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Abstract

Despite the fact that approximate computations have come to domi-
nate many areas of computer science, the field of program transfor-
mations has focused almost exclusively on traditional semantics-
preserving transformations that do not attempt to exploit the op-
portunity, available in many computations, to acceptably trade off
accuracy for benefits such as increased performance and reduced
resource consumption.

We present a model of computation for approximate compu-
tations and an algorithm for optimizing these computations. The
algorithm works with two classes of transformations: substitution

transformations (which select one of a number of available imple-
mentations for a given function, with each implementation offer-
ing a different combination of accuracy and resource consumption)
and sampling transformations (which randomly discard some of
the inputs to a given reduction). The algorithm produces a (1 + ε)
randomized approximation to the optimal randomized computation
(which minimizes resource consumption subject to a probabilistic
accuracy specification in the form of a maximum expected error or
maximum error variance).

Categories and Subject Descriptors D.3.4 [Programming Lan-

guages]: Processors—optimization; G.3 [Probability and Statis-

tics]: Probabilistic Algorithms; F.2.1 [Analysis of Algorithms and

Problem Complexity]: Numerical Algorithms and Problems

General Terms Algorithms, Design, Performance, Theory

Keywords Optimization, Error-Time Tradeoff, Discretization,
Probabilistic

1. Introduction

Computer science was founded on exact computations with discrete
logical correctness requirements (examples include compilers and
traditional relational databases). But over the last decade, approx-

imate computations have come to dominate many fields. In con-
trast to exact computations, approximate computations aspire only
to produce an acceptably accurate approximation to an exact (but in
many cases inherently unrealizable) output. Examples include ma-
chine learning, unstructured information analysis and retrieval, and
lossy video, audio and image processing.
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Despite the prominence of approximate computations, the field
of program transformations has remained focused on techniques
that are guaranteed not to change the output (and therefore do not
affect the accuracy of the approximation). This situation leaves the
developer solely responsible for managing the approximation. The
result is inflexible computations with hard-coded approximation
choices directly embedded in the implementation.

1.1 Accuracy-Aware Transformations

We investigate a new class of transformations, accuracy-aware

transformations, for approximate computations. Given a computa-
tion and a probabilistic accuracy specification, our transformations
change the computation so that it operates more efficiently while
satisfying the specification. Because accuracy-aware transforma-
tions have the freedom to change the output (within the bounds
of the accuracy specification), they have a much broader scope and
are therefore able to deliver a much broader range of benefits.

The field of accuracy-aware transformations is today in its in-
fancy. Only very recently have researchers developed general trans-
formations that are designed to manipulate the accuracy of the
computation. Examples include task skipping [27, 28], loop per-
foration [14, 23, 24, 31], approximate function memoization [6],
and substitution of multiple alternate implementations [2, 3, 12,
33]. When successful, these transformations deliver programs that
can operate at multiple points in an underlying accuracy-resource
consumption tradeoff space. Users may select points that mini-
mize resource consumption while satisfying the specified accuracy
constraints, maximize accuracy while satisfying specified resource
consumption constraints, or dynamically change the computation
to adapt to changes (such as load or clock rate) in the underlying
computational platform [12, 14].

Standard approaches to understanding the structure of the trade-
off spaces that accuracy-aware transformations induce use training
executions to derive empirical models [2, 3, 14, 24, 27, 28, 31, 33].
Potential pitfalls include models that may not accurately capture the
characteristics of the transformed computation, poor correlations
between the behaviors of the computation on training and produc-
tion inputs, a resulting inability to find optimal points in the tradeoff
space for production inputs, and an absence of guaranteed bounds
on the magnitude of potential accuracy losses.

1.2 Our Result

We present a novel analysis and optimization algorithm for a class
of approximate computations. These computations are expressed as
a tree of computation nodes and reduction nodes. Each computation
node is a directed acyclic graph of nested function nodes, each of
which applies an arbitrary function to its inputs. A reduction node
applies an aggregation function (such as min, max, or mean) to
its inputs.
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We consider two classes of accuracy-aware transformations.
Substitution transformations replace one implementation of a func-
tion node with another implementation. Each function has a propa-

gation specification that characterizes the sensitivity of the function
to perturbations in its inputs. Each implementation has resource

consumption and accuracy specifications. Resource consumption
specifications characterize the resources (such as time, energy, or
cost) each implementation consumes to compute the function. Ac-
curacy specifications characterize the error that the implementation
introduces.

Sampling transformations cause the transformed reduction node
to operate on a randomly selected subset of its inputs, simultane-
ously eliminating the computations that produce the discarded in-
puts. Each sampling transformation has a sampling rate, which is
the ratio between the size of the selected subset of its inputs and the
original number of inputs.

Together, these transformations induce a space of program con-

figurations. Each configuration identifies an implementation for ev-
ery function node and a sampling rate for every reduction node. In
this paper we work with randomized transformations that specify a
probabilistic choice over configurations. Our approach focuses on
understanding the following technical question:

What is the optimal accuracy-resource consumption
tradeoff curve available via our randomized transformations?

Understanding this question makes it possible to realize a variety of
optimization goals, for example minimizing resource consumption
subject to an accuracy specification or maximizing accuracy subject
to a resource consumption specification. The primary technical
result in this paper is an optimization algorithm that produces a
(1 + ε)-approximation to the optimal randomized computation
(which minimizes resource consumption subject to a probabilistic
accuracy specification in the form of a maximum expected error or
maximum error variance). We also discuss how to realize a variety
of other optimization goals.

1.3 Challenges and Solutions

Finding optimal program configurations presents several algorith-
mic challenges. In particular:
• Exponential Configurations: The number of program config-

urations is exponential in the size of the computation graph, so a
brute-force search for the best configuration is computationally
intractable.

• Randomized Combinations of Configurations: A trans-
formed program that randomizes over multiple configurations
may substantially outperform one that chooses any single fixed
configuration. We thus optimize over an even larger space—the
space of probability distributions over the configuration space.

• Global Error Propagation Effects: Local error allocation de-
cisions propagate globally throughout the program. The opti-
mization algorithm must therefore work with global accuracy
effects and interactions between errors introduced at the nodes
of the computation graph.

• Nonlinear, Nonconvex Optimization Problem: The running
time and accuracy of the program depend nonlinearly on the
optimization variables. The resulting optimization problem is
nonlinear and nonconvex.

We show that, in the absence of reduction nodes, one can for-
mulate the optimization problem as a linear program, which allows
us to obtain an exact optimization over the space of probability dis-
tributions of configurations in polynomial time.

The question becomes much more involved when reduction
nodes come to the picture. In this case, we approximate the optimal
tradeoff curve, but to a (1 + ε) precision for an arbitrarily small

constant ε > 0. Our algorithm has a running time that is poly-
nomially dependent on 1

ε . It is therefore a fully polynomial-time
approximation scheme (FPTAS).

Our algorithm tackles reduction nodes one by one. For each re-
duction node, it discretizes the tradeoff curve achieved by the sub-
program that generates the inputs to the reduction node. This dis-
cretization uses a special bi-dimensional discretization technique
that is specifically designed for such tradeoff problems. We next
show how to extend this discretization to obtain a corresponding
discretized tradeoff curve that includes the reduction node. The fi-
nal step is to recursively combine the discretizations to obtain a dy-
namic programming algorithm that approximates the optimal trade-
off curve for the entire program.

We note that the optimization algorithm produces a weighted
combination of program configurations. We call such a weighted
combination a randomized configuration. Each execution of the
final randomized program chooses one of these configurations with
probability proportional to its weight.

Randomizing the transformed program provides several bene-
fits. In comparison with a deterministic program, the randomized
program may be able to deliver substantially reduced resource con-
sumption for the same accuracy specification. Furthermore, ran-
domization also simplifies the optimization problem by replacing
the discrete search space with a continuous search space. We can
therefore use linear programs (which can be solved efficiently) to
model regions of the optimization space instead of integer pro-
grams (which are, in general, intractable).

1.4 Potential Applications

A precise understanding of the consequences of accuracy-aware
transformations will enable the field to mature beyond its current
focus on transformations that do not change the output. This in-
creased scope will enable researchers in the field to attack a much
broader range of problems. Some potential examples include:

• Sublinear Computations On Big Data: Sampling transforma-
tions enable the optimization algorithm to automatically find
sublinear computations that process only a subset of the inputs
to provide an acceptably accurate output. Over the past decade,
researchers have developed many sublinear algorithms [29].
Accuracy-aware transformations hold out the promise of au-
tomating the development of many of these algorithms.

