18.022: Multivariable calculus — Points and vectors

The difference between vectors and points is basically that there is a particular vector—the zero vector—which stands out among all other vectors while no point is special compared with other points. Here are the mathematical definitions.

DEFINITION 1. A real vector space consists of the following:

- (i) A set V whose elements are called vectors.
- (ii) An element $\mathbf{0} \in V$ called the zero vector.
- (iii) An operation that to two vectors $\mathbf{a}, \mathbf{b} \in V$ assigns a vector $\mathbf{a} + \mathbf{b} \in V$ called the *vector sum* of \mathbf{a} and \mathbf{b} .
- (iv) An operation that to a real number $k \in \mathbb{R}$ and a vector $a \in V$ assigns a vector $k\mathbf{a} \in V$ called the *scalar multiple* of \mathbf{a} by k.

The operations of vector sum and scalar multiplication are required to satisfy the following axioms:

(V1) For all $\mathbf{a}, \mathbf{b}, \mathbf{c} \in V$,

$$(\mathbf{a} + \mathbf{b}) + \mathbf{c} = \mathbf{a} + (\mathbf{b} + \mathbf{c}).$$

(V2) For all $\mathbf{a} \in V$,

$$a + 0 = a = 0 + a$$
.

(V3) For all $\mathbf{a}, \mathbf{b} \in V$,

$$\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$$
.

(V4) For all $\mathbf{a} \in V$,

$$0\mathbf{a} = \mathbf{0}.$$

(V5) For all $\mathbf{a} \in V$,

$$1\mathbf{a} = \mathbf{a}$$
.

(V6) For all $k, \ell \in \mathbf{R}$ and all $\mathbf{a} \in V$,

$$(k+\ell)\mathbf{a} = k\mathbf{a} + \ell\mathbf{a}.$$

(V7) For all $k \in \mathbf{R}$ and all $\mathbf{a}, \mathbf{b} \in V$,

$$k(\mathbf{a} + \mathbf{b}) = k\mathbf{a} + k\mathbf{b}.$$

(V8) For all $k, \ell \in \mathbf{R}$ and all $\mathbf{a} \in V$,

$$(k\ell)\mathbf{a} = k(\ell\mathbf{a}).$$

EXAMPLE 2. (The vector space \mathbb{R}^n) The set \mathbb{R}^n of *n*-tuples of real numbers with zero vector $\mathbf{0} = \langle 0, 0, \dots, 0 \rangle$, with vector sum

$$\langle a_1, a_2, \dots, a_n \rangle + \langle b_1, b_2, \dots, b_n \rangle = \langle a_1 + b_1, a_2 + b_2, \dots, a_n + b_n \rangle,$$

and with scalar multiplication

$$k\langle a_1, a_2, \dots, a_n \rangle = \langle ka_1, ka_2, \dots, ka_n \rangle$$

is a real vector space.

DEFINITION 3. A real affine space consists of the following:

- (i) A set E whose elements are called points.
- (ii) A real vector space V.
- (iii) An operation that to a point $P \in E$ and a vector $\mathbf{a} \in V$ assigns a point $P + \mathbf{a} \in E$ called the *translation* of P by \mathbf{a} .

The operation of translation is required to satisfy the following axioms.

(A1) For all $P \in E$ and all $\mathbf{a}, \mathbf{b} \in V$,

$$(P + \mathbf{a}) + \mathbf{b} = P + (\mathbf{a} + \mathbf{b}).$$

(A2) For all $P \in E$,

$$P + 0 = P$$
.

(A3) For all $P, Q \in E$, there exists a unique vector $\vec{PQ} \in V$ such that

$$P + \vec{PQ} = Q.$$

EXAMPLE 4. (The affine space \mathbb{R}^n) The set \mathbb{R}^n of *n*-tuples of real numbers with translation by the vector space \mathbb{R}^n of Example 2 defined by

$$(x_1, x_2, \dots, x_n) + \langle a_1, a_2, \dots, a_n \rangle = (x_1 + a_1, x_2 + a_2, \dots, x_n + a_n)$$

is a real affine space. If $P=(x_1,x_2,\ldots,x_n)$ and $Q=(y_1,y_2,\ldots,y_n)$ are two points, then $\vec{PQ}=\langle y_1-x_1,y_2-x_2,\ldots,y_n-x_n\rangle$.

The mathematical distinction between the vector space \mathbb{R}^n and the affine \mathbb{R}^n lies in the algebraic structure that the set \mathbb{R}^n of *n*-tuples of real numbers is equipped with in the two cases. The set \mathbb{R}^n is the same in the two cases. In this course, we will use pointy brackets $\langle a_1, a_2, \ldots, a_n \rangle$ to indicate that we are considering the *n*-tuple as a vector and round brackets (a_1, a_2, \ldots, a_n) to indicate that we are considering the *n*-tuple as a point.

LEMMA 5. Let E be a real affine space, and let $P, Q, R \in E$ be three points. Then

$$\vec{PQ} + \vec{QR} = \vec{PR}$$
.

PROOF. We have

$$P + (\vec{PQ} + \vec{QR}) = (P + \vec{PQ}) + \vec{QR} = Q + \vec{QR} = R$$

where the left-hand equality holds by A1, and where the middle and right-hand equalities hold by the definition of \vec{PQ} and \vec{QR} . Now, by definition, the vector \vec{PR} is the unique vector such that

$$P + \vec{PR} = R.$$

Hence, $\vec{PQ} + \vec{QR} = \vec{PR}$ as stated.