1. Show fixed point functor is left exact, but not right exact in general. You may prove more generally that: for an R-module M,

$$\operatorname{Hom}_R(M, -) : R - \operatorname{mod} \to \mathbb{Z} - \operatorname{mod}$$

is left exact.

2. Suppose H is diagonalizable. Prove that taking H fixed points is an exact functor.

3. Let G be a connected, reductive linear algebraic group defined over an algebraically closed field, and M a finite dimensional G-module. (a) Show $M^B = M^G$. (b) Since M is a G-module, we may restrict the action to T, a maximal torus and decompose M into weight spaces: $M = \bigoplus_{\lambda \in X(T)} M_{\lambda}$. Define the character of M as follows:

$$\mathrm{ch}M = \sum_{\lambda \in X(T)} \mathrm{dim}M_{\lambda}e^{\lambda} \in \mathbb{Z}[X(T)].$$

Prove that $\operatorname{ch} M \in \mathbb{Z}[X(T)]^W$.

4. (a, b) Springer, 8.2.11 exercise 3. (c) Find the fundamental weights of SL_3 .

5. Springer, 7.5.3 exercise 1.

6. Springer, 7.5.3 exercise 2.

7. (a) Let $\lambda \in X(T)_+$, and suppose that M is a G-module with dim $M_{\lambda} = 1$ and all weights of M are of the form $w(\lambda)$ for some $w \in W$. Prove that M is simple, and so isomorphic to $L(\lambda)$.

(b) A dominant weight is called minuscule if $\langle \alpha^{\vee}, \lambda \rangle \leq 1$ for all positive coroots α^{\vee} . Prove that if λ is minuscule, then $H^0(\lambda)$ has all weights in a single Weyl group orbit, and so must be simple.

(c) Find all minuscule weights of SL_3 .