• Incrementalized and Online Computations: Many algo-
rithms can be viewed as converging towards an optimal exact
solution as they process more inputs. Because our model of
computation supports such computations, our techniques make
it possible to characterize the accuracy of the current result as
the computation incrementally processes inputs. This capability
opens the door to the automatic development of incrementalized

computations (which incrementally sample available inputs un-
til the computation produces an acceptably accurate result) and
online computations (which characterize the accuracy of the
current result as the computation incrementally processes dy-
namically arriving inputs).

• Sensor Selection: Sensor networks require low power, low cost
sensors [32]. Accuracy-aware transformations may allow de-
velopers to specify a sensor network computation with ideal-
ized lossless sensors as the initial function nodes in the compu-
tation. An optimization algorithm can then select sensors that
minimize power consumption or cost while still providing ac-
ceptable accuracy.

• Data Representation Choices: Data representation choices
can have dramatic consequences on the amount of resources
(time, silicon area, power) required to manipulate that data [10].
Giving an optimization algorithm the freedom to adjust the ac-



curacy (within specified bounds) may enable an informed auto-
matic selection of less accurate but more appropriate data repre-
sentations. For example, a compiler may automatically replace
an expensive floating point representation with a more efficient
but less accurate fixed point representation. We anticipate the
application of this technology in both standard compilers for
microprocessors as well as hardware synthesis systems.

• Dynamic Adaptation In Large Data Centers: The amount
of computing power that a large data center is able to deliver
to individual hosted computations can vary dynamically de-
pending on factors such as load, available power, and the op-
erating temperature within the data center (a rise in tempera-
ture may force reductions in power consumption via clock rate
drops). By delivering computations that can operate at multiple
points in the underlying accuracy-resource consumption trade-
off space, accuracy-aware transformations open up new strate-
gies for adapting to fluctuations. For example, a data center may
respond to load or temperature spikes by running applications
at less accurate but more efficient operating points [12].

• Successful Use of Mostly Correct Components: Many faulty
components operate correctly for almost all inputs. By perturb-
ing inputs and computations with small amounts of random
noise, it is possible to ensure that, with very high probability,
no two executions of the computation operate on the same val-
ues. Given a way to check if a fault occurred during the execu-
tion, it is possible to rerun the computation until all components
happen to operate on values that elicit no faults. Understanding
the accuracy consequences of these perturbations can make it
possible to employ this approach successfully.1

The scope of traditional program transformations has been
largely confined to standard compiler optimizations. As the above
examples illustrate, appropriately ambitious accuracy-aware trans-
formations that exploit the opportunity to manipulate accuracy
within specified bounds can dramatically increase the impact and
relevance of the field of program analysis and transformation.

1.5 Contributions

This paper makes the following contributions:
• Model of Computation: We present a model of computation

for approximate computations. This model supports arbitrary
compositions of individual function nodes into computation
nodes and computation nodes and reduction nodes into compu-
tation trees. This model exposes enough computational struc-
ture to enable approximate optimization via our two transfor-
mations.

• Accuracy-Aware Transformations: We consider two classes
of accuracy-aware transformations: function substitutions and
reduction sampling. Together, these transformations induce a
space of transformed programs that provide different combina-
tions of accuracy and resource consumption.

• Tradeoff Curves: It shows how to use linear programming, dy-
namic programming, and a special bi-dimensional discretiza-
tion technique to obtain a (1 + �)-approximation to the un-
derlying optimal accuracy-resource consumption tradeoff curve
available via the accuracy-aware transformations. If the pro-
gram contains no reduction nodes, the tradeoff curve is exact.

• Optimization Algorithm: It presents an optimization algo-
rithm that uses the tradeoff curve to produce randomized pro-
grams that satisfy specified probabilistic accuracy and resource
consumption constraints. In comparison with approaches that
attempt to deliver a deterministic program, randomization en-

1 The last author would like to thank Pat Lincoln for an interesting discus-
sion on this topic.

   

average 

Output 

Figure 1: A numerical integration program.

ables our optimization algorithm to 1) deliver programs with
better combinations of accuracy and resource consumption, and
2) avoid a variety of intractability issues.

• Accuracy Bounds: We show how to obtain statically guar-
anteed probabilistic accuracy bounds for a general class of
approximate computations. The only previous static accuracy
bounds for accuracy-aware transformations exploited the struc-
ture present in a set of computational patterns [6, 22, 23].

2. Example

We next present an example computation that numerically inte-
grates a univariate function f(x) over a fixed interval [a, b]. The
computation divides [a, b] into n equal-sized subintervals, each of
length ∆x = b−a

n . Let x = (x1, . . . xn), where xi = a + i · ∆x
2 .

The value of the numerical integral I is equal to

I = ∆x ·
n�

i=1

f(xi) =
1
n

n�

i=1

(b− a) · f(xi) .

Say, for instance, f(x) = x · sin
�
log(x)

�
is the function that we

want to integrate and [a, b] = [1, 11].

Our Model of Computation. As illustrated in Figure 1, in our
model of computation, we have n input edges that carry the values
of xi’s into the computation and an additional edge that carries the
value of b−a. For each xi, a computation node calculates the value
of (b − a) · f(xi). The output edges of these nodes are connected
to a reduction node that computes the average of these values (we
call such a node an averaging node), as the final integral I .

Program Transformations. The above numerical integration
program presents multiple opportunities to trade end-to-end ac-
curacy of the result I in return for increased performance. Specif-
ically, we identify the following two transformations that may im-
prove the performance:
• Substitution. It is possible to substitute the original implemen-

tations of the sin(·) and log(·) functions that comprise f(x)
with alternate implementations that may compute a less accu-
rate output in less time.

• Sampling. It is possible to discard some of the n inputs of the
averaging node (and the computations that produce these in-
puts) by taking a random sample of s ≤ n inputs (here we call
s the reduction factor). Roughly speaking, this transformation
introduces an error proportional to 1√

s
, but decreases the run-

ning time of the program proportionally to s
n .

Tradeoff Space. In this numerical integration problem, a program

configuration specifies which implementation to pick for each of
the functions sin(·), log(·), and (in principle, although we do not



Configuration. Weight xlog,0 xlog,1 xlog,2 xsin,0 xsin,1 xsin,2 s/n Error Speedup
C1 0.608 0 0 1 0 0 1 100% 0.024 1.39
C2 0.392 0 1 0 0 1 0 47.5% 0.090 2.63

Table 1: The (1 + ε)-optimal randomized program configuration for ∆ = 0.05 and ε = 0.01.

do so in this example) × . The configuration also specifies the re-
duction factor s for the averaging node. If we assume that we have
two alternate implementations of sin(·) and log(·), each program
configuration provides the following information: 1) xu,i ∈ {0, 1}
indicating whether we choose the i-th implementation of the func-
tion u ∈ {log, sin}, and i ∈ {0, 1, 2}, and 2) s indicating the
reduction factor for the averaging node we choose. A randomized

program configuration is a probabilistic choice over program con-
figurations.

Function Specifications. We impose two basic requirements on
the implementations of all functions that comprise f(x).

The first requirement is that we have an error bound and time
complexity specification for each implementation of each func-
tion. In this example we will use the following model: the orig-
inal implementation of log(·) executes in time Tlog,0 with error
Elog,0 = 0; the original implementation of sin(·) executes in time
Tsin,0 with error Esin,0 = 0. We have two alternate implementa-
tions of log(·) and sin(·), where the i-th implementation of a given
function u ∈ {log(·), sin(·)} runs in time Tu,i =

�
1 −

√
i

5

�
Tu,0

with error Elog,i = i · 0.008, and Esin,i = i · 0.004 (i ∈ {1, 2}).
The second requirement is that the error propagation of the

entire computation is bounded by a linear function. This require-
ment is satisfied if the functions that comprise the computation
are Lipschitz continuous

2. In our example, the function sin(·) is
1-Lipschitz continuous, since its derivative is bounded by 1. The
function log(x) is also Lipschitz continuous, when x ≥ 1. Finally,
the product function × is Lipschitz continuous, when the two in-
puts are bounded. We remark here that this second requirement en-
sures that an error introduced by an approximate implementation
propagates to cause at most a linear change in the final output.

Finding the (1 + ε)-Optimal Program Configuration. Given
performance and accuracy specifications for each function, we can
run our optimization algorithm to (1 + ε)-approximately calculate
the optimal accuracy-performance tradeoff curve. For each point
on the curve our algorithm can also produce a randomized program
configuration that achieves this tradeoff.

Given a target expected error bound ∆, we use the tradeoff
curve to find a randomized program configuration that executes
in expected time τ . The (1 + ε)-approximation ensures that this
expected running time τ is at most (1 + ε) times the optimal
expected running time for the expected error bound ∆. In this
example we use ε = 0.01 so that our optimized program will
produce a 1.01-approximation. In addition, we define:

• the number of inputs n = 10000,
• the overall expected error tolerance ∆ = 0.05, and
• the running times Tsin,0 = 0.08 µs and Tlog,0 = 0.07 µs.

