebraic Geometry, a First Course, exercise 13.17.)

The proof uses the unique factorization of polynomials. We recall exactly what
this means.

For any field F, the ring of polynomials over F in n variables, F[x1, ..., xn] obeys
unique factorization. The units in this ring are exactly the non-zero elements of
F. A non-zero polynomial P is called irreducible if whenever P = P1 · P2, one of
P1, P2 is a unit. Unique factorization says that if P can be written as a product of
irreducibles in two different ways, say P =

∏

i Pi =
∏

j Qj , then there are the same
number of factors in each product, and we can reorder the indices so that Qi = ciPi

where ci ∈ F \ {0}.
There are a number of variations on the statement of the Bezout theorem, and we

mention them later.

1. A proof of Bezout in the plane

Let Ī be the ideal generated by P, Q, and let S = F[x, y]/Ī. We can roughly think
of S as the ring of polynomial functions on Z(P, Q), and it follows from this that
|Z(P, Q)| ≤ dimS. (We think of S as a vector space over F in order to define its
dimension.)

Lemma 1.1. |Z(P, Q)| ≤ dimS.

Proof. For any set X ⊂ F2 let EX be the evaluation (or restriction) map from F[x, y]
to Fcn(X, F). If X is a finite set, then EX is surjective. We state this as a lemma,
and we’ll prove it later.

Lemma 1.2. If X ⊂ Fn is any finite set, and f : X → F is any function, then there
is a polynomial which agrees with f on X.
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If X ⊂ Z(P, Q), then Ī is in the kernel of EX , and so we can think of EX as a
map from S to Fcn(X, F). If X ⊂ Z(P, Q) is finite, then EX is surjective, and so
dimS ≥ |X|. �

Our goal is to bound the dimension of S by (degP )(degQ). In order to do this,
we will mod out by P and then by Q, and keep track of dimensions of the objects
at each step.

Let I be the ideal of F[x, y] generated by P . Let R = F[x, y]/I. The dimensions
of R and I are both infinite, but we can get valuable information by considering
polynomials of degree ≤ d. Let Vd ⊂ F[x, y] be the polynomials of degree ≤ d. Let
Id = I∩Vd, and let Rd = Vd/Id ⊂ R. We will consider the dimensions of these spaces
as functions of d.

The dimension of Vd is
(

d+2

2

)

, as we have seen.

Lemma 1.3. The dimension of Id is dimVd−D =
(

d−D+2

2

)

for all d ≥ D.

Proof. Multiplication by P gives a linear map from Vd−D to Id. We claim this linear
map is an isomorphism. The kernel of the map is zero. Any element in Id can be
written as PQ for some Q, and we must have degQ ≤ d − D, so that the map is
surjective. �

The dimension of Rd is dimVd − dimId =
(

d+2

2

)

−
(

d−D+2

2

)

= Dd + (3/2D − D2),
for d ≥ D.

Now let J be the ideal of R generated by Q. Let S = R/J , and note that this is
the same ring S defined above. Let Jd = J ∩ Rd and Sd = Rd/Jd.

Lemma 1.4. The dimension of Jd is ≥ dimRd−E.

Proof. Multiplication by Q gives a map from Rd−E to Jd. We claim that this map
is injective. Suppose r1 ∈ Rd−E is in the kernel of the map. Let P1 ∈ Vd−E be
a polynomial representing r1. We see that QP1 is in I, so QP1 = PP2 for some
polynomial P2. By unique factorization, we see that P divides P1. But then P1 ∈ I
and r1 = 0. �

(Exercise: Do we get equality in this lemma?)
The dimension of Sd is dimRd − dimJd ≤ dimRd − dimRd−E . If d ≥ D + E, then

dimRd − dimRd−E =
[

Dd + (3/2D − D2)
]

−
[

D(d − E) + (3/2D − D2)
]

= DE.

Since this holds for every d, we conclude that dimS ≤ DE and so |Z(P, Q)| ≤ DE.

1.1. Polynomials with prescribed values. Now we return to Lemma 1.2 at the
beginning of the last section:
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Lemma 1.5. If X ⊂ Fn is any finite set, and f : X → F is any function, then there
is a polynomial P of degree ≤ |X| − 1 which agrees with f on X.