For this example our optimization algorithm identifies the point
(∆, T0/1.71) on the tradeoff curve, where T0 is the running time
of the original program. This indicates that the optimized program
achieves a speedup of 1.71 over the original program while keep-
ing the expected value below the bound ∆. Table 1 presents the
randomized program configuration that achieves this tradeoff. This

2 A univariate function is α-Lipschitz continuous if for any δ > 0, it follows
that |f(x)− f(x+ δ)| < αδ. As a special case, a differentiable function is
Lipschitz continuous if |f �(x)| ≤ α. This definition extends to multivariate
functions.

randomized program configuration consists of two program config-
urations C1 and C2. Each configuration has an associated weight
which is the probability with which the randomized program will
execute that configuration. The table also presents the error and
speedup that each configuration produces.

The configuration C1 selects the less accurate approximate ver-
sions of the functions log(·) and sin(·), and uses all inputs to the
averaging reduction node. The configuration C2, on the other hand,
selects more accurate approximate versions of the functions log(·)
and sin(·), and at the same time samples 4750 of the 10,000 origi-
nal inputs.

Note that individually neither C1 nor C2 can achieve the desired
tradeoff. The configuration C1 produces a more accurate output but
also executes significantly slower than the optimal program. The
configuration C2 executes much faster than the optimal program,
but with expected error greater than the desired bound ∆. The ran-
domized program selects configuration C1 with probability 60.8%
and C2 with probability 39.2%. The randomized program has ex-
pected error ∆ and expected running time T0/1.71.

We can use the same tradeoff curve to obtain a randomized pro-
gram that minimizes the expected error ∆� subject to the execution
time constraint τ �. In our example, if the time bound τ

� = T0/1.71
the optimization algorithm will produce the program configuration
from Table 1 with expected error ∆� = ∆.

More generally, our optimization algorithm will produce an
efficient representation of a probability distribution over program
configurations along with an efficient procedure to sample this
distribution to obtain a program configuration for each execution.

3. Model of Approximate Computation

We next define the graph model of computation, including the
error-propagation constraints for function nodes, and present the
accuracy-aware substitution and sampling transformations.

3.1 Definitions

Programs. In our model of computation, programs consist of a
directed tree of computation nodes and reduction nodes. Each edge
in the tree transmits a stream of values. The size of each edge
indicates the number of transmitted values. The multiple values
transmitted along an edge can often be understood as a stream of
numbers with the same purpose — for example, a million pixels
from an image or a thousand samples from a sensor. Figure 2
presents an example of a program under our definition.

Reduction Nodes. Each reduction node has a single input edge
and a single output edge. It reduces the size of its input by some
multiplicative factor, which we call its reduction factor. A node
with reduction factor S has an input edge of size R · S and an
output edge of size R. The node divides the R ·S inputs into blocks
of size S. It produces R outputs by applying an S-to-1 aggregation
function (such as min, max, or mean) to each of the R blocks.

For clarity of exposition and to avoid a proliferation of notation,
we primarily focus on one specific type of reduction node, which
we call an averaging node. An averaging node with reduction factor
S will output the average of the first S values as the first output, the
average of the next S values as the second output, and so on.

The techniques that we present are quite general and apply to
any reduction operation that can be approximated well by sampling.
Section 8 describes how to extend our algorithm to work with other
reduction operations.
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Figure 2: An example program in our model of computation.

Computation Nodes. A computation node has potentially multi-
ple input edges and a single output edge. A computation node of
size R has:

• a single output edge of size R;
• a non-negative number of input edges, each of size

either 1 (which we call a control-input edge),
or some multiple tR of R (which we call a data-input edge).

Each control-input edge carries a single global constant. Data-
input edges carry a stream of values which the computation node
partitions into R chunks. The computation node executes R times
to produce R outputs, with each execution processing the value
from each control-input edge and a block of t values from each
data-input edge. The executions are independent.

For example, consider a computation node of size 10 with
two input edges: one data-input edge of size 1000, denoted by
(a1, a2, . . . , a1000), and one control-input edge of size 1, denoted
by b. Then, the function that outputs the vector

� 100�

i=1

sin(ai, b),
200�

i=101

sin(ai, b), . . . ,
1000�

i=901

sin(ai, b)
�

(1)

is a computation node.
We remark here that a reduction node is a special kind of com-

putation node. We treat computation and reduction nodes sepa-
rately because we optimize computation nodes with substitution
transformations and reduction nodes with sampling transforma-
tions (see Section 3.2).

Inner Structure of Computation Nodes. A computation node can
be further decomposed into one or more function nodes, connected
via a directed acyclic graph (DAG). Like computation nodes, each
function node has potentially multiple input edges and a single
output edge. The size of each input edge is either 1 or a multiple
of the size of the output edge. The functions can be of arbitrary
complexity and can contain language constructs such as conditional
statements and loops.

For example, the computation node in Eq.(1) can be further de-
composed as shown in Figure 3a. Although we require the compu-
tation nodes and edges in each program to form a tree, the function
nodes and edges in each computation node can form a DAG (see,
for example, Figure 3b).

In principle, any computation node can be represented as a
single function node, but its decomposition into multiple function
nodes allows for finer granularity and more transformation choices
when optimizing entire program.
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Figure 3: (a)(b): A closer look at two computation nodes, and (c):
Numerical integration example, revisited.

Example. Section 2 presented a numerical integration program
example. Figure 3c presents this example in our model of compu-
tation (compare with Figure 1). Note that the multiplicity of compu-
tation nodes in Figure 1 corresponds to the edge sizes in Figure 3c.
The log function node with input and output edges of size n runs
n times. Each run consumes a single input and produces a single
output. The × function node with input edges of size n and 1 runs
n times. Each execution produces as output the product of an xi

with the common value b− a from the control edge.

3.2 Transformations

In a program configuration, we specify the following two kinds of
transformations at function and reduction nodes.

• Substitution. For each function node fu of size R, we have
a polynomial number of implementations fu,1, . . . , fu,k. The
function runs R times. We require each implementation to have
the following properties:

each run of fu,i is in expected time Tu,i, giving a total
expected running time of R · Tu,i, and
each run of fu,i produces an expected absolute additive
error of at most Eu,i, i.e., ∀x,E[|fu(x)−fu,i(x)|] ≤ Eu,i.
(The expectation is over the the randomness of fu,i and fu.)

We assume that all (Tu,i, Eu,i) pairs are known in advance
(they are constants or depend only on control inputs).

• Sampling. For each reduction node r with reduction factor
Sr , we can decrease this factor Sr to a smaller factor sr ∈
{1, . . . , Sr} at the expense of introducing some additive sam-
pling error Er(sr). For example, for an averaging node, instead
of averaging all Sr inputs, we would randomly select sr in-
puts (without replacement) and output the average of the cho-
sen samples. For convenience, we denote the sampling rate of
node r as ηr = sr

Sr
.

If the output edge is of size R, the computation selects sr · R
inputs, instead of all Sr ·R inputs. The values for the reduction
node inputs which are not selected need not be computed. Dis-
carding the computations that would otherwise produce these
discarded inputs produces a speed-up factor of ηr = sr

Sr
for all

nodes above r in the computation tree.

The following lemma provides a bound on the sampling error
Er(sr) = (B − A)

�
Sr−sr

sr(Sr−1) for an averaging node. The proof
is available in the full version of the paper.



Lemma 3.1. Given m numbers x1, x2, . . . , xm ∈ [A,B], ran-

domly sampling s of the numbers xi1 , . . . , xis (without replace-

ment) and computing the sample average gives an approximation

to
x1+···+xm

m with the following expected error guarantee:

Ei1,...,is

���xi1 + · · ·+ xis

s
− x1 + · · ·+ xm

m

��
�

≤ (B −A)

�
m− s

s(m− 1)
.

3.3 Error Propagation

The errors that the transformations induce in one part of the com-
putation propagate through the rest of the computation and can be
amplified or attenuated in the process. We next provide constraints
on the form of functions that characterize this error propagation.
These constraints hold for all functions in our model of computa-
tion (regardless of whether they have alternate implementations or
not).

We assume that for each function node fu(x1, . . . , xm) with m

inputs, if each input xj is replaced by some approximate input x̂j

such that E[|xj − x̂j |] ≤ δj , the propagation error is bounded by a
linear error propagation function Eu:

E
�
|fu(x1, . . . , xm)− fu(x̂1, . . . , x̂m)|

�
≤ Eu

�
δ1, . . . , δm

�
. (2)

We assume that all of the error propagation functions Eu for the
functions fu are known a priori:

E
�
|fu(x1, . . . , xm)− fu(x̂1, . . . , x̂m)|

�
≤

��

j

αjδj

�
. (3)

This condition is satisfied if all functions fu are Lipschitz-

continuous with parameters α. Furthermore, if fu(x1, . . . , xm) is
differentiable, we can let αi = maxx

�� ∂fu(x1,...,xm)
∂xi

��. If fu is
itself probabilistic, we can take the expected value of such αi’s.

Substitute Implementations. For functions with multiple imple-
mentations, the overall error when we choose the i-th implemen-
tation fu,i is bounded by an error propagation function Eu and the
local error induced by the i-th implementation Eu,i (defined in the
previous subsection):

E
�
|fu(x1, . . . , xm)−fu,i(x̂1, . . . , x̂m)|

�
≤ Eu

�
δ1, . . . , δm

�
+Eu,i.

(4)
This bound follows immediately from the triangle inequality.

We remark here that the randomness for the expectation in
Eq.(4) comes from 1) the randomness of its input x̂1, . . . , x̂m

(caused by errors from previous parts of the computation) and 2)
random choices in the possibly probabilistic implementation fu,i.
These two sources of randomness are mutually independent.

Averaging Reduction Node. The averaging function is a Lipschitz-
continuous function with all αi = 1

m , so in addition to Lemma 3.1
we have:

Corollary 3.2. Consider an averaging node that selects s random

samples from its m inputs, where each input x̂j has bounded error

E[|x̂j − xj |] ≤ δj . Then:

Ei1,...,is,x̂1,...,x̂m

��� x̂i1 + · · ·+ x̂is

s
− x1 + · · ·+ xm

m

��
�

≤ 1
m

� m�

j=1

δj

�
+ (B −A)

�
m− s

s(m− 1)
.

If all input values have the same error bound E[|x̂j − xj |] ≤ δ,
then 1

m

��m
j=1 δj

�
= δ.

4. Approximation Questions

We focus on the following question:

Question 1. Given a program P in our model of computation and

using randomized configurations, what is the optimal error-time

tradeoff curve that our approximate computations induce?

Here the time and error refer to the expected running time and
error of the program. We say that the expected error of program P

�

is ∆, if for all input x, E[|P (x) − P
�(x)|] ≤ ∆. The error-time

tradeoff curve is a pair of functions (E(·), T (·)), such that E(t) is
the optimal expected error of the program if the expected running
time is no more than t, and T (e) is the optimal expected running
time of the program if the expected error is no more than e.

The substitution and sampling transformations give rise to an
exponentially large space of possible program configurations. We
optimize over arbitrary probability distributions of such configura-
tions. A naive optimization algorithm would therefore run in time
at least exponential in the size of the program. We present an al-
gorithm that approximately solves Question 1 within a factor of
(1+ε) in time:3 1) polynomial in the size of the computation graph,
and 2) polynomial in 1

ε . The algorithm uses linear programming
and a novel technique called bi-dimensional discretization, which
we present in Section 5.

A successful answer to the above question leads directly to the
following additional consequences:

Consequence 1: Optimizing Time Subject to Error

Question 2. Given a program P in our model, and an overall error

tolerance ∆, what is the optimal (possibly randomized) program P
�

available within our space of transformations, with expected error

no more than ∆?

We can answer this question approximately using the optimiza-
tion algorithm for Question 1. This algorithm will produce a ran-
domized program with expected running time no more than (1+ε)
times the optimal running time and expected error no more than
∆. The algorithm can also answer the symmetric question to find a
(1 + ε)-approximation of the optimal program that minimizes the
expected error given a bound on the expected running time.

Consequence 2: From Error to Variance

We say that the overall variance (i.e., expected squared error) of
a randomized program P

� is ∆2, if for all input x, E[|P (x) −
P

�(x)|2] ≤ ∆2. A variant of our algorithm for Question 1 (1+ ε)-
approximately answers the following questions:

Question 3. Given a program P in our model of computation, what

is the optimal error-variance tradeoff curve that our approximate

computations induce?

Question 4. Given a program P in our model, and an overall

variance tolerance ∆2
, what is the optimal (possibly randomized)

program P
�

available within our space of transformations, with

variance no more than ∆2
?

Section 7 presents the algorithm for these questions.

Consequence 3: Probabilities of Large Errors

A bound on the expected error or variance also provides a bound on
the probability of observing large errors. In particular, an execution

3 We say that we approximately obtain the curve within a factor of (1+ε), if
for any given running time t, the difference between the optimal error E(t)
and our Ê(t) is at most εE(t), and similarly for the time function T (e).
Our algorithm is a fully polynomial-time approximation scheme (FPTAS).
Section 5 presents a more precise definition in which the error function
Ê(t) is also subject to an additive error of some arbitrarily small constant.



of a program with expected error ∆ will produce an absolute error
greater than t∆ with probability at most 1

t (this bound follows
immediately from Markov’s inequality). Similarly, an execution of
a program with variance ∆2 will produce an absolute error greater
than t∆ with probability at most 1

t2
.

5. Optimization Algorithm for Question 1

We next describe a recursive, dynamic programming optimization
algorithm which exploits the tree structure of the program. To com-
pute the approximate optimal tradeoff curve for the entire program,
the algorithm computes and combines the approximate optimal
tradeoff curves for the subprograms. We stage the presentation as
follows:
• Computation Nodes Only: In Section 5.1, we show how to

compute the optimal tradeoff curve exactly when the computa-
tion consists only of computation nodes and has no reduction
nodes. We reduce the optimization problem to a linear program
(which is efficiently solvable).

• Bi-dimensional Discretization: In Section 5.2, we intro-
duce our bi-dimensional discretization technique, which con-
structs a piecewise-linear discretization of any tradeoff curve
(E(·), T (·)), such that 1) there are only O( 1ε ) segments on the
discretized curve, and 2) at the same time the discretization
approximates (E(·), T (·)) to within a multiplicative factor of
(1 + ε).

• A Single Reduction Node: In Section 5.3, we show how to
compute the approximate tradeoff curve when the given pro-
gram consists of computation nodes that produce the input for
a single reduction node r (see Figure 6).
We first work with the curve when the reduction factor s at the
reduction node r is constrained to be a single integer value.
Given an expected error tolerance e for the entire computa-
tion, each randomized configuration in the optimal randomized
program allocates part of the expected error Er(s) to the sam-
pling transformation on the reduction node and the remaining
expected error esub = e − Er(s) to the substitution transfor-
mations on the subprogram with only computation nodes.
One inefficient way to find the optimal randomized configura-
tion for a given expected error e is to simply search all possible
integer values of s to find the optimal allocation that minimizes
the running time. This approach is inefficient because the num-
ber of choices of s may be large. We therefore discretize the
tradeoff curve for the input to the reduction node into a small
set of linear pieces. It is straightforward to compute the optimal
integer value of s within each linear piece. In this way we ob-
tain an approximate optimal tradeoff curve for the output of the
reduction node when the reduction factor s is constrained to be
a single integer.
We next use this curve to derive an approximate optimal trade-
off curve when the reduction factor s can be determined by a
probabilistic choice among multiple integer values. Ideally, we
would use the convex envelope of the original curve to obtain
this new curve. But because the original curve has an infinite
number of points, it is infeasible to work with this convex enve-
lope directly. We therefore perform another discretization to ob-
tain a piecewise-linear curve that we can represent with a small
number of points. We work with the convex envelope of this
new discretized curve to obtain the final approximation to the
optimal tradeoff curve for the output of the reduction node r.
This curve incorporates the effect of both the substitution trans-
formations on the computation nodes and the sampling trans-
formation on the reduction node.
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Figure 4: Example to illustrate the computation of time and error.

• The Final Dynamic Programming Algorithm: In Section 5.4,
we provide an algorithm that computes an approximate error-
time tradeoff curve for an arbitrary program in our model of
computation. Each step uses the algorithm from Section 5.3 to
compute the approximate discretized tradeoff curve for a sub-
tree rooted at a topmost reduction node (this subtree includes
the computation nodes that produce the input to the reduction
node). It then uses this tradeoff curve to replace this subtree
with a single function node. It then recursively applies the al-
gorithm to the new program, terminating when it computes the
approximate discretized tradeoff curve for the output of the final
node in the program.

5.1 Stage 1: Computation Nodes Only

We start with a base case in which the program consists only
of computation nodes with no reduction nodes. We show how to
use linear programming to compute the optimal error-time tradeoff
curve for this case.

Variables x. For each function node fu, the variable xu,i ∈ [0, 1]
indicates the probability of running the i-th implementation fu,i.
We also have the constraint that

�
i xu,i = 1.