Proof. For each p ∈ X, we will construct a polynomial Pp with Pp(p) = 1 and Pp = 0
on X \ p. Fix p. For each q ∈ X \ p, let Lq be a polynomial that vanishes at q but
not at p. Then define Pp = c

∏

q∈X\p Lq. We see that Pp(q) = 0 for each q ∈ X \ p,

and that Pp(p) 6= 0. By choosing the constant c, we can arrange that Pp(p) = 1. The
degree of Pp is |X| − 1.

Finally, for an arbitrary function f , we define P =
∑

p∈X f(p)Pp. �

2. Statements of the Bezout theorem

The Bezout theorem is usually stated as an equality (by algebraic geometers). It
roughly says that if P and Q have no common factor, then the “number” of points
in Z(P, Q) is equal to (degP )(degQ). To make this work we need to work over an
algebraically closed field and we need to work over projective space, and we need to
count intersections with multiplicity.

For example, let’s try to consider two circles x2 +y2 = 100 and (x−5)2 +y2 = 100.
Initially, we consider x, y in R, where we can easily visualize the circles. They appear
to intersect in two points. Where are the other two points? What if we allow x, y
to be complex numbers? In fact this doesn’t lead to any more intersection points.
But if we work over complex projective space, we get two more interesection points
at infinity. Now what if we slide the circles apart so that they become tangent and
then disjoint. In R2, the number of intersection points goes from 2 to 1 to 0. When
the circles become disjoint over R2 they develop two points of intersection in C2 \R2.
At the moment of tangency, there is only one intersection point in C2, plus two
intersection points at infinity. But this one intersection point at the tangency has
“multiplicity 2”. Counting with multiplicity, there are still exactly four intersection
points.

The full statement of the equality Bezout theorem requires some work to define
the multiplicities of the intersections. Because the statement is more complicated the
full proof is rather longer than this. But the inequality version is what we will need
in our applications. In my opinion, the inequality version of the Bezout theorem is
somewhat underrated. It takes only a fraction of the effort to state and prove it, and
it still has many applications.

3. The Hilbert polynomial

To give context, we mention without proof some important related concepts. (I
don’t really know this area myself. I hope there are not errors. Anyway, we won’t
use any of these statements later.)
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Let’s look back at the proof of the Bezout theorem in the plane. Recall that I is
the ideal generated by P and R = F[x, y]/I. A key observation was the formula for
the dimension of Rd:

dimRd = Dd + (3/2D − D2), for d ≥ D.

In general, for any ideal I in F[x1, ..., xn], we can define R = F[x1, ..., xn]/I and
Rd = Vd/Id, and we can study the dimension of Rd. Another basic example is given
by the ideal I = 0. In this case, R = F[x1, ..., xn], and so we have seen that

dimRd =

(

d + n

n

)

= (1/n!)dn + lower order terms.

In general, the dimension of Rd is always given by a polynomial, called the Hilbert
polynomial, for all d sufficiently large.

dimRd = hI(d) =
m

∑

j=0

ajd
j, for d ≥ d0.

The leading term of the Hilbert polynomial, amdm is particularly interesting. In
the first example above, the leading term was Dd. In the second example, the leading
term was (1/n!)dn. In general, m will be the dimension of Z(I) and m!am will be the
degree of Z(I). (We have not defined dimension and degree anywhere else. These
can be taken as definitions, and they are equivalent to other definitions in algebraic
geometry...)

In the polynomial method, it was very important to observe that in n dimensions,
the space of polynomials of degree ≤ d has dimension growing like dn. In the Hilbert
polynomial perspective, this feature can be taken as the definition of the dimension
of a variety Z(I).

4. The Bezout theorem in higher dimensions

The Bezout theorem can be generalized to higher dimensions. The full statement
gets harder to prove. In our applications, we will need the following minor general-
ization. Let F be an infinite field.

Theorem 4.1. If P, Q ∈ F[x, y, z] have no common factor (of degree ≥ 1), then the
number of lines in Z(P, Q) is ≤ (degP )(degQ).

Proof. We define Ī to be the ideal generated by P and Q, and we define S to be the
ring F[x, y, z]/Ī. If the ring S contains many lines, then it must be large in some
sense. But if the degrees of P and Q are small, then S must be small in some sense.
Let us make this precise. Let Vd ⊂ F[x, y, z] be the polynomials of degree ≤ d. Let
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Īd = Ī ∩ Vd, and Sd = Vd/Īd. On the one hand, we will bound the dimension of Sd

from above using the degrees of P and Q:

dimSd ≤ (degP )(degQ)d + c(P, Q).