Running Time TIME(x). Since there are no reduction nodes in
the program, each function node fu will run Ru times (recall that
Ru is the number of values carried on the output edge of fu). The
running time is simply the weighted sum of the running times of the
function nodes (where each weight is the probability of selecting
each corresponding implementation):

TIME(x) =
�

u

�

i

(xu,i · Tu,i ·Ru) . (5)

Here the summation u is over all function nodes and i is over all
implementations of fu.

Total Error ERROR(x). The total error of the program also ad-
mits a linear form. For each function node fu, the i-th implemen-
tation fu,i incurs a local error Eu,i on each output value. By the
linear error propagation assumption, this Eu,i is amplified by a
constant factor βu which depends on the program structure. It is
possible to compute the βu with a traversal of the program back-
ward against the flow of values.

Consider, for example, β1 for function node f1 in the pro-
gram in Figure 4. Let α2 be the linear error propagation fac-
tor for the univariate function f2(·). The function f3(·, ·, ·) is
trivariate with 3 propagation factors (α3,1,α3,2,α3,3). We simi-
larly define (α4,1, . . . ,α4,4) for the quadvariate function f4, and
(α5,1,α5,2,α5,3) for f5. Any error in an output value of f1 will be
amplified by a factor β1:
β1 =

�
α2(α4,1+α4,2+α4,3)+(α3,1+α3,2+α3,3)α4,4

�
(α5,1+α5,2).



The total expected error of the program is:

ERROR(x) =
�

u

�

i

(xu,i · Eu,i · βu) . (6)

Optimization Given a fixed overall error tolerance ∆, the follow-
ing linear program defines the minimum expected running time:

Variables: x
Constraints: 0 ≤ xu,i ≤ 1, ∀u, i�

i xu,i = 1 ∀u
ERROR(x) ≤ ∆

Minimize: TIME(x)

(7)

By swapping the roles of ERROR(x) and TIME(x), it is possible
to obtain a linear program that defines the minimum expected error
tolerance for a given expected maximum running time.

5.2 Error-Time Tradeoff Curves

In the previous section, we use linear programming to obtain the
optimal error-time tradeoff curve. Since there are an infinite num-
ber of points on this curve, we define the curve in terms of func-
tions. To avoid unnecessary complication when doing inversions,
we define the curve using two related functions E(·) and T (·):

Definition 5.1. The (error-time) tradeoff curve of a program

is a pair of functions (E(·), T (·)) such that E(t) is the optimal

expected error of the program if the expected running time is no

more than t and T (e) is the optimal expected running time of the

program if the expected error is no more than e.

We say that a tradeoff curve is efficiently computable if both
functions E and T are efficiently computable.4 The following prop-
erty is important to keep in mind:

Lemma 5.2. In a tradeoff curve (E, T ), both E and T are non-

increasing convex functions.

Proof. T is always non-increasing because when the allowed error
increases the minimum running time does not increase, and simi-
larly for E.

We prove convexity by contradiction: assume αE(t1) + (1 −
α)E(t2) < E(αt1+(1−α)t2) for some α ∈ (0, 1). Then choose
the optimal program for E(t1) with probability α, and the optimal
program for E(t2) with probability 1 − α. The result is a new
program P

� in our probabilistic transformation space. This new
program P

� has an expected running time less than the “optimal”
running time E(αt1 + (1 − α)t2), contradicting the optimality of
E. A similar proof establishes the convexity of T .

We remark here that, given a running time t, one can compute
E and be sure that (E(t), t) is on the curve; but one cannot write
down all of the infinite number of points on the curve concisely.
We therefore introduce a bi-dimensional discretization technique
that allows us to approximate (E, T ) within a factor of (1 + ε).
This technique uses a piecewise linear function with roughly O( 1ε )
segments to approximate the curve.

Our bi-dimensional discretization technique (see Figure 5) ap-
proximates E in the bounded range [0, Emax], where Emax is an
upper bound on the expected error, and approximates T in the
bounded range [T (Emax), T (0)]. We assume that we are given the
maximum acceptable error Emax (for example, by a user of the
program). It is also possible to conservatively compute an Emax by
analyzing the least-accurate possible execution of the program.

4 In the remainder of the paper we refer to the function E(·) simply as E
and to the function T (·) as T .

Figure 5: An example of bi-dimensional discretization.

Definition 5.3. Given a tradeoff curve (E, T ) where E and T are

both non-increasing, along with constants ε ∈ (0, 1) and εE > 0,

we define the (ε, εE)-discretization curve of (E, T ) to be the

piecewise-linear curve defined by the following set of endpoints

(see Figure 5):

• the two black points (0, T (0)), (Emax, T (Emax)),
• the red points (ei, T (ei)) where ei = εE(1+ε)i for some i ≥ 0

and εE(1 + ε)i < Emax, and

• the blue points (E(ti), ti) where ti = T (Emax)(1 + ε)i for

some i ≥ 1 and T (Emax)(1 + ε)i < T (0).

Note that there is some asymmetry in the discretization of the
two axes. For the vertical time axis we know that the minimum run-
ning time of a program is T (Emax) > 0, which is always greater
than zero since a program always runs in a positive amount of time.
However, we discretize the horizontal error axis proportional to
powers of (1 + ε)i for values above εE . This is because the er-
ror of a program can indeed reach zero, and we cannot discretize
forever.5

The following claim follows immediately from the definition:

Claim 5.4. If the original curve (E, T ) is non-increasing and

convex, the discretized curve (Ê, T̂ ) is also non-increasing and

convex.

5.2.1 Accuracy of bi-dimensional discretization

We next define notation for the bi-dimensional tradeoff curve dis-
cretization:

Definition 5.5. A curve (Ê, T̂ ) is an (ε, εE)-approximation to

(E, T ) if for any error 0 ≤ e ≤ Emax,

0 ≤ T̂ (e)− T (e) ≤ εT (e) ,

and for any running time T (Emax) ≤ t ≤ T (0),

0 ≤ Ê(t)− E(t) ≤ εE(t) + εE .

We say that such an approximation has a multiplicative error of ε

and an additive error of εE .

Lemma 5.6. If (Ê, T̂ ) is an (ε, εE)-discretization of (E, T ), then

it is an (ε, εE)-approximation of (E, T ).

Proof Sketch. The idea of the proof is that, since we have dis-
cretized the vertical time axis in an exponential manner, if we com-
pute T̂ (e) for any value e, the result does not differ from T (e) by

5 If instead we know that the minimum expected error is greater than zero
(i.e., E(Tmax) > 0) for some maximum possible running time Tmax, then
we can define εE = E(Tmax) just like our horizontal axis.
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Figure 6: Algorithm for Stage 2.

more than a factor of (1 + ε). Similarly, since we have discretized
the horizontal axis in an exponential manner, if we compute Ê(t)
for any value t, the result does not differ by more than a factor of
(1 + ε), except when E(t) is smaller than εE (when we stop the
discretization). But even in that case the value Ê(t)−E(t) remains
smaller than εE .

Because every point on the new piecewise-linear curve (Ê, T̂ )
is a linear combination of some points on the original curve (E, T ),
0 ≤ T̂ (e)−T (e) and 0 ≤ Ê(t)−E(t), Because (E, T ) is convex
(recall Lemma 5.2), the approximation will always lie “above” the
original curve.

5.2.2 Complexity of bi-dimensional discretization

The number of segments that the approximate tradeoff curve has in
an (ε, εE)-discretization is at most

np
def
= 2 +

log Emax
εE

log(1 + ε)
+

log T (0)
T (Emax)

log(1 + ε)

≤ O

�1
ε

�
logEmax + log

1
εE

+ log Tmax + log
1

Tmin

��
, (8)

where Tmin is a lower bound on the expected execution time and
Tmax is an upper bound on the expected execution time. Our dis-
cretization algorithm only needs to know Emax in advance, while
Tmax and Tmin are values that we will need later in the complexity
analysis.

5.2.3 Discretization on an approximate curve

The above analysis does not rely on the fact that the original
tradeoff curve (E, T ) is exact. In fact, if the original curve (E, T )
is only an (ε, εE)-approximation to the exact error-time tradeoff
curve, and if (Ê, T̂ ) is the (ε�, ε�E)-discretization of (E, T ), then
one can verify by the triangle inequality that (Ê, T̂ ) is a piecewise
linear curve that is an (ε+ ε

�+ εε
�
, εE + ε

�
E) approximation of the

exact error-time tradeoff curve.

5.3 Stage 2: A Single Reduction Node

We now consider a program with exactly one reduction node r,
with original reduction factor S, at the end of the computation.
The example in Figure 3c is such a program. We describe our
optimization algorithm for this case step by step as illustrated in
Figure 6.

We first define the error-time tradeoff curve for the subprogram
without the reduction node r to be (Esub, Tsub) (Section 5.1 de-
scribes how to compute this curve; Lemma 5.2 ensures that it is
non-increasing and convex). In other words, for every input value

to the reduction node r, if the allowed running time for comput-
ing this value is t, then the optimal expected error is Esub(t) and

similarly for Tsub(e). Note that when computing (Esub, Tsub) as
described in Section 5.1, the size of the output edge Ri for each
node i must be divided by S, as the curve (Esub, Tsub) character-
izes each single input value to the reduction node r.

If at reduction node r we choose an actual reduction factor
s ∈ {1, 2, . . . , S}, the total running time and error of this entire
program is:6

TIME = Tsub × s

ERROR = Esub + Er(s) .
(9)

This is because, to obtain s values on the input to r, we need to
run the subprogram s times with a total time Tsub × s; and by
Corollary 3.2, the total error of the output of an averaging reduction
node is simply the sum of its input error Esub, and a local error
Er(s) incurred by the sampling.7

Let (E1, T1) be the exact tradeoff curve (E1, T1) of the entire

program, assuming that we can choose only a single value of s. We
start by describing how to compute this (E1, T1) approximately.

5.3.1 Approximating (E1, T1): single choice of s

By definition, we can write (E1, T1) in terms of the following two

optimization problems:

T1(e) = min
s∈{1,...,S}

esub+Er(s)=e

�
Tsub(esub)× s

�

and E1(t) = min
s∈{1,...,S}
tsub×s=t

�
Esub(tsub) + Er(s)

�
,

where the first optimization is over variables s and esub, and the
second optimization is over variables s and tsub. We emphasize
here that this curve (E1, T1) is by definition non-increasing (be-
cause (Esub, Tsub) is non-increasing), but may not be convex.

Because these optimization problems may not be convex, they
may be difficult to solve in general. But thanks to the piecewise-
linear discretization defined in Section 5.2, we can approximately
solve these optimization problems efficiently. Specifically, we pro-
duce a bi-dimensional discretization (Êsub, T̂sub) that (ε, εE)-
approximates (Esub, Tsub) (as illustrated in Figure 6). We then
solve the following two optimization problems:

T
�
1(e) = min

s∈{1,...,S}
esub+Er(s)=e

�
T̂sub(esub)× s

�

and E
�
1(t) = min

s∈{1,...,S}
tsub×s=t

�
Êsub(tsub) + Er(s)

�
. (10)

We remark here that E�
1 and T

�
1 are both non-increasing since Êsub

and T̂sub are non-increasing using Claim 5.4.
Each of these two problems can be solved by 1) comput-

ing the optimal value within each linear segment defined by
(Êsub,k, T̂sub,k) and (Êsub,k+1, T̂sub,k+1), and 2) returning the
smallest optimal value across all linear segments.

Suppose that we are computing T
�
1(e) given an error e. In the

linear piece of T̂sub = aesub + b (here a and b are the slope and
intercept of the linear segment), we have esub = e − Er(s). The
objective that we are minimizing therefore becomes univariate with
respect to s:

T̂sub × s = (aesub + b)× s = (a(e− Er(s)) + b)× s . (11)

6 Here we have ignored the running time for the sampling procedure in the
reduction node, as it is often negligible in comparison to other computations
in the program. It is possible to add this sampling time to the formula for
TIME in a straightforward manner.
7 We extend this analysis to other types of reduction nodes in Section 8.



The calculation of s is a simple univariate optimization problem
that we can solve quickly using our expression for Er(s).8 Com-
paring the optimal answers from all of the linear pieces gives us
an efficient algorithm to determine T

�
1(e), and similarly for E�

1(t).
This algorithm runs in time linear in the number of pieces np (re-
call Eq.(8)) in our bi-dimensional discretization. This finishes the
computation of (E�

1, T
�
1) in Figure 6. We next show that (E�

1, T
�
1)

accurately approximates (E, T ):

Claim 5.7. (E�
1, T

�
1) is an (ε, εE)-approximation to (E1, T1).

Proof. Because T̂sub approximates Tsub, we know that for any
esub, 0 ≤ T̂sub(esub)− Tsub(esub) ≤ εTsub(esub), and this gives:

T
�
1(e) = min

s∈{1,...,S}
esub+Er(s)=e

�
T̂sub(esub)× s

�

≤ min
s∈{1,...,S}

esub+Er(s)=e

�
(1 + ε)Tsub(esub)× s

�
= (1 + ε)T1(e).

Similarly, this also gives that T �
1(e) ≥ T1(e) using 0 ≤ T̂sub(esub)−

Tsub(esub).
Using a similar technique, we can also prove that E

�
1(t) ≥

E1(t) and E
�
1(t) ≤ (1 + ε)E1(t) + εE . Therefore, the (E�

1, T
�
1)

curve (ε, εE)-approximates the exact tradeoff curve (E1, T1).

We next further bi-dimensionally discretize the curve (E�
1, T

�
1)

that we obtained into (Ê�
1, T̂

�
1) using the same discretization param-

eter (ε, εE). A discretization of an approximate curve is still ap-
proximate (see Section Section 5.2.3). We therefore conclude that

Claim 5.8. (Ê�
1, T̂

�
1) is a (2ε+ε

2
, 2εE)-approximation to (E1, T1).

5.3.2 Approximating (E, T ): probabilistic choice of s

Now, we define (E, T ) to be the exact tradeoff curve (E1, T1) of
the entire program, assuming that we can choose s probabilistically.
We claim:

Claim 5.9. (E, T ) is the convex envelope of (E1, T1).

Proof. We first prove the claim that T is the convex envelope of T1.
The proof for E is similar. One side of the proof is straightforward:
every weighted combination of points on T1 should lie on or above
T , because this weighted combination is one candidate randomized
configuration that chooses s probabilistically, and T is defined to
be the optimal curve that takes into account all such randomized
configurations.

For the other side of the proof, we need to show that every
point on T is a weighted combination of points on T1. Let us take
an arbitrary point (e, T (e)). Suppose that T (e) is achieved when
the optimal probabilistic choice of s is {(si, pi)}i≥1 at reduction
node r, where we choose si with probability pi and when si is
chosen, the overall error-time incurred is (ei, ti). Therefore, we
have e =

�
i piei and T (e) =

�
i piti.

Because T (e) is the exact optimal tradeoff curve, each ti is also
minimized with respect to ei and the fixed choice of si. This is
equivalent to saying that (ei, ti) lies on the curve (E1, T1), i.e.,
T1(ei) = ti. This implies that T is the convex envelope of T1.

In general, computing the convex envelope of an arbitrary func-
tion (E1, T1) may be hard, but thanks to our piecewise-linear dis-
cretization, we can compute the convex envelope of (Ê�

1, T̂
�
1) easily.

Let us denote the convex envelope of (Ê�
1, T̂

�
1) by (Ê�

, T̂
�). In fact,

(Ê�
, T̂

�) can be computed in time O(np log np) because (Ê�
1, T̂

�
1)

contains only np endpoints.

8 Note that for each different type of reduction code, the optimization
procedure for this univariate optimization can be hardcoded.

Since (Ê�
1, T̂

�
1) is a (2ε + ε

2
, εE)-approximation to (E1, T1)

by Claim 5.8, we should expect the same property to hold for their
convex envelopes:

Claim 5.10. (Ê�
, T̂

�) is a (2ε+ε
2
, 2εE)-approximation to (E, T ).

Proof. By the definition of convex envelope, for all time t, there
exists some α ∈ [0, 1] such that E(t) = αE1(t1)+(1−α)E1(t2)
and αt1 + (1− α)t2 = t. Then,

Ê
�(t) ≤ αÊ

�
1(t1) + (1− α)Ê�

1(t2)

≤ 2εE + (1 + 2ε+ ε
2)(αE1(t1) + (1− α)E1(t2))

= 2εE + (1 + 2ε+ ε
2)E(t) ,

where the first inequality uses the fact that Ê� is the convex en-
velope of Ê�

1, and the second uses the fact that Ê�
1 approximates

E1.
At the same time, there exists some β ∈ [0, 1] such that Ê�(t) =

βÊ
�
1(t3) + (1− β)Ê�

1(t4) and βt3 + (1− β)t4 = t. Then,

Ê
�(t) = βÊ

�
1(t3) + (1− β)Ê�

1(t4)

≥ βE1(t3) + (1− β)E1(t4) ≥ E(t) ,

where the first inequality uses the fact that Ê�
1 approximates E1,

and the second uses the fact that E is the convex envelope of E1.
We can derive the two similar inequalities for the time function

T̂
� and conclude that (Ê�

, T̂
�) is a (2ε + ε

2
, 2εE)-approximation

to (E, T ).