On the other hand, if Z(P, Q) contains L lines, then we will bound the dimension
of Sd from below as follows:

dimSd ≥ Ld − c(L).

Given these two bounds, taking d → ∞, we see that L ≤ (degP )(degQ).
Now we turn to the upper bounds on Sd.
We closely follow the argument in the planar case. Let D = degP and E = degQ.

I is the ideal generated by P , and R is F[x, y, z]/I. J is the ideal of R generated by
Q. S = R/J .

The dimension of Id is equal to dimVd−D =
(

d−D+3

3

)

for d ≥ D.

The dimension of Rd is dimVd−dimId =
(

d+3

3

)

−
(

d−D+3

3

)

= (1/2)Dd2+ lower order terms.
The dimension of Jd is ≥ dimRd−E = (1/2)D(d − E)2 + lower order terms.
The dimension of Sd is dimRd−dimJd ≤ dimRd−dimRd−E = DEd+ lower order terms.
In other words, dimSd = DEd+ c, where c is a constant that depends on P, Q but

not on d.
Now we turn to the lower bounds on the size of Sd related to the lines in Z(P, Q).
For any set X ⊂ F3, let EX be the restriction map from Vd to Fcn(X, F).

Lemma 4.2. If X is a union of L lines in Fn, then the rank of EX : Vd → Fcn(X, F)
is ≥ Ld − c(L). (Recall that F is an infinite field.)

We will come back to the proof of this lemma. For now, we use this lemma. If X ⊂
Z(P, Q), then Ī is in the kernel of EX , and so EX is a map from Sd to Fcn(X, F). In
particular, the dimension of Sd is at least the rank of the map EX : Vd → Fcn(X, F).
If Z(P, Q) contains L lines, then Lemma 4.2 implies that the dimension of Sd is at
least Ld − c(L).

Now we turn to the proof of Lemma 4.2

Proof. Fix d. After a linear change of variables, we can assume that each line is
transverse to planes of the form xn = h. Choose d − L values h1, ..., hd−L so that
each plane xn = hj intersects the L lines in L distinct points. Let X0 ⊂ X be these
L(d − L) points.

We claim that for any function f : X0 → F, there is a degree d polynomial that
agrees with f on X0. This will imply that rankEX : Vd → Fcn(X, F) is at least
|X0| = Ld − L2.
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Fix a value hj . The set X0 intersects the plane xn = hj at L points, (y1,j, hj), ..., (yL,j, hj)
with yk,j ∈ Fn−1. By Lemma 1.5, we can find a degree L polynomial Pj in n − 1
variables so that Pj(yk,j) = f(yk,j) for each yk,j.

Now we want to find a polynomial P in n variables with degree ≤ d so that
P (y, hj) = Pj(y) for all y and all j from 1 to d − L. Let’s expand out Pj and P :

Pj(y) =
∑

I

cI(j)y
I , where I is an exponent in (n-1) variables of degree at most L.

Now we will choose P to have the following form:

P (y, xn) =
∑

I

PI(xn)yI , where |I| ≤ L and degPI ≤ d − L.

It suffices to choose PI so that PI(hj) = cI(j) for each j = 1, ..., d−L. We can do
this by applying Lemma 1.5 again. �

This finishes the proof of Theorem 4.1. �

Exercise: Figure out what happens in finite fields. Check that the result is still
true if degP, degQ < |F| or if the theorem is phrased carefully.

Finally, we discuss/explore what might be true more generally in higher dimen-
sions. Suppose that we have some ideals Ij in F[x1, ..., xn]. Suppose that Ij has
dimension mj and degree Dj. In other words, if Rj,d = Vd/Ij,d, then

dimRj,d = Dj(mj !)
−1dmj + lower order terms, for all d sufficiently large.

Let I be the ideal generated by Ij . Suppose that it has dimension m and degree
D. Now we may pose the following question:

Question 1. If (n − m) =
∑

j(n − mj), then is D ≤
∏

j Dj?

The condition on the dimensions is similar to asking that P and Q have no common
factor in the planar version of Bezout.

It would be cool to know whether this is true, and also to see if there is a proof in
the spirit of the arguments above.