So far, we have finished all steps described in Figure 6. We have
ended with a piecewise-linear tradeoff curve (Ê�

, T̂
�) that (2ε +

ε
2
, 2εE)-approximates the exact tradeoff curve (E, T ), taking into

account the probabilistic choices at this reduction node as well.

5.4 The Final Dynamic Programming Algorithm

We next show how to compute the approximate error-time trade-
off curve for any program in our model of computation. We first
present the algorithm, then we discuss how to choose the discretiza-
tion parameters ε and εE and how the discretization errors com-
pose.

If the program has no reduction nodes, we can simply apply the
analysis from Section 5.1. Otherwise, there must exist at least one
topmost reduction node r whose input is computed from compu-
tation nodes only. Assume (E, T ) is the exact error-time tradeoff
curve for the output of r. Applying Stage 2 (Section 5.3) to the sub-
program rooted at r, we can efficiently find some piecewise-linear
curve (Ê�

, T̂
�) that accurately approximates (E, T ).

Recall that this piecewise-linear curve (Ê�
, T̂

�) is convex (since
it is a convex envelope). If we pick all of its at most np endpoints on
the curve P = {(Er,i, Tr,i)}np

i=1, then 1) every point on the curve
can be spanned by at most two points in P because the function
is piecewise linear, and 2) all points that can be spanned by P lie
above the curve because the function is convex.

The two observations 1) and 2) above indicate that we can re-

place this reduction node r along with all computation nodes above
it, by a single function node fr such that its i-th substitute im-
plementation fr,i gives an error of Er,i and a running time of
Tr,i. Observation 1) indicates that every error-time tradeoff point
on (Ê�

, T̂
�) can be implemented by a probabilistic mixture of

{fr,i}np
i=1, and observation 2) indicates that every error-time trade-

off point that can be implemented, is no better than the original
curve (Ê�

, T̂
�). In sum, this function node achieves the same error-

time tradeoff as the piecewise-linear curve (Ê�
, T̂

�).



This completes the description of the algorithm. We can recur-
sively choose a reduction node with only computation nodes above
it, replace the subtree rooted at the reduction node with a function
node, continue until we have no reduction nodes left, and compute
the final error-time tradeoff curve. We next consider the accuracy
and running time of this recursive algorithm.

Maximum Error Propagation Factor (MEPF). We use a value
MEPF to bound the cumulative additive error of the optimized
program. Specifically, we choose MEPF so that a local additive
error e at some node in the computation will produce at most a
e × MEPF additive error at the final output. Specifically, we set
MEPF to be the maximum βu over all function nodes fu in the
program.

Accuracy. Our algorithm repeatedly approximates error-time
curves with their discretizations. This typically occurs twice during
the analysis of each reduction node. If the inputs of a reduction
node come from some computation node, the first discretization
approximates the tradeoff curve for that computation node (we do
not need this step if inputs come from some other reduction node.)
The second discretization approximates the tradeoff curve for the
outputs of the reduction node. By bounding the total error intro-
duced by all of these approximations, we show that our algorithm
produces a good approximation to the exact error-time curve.

We remark that there are two very different types of errors be-
ing discussed here: errors that we trade off against time in our ap-
proximate computation and errors that our optimization algorithm
incurs in computing the optimal error-time tradeoff curve for the
approximate computation. For clarity, we shall refer to the former
as computation error and to the latter as optimization error.

If we choose parameters (ε, εE) for both discretizations of a
single reduction node r, the argument in Section 5.2.3 shows that
we obtain a (2ε+ε

2
, 2εE)-approximation to its error-time tradeoff

curve.
A computation node may amplify the computation error, which

will result in a corresponding increase in the optimization error of
our approximation to it. However, we can bound the total effect of
all computation nodes on our optimization error using our linear
error propagation assumption. In particular, we can study the effect
of a single reduction node’s (2ε + ε

2
, 2εE)-approximation on the

program’s overall additive and multiplicative optimization error:

• The additive error 2εE is multiplied by the computation nodes’
Lipschitz parameters. The result is an overall additive optimiza-
tion error of at most 2εEMEPF.

• The multiplicative error is not affected, since both the actual
computation error and our approximation to it are multiplied by
the same factors. The overall multiplicative optimization error
introduced is thus at most 2ε+ ε

2.

This bounds the optimization errors introduced by the dis-
cretization in our analysis of a single reduction node. We can add
these up to bound the total optimization error.

We fix parameters ε = ε�

Ω(n) and εE =
ε�E

Ω(n)×MEPF for all of
the discretizations, where n is the number of nodes in the original
program. Since we have at most n reduction nodes, this sums up to
a total multiplicative error of ε� and additive error of ε�E (both of
these errors are optimization errors) in the final approximation of
the exact error-time tradeoff curve of the whole program. Our over-
all optimization algorithm thus produces a piecewise-linear curve
(Ê, T̂ ), that (ε�, ε�E)-approximates the exact error-time tradeoff
curve.9

9 If we choose ε�E to be the smallest unit of error that we care about, then
this essentially becomes an ε� multiplicative approximation to the actual
error-time tradeoff curve.

Time Complexity. The most expensive operation in our optimiza-
tion algorithm is solving the multiple linear programs that the algo-
rithm generates. We next bound the number of linear programs that
the algorithm generates.

Recall by Eq.(8) that np is the number of pieces in our bi-
dimensional discretizations. By our choices of ε and εE :

np = O

�1
ε

�
logEmax + log

1
εE

+ log Tmax + log
1

Tmin

��

= O

�
n

ε�

�
logEmax + log

nMEPF
ε�E

+ log Tmax + log
1

Tmin

��
.

For each reduction node, we solve a linear program for each
of the np points in its discretization. We therefore run the LP
solver O(n × np) number of times. The number of variables in
these linear program is O(n × np), since each node may have np

implementations (which occurs when we replace a reduction node
with its bi-dimensional discretization). This yields:
Theorem 5.11. Our proposed recursive algorithm calls the LP

solver O(n× np) times, each time with O(n× np) variables. The

algorithm produces a (1 + ε
�)-approximation to the exact error-

time tradeoff curve, and thus approximately solves Question 1.

Note that in practice we can find constants that appropriately
bound Tmin, Tmax, Emax, MEPF and εE .10 In addition, all those
numbers stay within log functions. We can therefore assume that in
practice:

np ≈ O
�n log n

ε�

�
.

We also note that 1) the worst-case time complexity of linear
programming is polynomial, and 2) efficient linear programming
algorithms exist in practice.

6. Optimization Algorithm for Question 2

At this point, we have approximately solved the error-time tradeoff
curve problem in Question 1. Given an overall error tolerance
∆, we have an efficient algorithm that approximates the optimal
running time T (∆) up to a multiplicative factor (1 + ε).

We next show that our algorithm is constructive: it uses substitu-
tion and sampling transformations to obtain a randomized program
P

� with expected error bound ∆ that runs in expected time no more
than (1+ε)T (∆). The algorithm therefore answers Question 2 ap-
proximately. Our proof first considers the two simpler cases that we
introduced in Section 5.
Stage 1: Computation Nodes Only. If the program has no reduc-
tion nodes, then the solution x to the linear program gives explicitly
the probability of choosing each implementation at each function
node, which in turn gives us a randomized configuration for the
randomized program P

�.
Stage 2: A Single Reduction Node. If the program consists of
computation nodes that generate the input for a single reduction
node (this reduction node is therefore the root of the program),
recall that we have perform two discretizations as illustrated in
Figure 6.

Specifically, let (E, T ) be the exact error-time tradeoff curve
of the final output, which we have approximated by a piecewise-
linear curve (Ê�

, T̂
�) in the last step of Figure 6. We want to obtain

a program P
� whose error-time pair is (∆, T̂

�(∆)), because T̂
� is

guaranteed to be a (1 + ε)-approximation to T .

10 For example, we may lower bound Tmin with the clock cycle time of the
machine running the computation, εE with the smallest unit of error we
care about, upper bound Tmax with the estimated lifetime of the machine
running the computation, Emax with the largest value representable on
the machine running the computation, and MEPF with the ratio between
the largest and smallest value representable on the machine running the
computation.



By piecewise linearity, the point (∆, T̂
�(∆)) lies on some linear

segment of (Ê�
, T̂

�):

T̂
�(∆) = λT̂

�(e1) + (1− λ)T̂ �(e2)

∆ = λe1 + (1− λ)e2 ,

where [e1, e2] are the two endpoints of that segment. To achieve
an error-time pair (∆, T̂

�(∆)), we can let the final program P
� run

1) with probability λ some randomized program P
�
1 whose error-

time pair is (e1, T̂ �(e1)), and 2) with probability 1− λ some other
randomized program P

�
2 whose error-time pair is (e2, T̂ �(e2)). We

next verify that both P
�
1 and P

�
2 can be constructed explicitly. We

focus on the construction of P1.
The goal is to construct P �

1 with error-time pair p = (e1, T̂
�(e1)).

Note that p is an endpoint of (Ê�
, T̂

�), and thus is also an end-
point of (Ê�

1, T̂
�
1). Since (Ê�

1, T̂
�
1) is a discretization of (E�

1, T
�
1),

p is also a point on the curve (E�
1, T

�
1). We can therefore write

p = (e1, T
�
1(e1)).

Recall that we obtained T
�
1(e1) by exactly solving the univariate

optimization problem defined in Eq.(11). Because this solution is
constructive, it provides us with the optimal reduction factor s to
use at the reduction node. Substituting this optimal value s into
Eq.(10), we obtain the error-time pair (esub, T̂sub(esub)) that we
should allocate to the subprogram (without the reduction node).
We therefore only need to construct a program for the subprogram
whose error-time pair is (esub, T̂sub(esub)).

Because T̂sub is a piecewise-linear discretization of Tsub, we
can obtain a program whose error-time pair is (esub, T̂sub(esub))
by combining at most two points on the (Esub, Tsub) curve. The
linear program described above implements this (Esub, Tsub)
curve. This completes the construction of P �.

We have therefore shown that as part of the algorithm for Stage
2 (see Section 5.3), we can indeed construct a program P

� with the
desired error and time bounds (∆, T̂

�(∆)).

Putting It All Together. We prove, by induction, that for a pro-
gram with an arbitrary number of reduction nodes, we can obtain a
randomized program P

� with expected error bound ∆ and expected
running time no more than (1+ε)T (∆). We are done if there is no
reduction node (by Stage 1). Otherwise, suppose that we have nr

reduction nodes.
We will substitute one of the reduction nodes r, along with all

computations above it, by a function node fr with piecewise-linear
tradeoff (Ê�

, T̂
�). This function node has a set of implementations

{fr,i}np
i=1, and in our Stage 2, we have actually shown that each

fr,i, being a point on the (Ê�
, T̂

�) curve, is achievable by some
explicit randomized program Pi.

In other words, this new function node fr is a “real” function
node: every approximate implementation fr,i has a corresponding
randomized program Pi that can be constructed by our algorithm.
This reduces the problem into a case with nr − 1 reduction nodes.
Using our induction hypothesis, we conclude that for any ∆, we
can construct a program P

� that runs in expected time no more
than (1 + ε)T (∆).

7. Optimization Algorithm for Question 3

We next describe how to modify our algorithm if one instead is
interested in the time-variance tradeoff.

7.1 Changes to Function Nodes

For each function node fu, the algorithm for Question 1 works with
an error-time pair (Tu,i, Eu,i) for each implementation fu,i. Now
we instead work with a pair (Tu,i, Vu,i), where Vu,i is the variance
(i.e., the expected squared error):

∀x, E[|fu(x)− fu,i(x)|2] ≤ Vu,i , (12)

where the expectation is over the the randomness of fu,i and fu.
We also assume that the variance propagation function is linear

with coefficients α1, . . . ,αm. In other words, if fu has an arity of
m, and each input xi is approximated by some input x̂i such that
E[|xi − x̂i|2] ≤ vi, then the final variance:

E
�
|fu(x1, . . . , xm)−fu,i(x̂1, . . . , x̂m)|2

�
≤

��

j

αjvj

�
+2Vu,i .

(13)
We next check that a large class of meaningful functions satis-

fies the above definition. Note that if fu is a deterministic Lipschitz-
continuous function (with respect to vector L = (L1, . . . , Lm)):

E
�
|fu(x)− fu,i(x̂)|2

�

= E
�
|(fu(x)− fu(x̂)) + (fu(x̂)− fu,i(x̂))|2

�

≤ 2E
�
|fu(x)− fu(x̂)|2 + |fu(x̂)− fu,i(x̂)|2

�

≤ 2E
�
|fu(x)− fu(x̂)|2

�
+ 2Vu,i

≤ 2E
�
(
�

i Li|xi − x̂i|)2
�
+ 2Vu,i

≤ 2mE
��

i L
2
i (xi − x̂)2

�
+ 2Vu,i

≤ 2m
�

i L
2
i vi + 2Vu,i . (14)

So let αi = 2mL
2
i in Eq.(13). If fu is probabilistic and each de-

terministic function in its support is Lipschitz-continuous (perhaps
for different L’s), then we can similarly set the final αi = 2mE[L2

i ]
using the expectation.11

7.2 Changes to Reduction Nodes

Recall that for a reduction node r with reduction factor Sr , we
can decrease this factor to a smaller value sr ∈ {1, . . . , Sr} at
the expense of introducing some additive sampling error Er(sr).
In our Question 3, we have a different variance bound Vr(sr) =
(B − A)2 Sr−sr

sr(Sr−1) , whose proof can be found in the full version
of this paper.

Lemma 7.1. Given m numbers x1, x2, . . . , xm ∈ [A,B], ran-

domly sampling s of the numbers xi1 , . . . , xis (without replace-

ment) and computing the sample average gives an approximation

to
x1+···+xm

m with the following variance guarantee:

Ei1,...,is

���xi1 + · · ·+ xis

s
− x1 + · · ·+ xm

m

��2
�

≤ (B −A)2
m− s

s(m− 1)
.

Similar to Corollary 3.2, we also verify that an averaging node
satisfies our linear variance propagation assumption, due to its
Lipschitz continuity We defer the proof to the full version of this
paper.

Corollary 7.2. Consider an averaging node that will pick s ran-

dom samples among all m inputs where each input x̂j has bounded

variance E[|x̂j − xj |2] ≤ vj . Then:

Ei1,...,is,x̂1,...,x̂m

��� x̂i1 + · · ·+ x̂is

s
− x1 + · · ·+ xm

m

��2
�

≤ 2(B −A)2
m− s

s(m− 1)
+

2
m

m�

i=1

vi .

11 Because the randomness within fu is independent of the randomness for
input error x̂i − xi, we have E[L2

i (xi − x̂i)2] = E[L2
i ]E[(xi − x̂i)2].



7.3 Putting Things Together

As before, if there is no reduction node, we can write the variance
in the following linear form:

ERROR2(x) =
�

u

�

i

(xu,i · Vu,i · βu) .

The amplification factors βu can be pre-computed using the linear
variance propagation factors αi.

The expressions for the reduction node are slightly changed.
Instead of Eq.(9), we now have

TIME = Tsub × s

ERROR2 = 2Vsub + 2Vr(s) .

One can use almost the same arguments as in Section 5 to show
that the optimization problem with respect to one reduction node
can be reduced to optimizing a univariate function. This yields a
fully polynomial-time approximation scheme (FPTAS) that solves
Question 3. The solution for Question 4 can be derived similarly if
one follows the arguments in Section 6.

8. Other Reduction Nodes

We have stated our main theorems for programs that contain only
averaging reduction nodes. More generally, our algorithm supports
any reduction node that can be approximated using sampling. This
includes, for example, variances, �

p norms, and order statistics
functions. In this section we discuss the analysis of some additional
reduction nodes.
Summation Reduction Nodes. For a summation node with re-
duction factor Sr (i.e., Sr numbers to sum up), the sampling pro-
cedure randomly selects sr numbers, then outputs the partial sum
multiplied by Sr

sr
. The output is therefore an unbiased estimator of

the exact sum. The derivation of the expressions for the expected
error and the variance of the error closely follows the derivation
for averaging nodes. The final expressions are the corresponding
averaging expressions multiplied by Sr .
Minimization and Maximization Reduction Nodes. Note that
all reasonable sampling techniques may, with some non-negligible
probability, discard the smallest input value. We therefore consider
percentile minimization nodes, which have two parameters q ∈
(0, 1) and B. If the output is any of the smallest �qm� numbers in
the input (here m is the number of inputs), the error is 0. Otherwise,
the error is B. We also define m

� = �(1− q)m�.

Lemma 8.1. For a percentile minimization (or maximization) node

r with parameters q ∈ (0, 1) and B, sampling sr of m input

elements gives an expected error of

Er(sr) =






�
m�

sr

�
�
m
sr

�B if sr ≤ m
�

0 if sr > m
�
,

which is a convex function. It is also possible to define a simpler

approximate bound if m is large or sampling is done without

replacement: Er(sr) ≈ (1− q)srB.

Proof. There are a total of
�
m
sr

�
ways to take samples of size sr .

�
m�

sr

�
of these samples will contain no element in the smallest q

fraction of the original Sr inputs. The probability that a sample
contains no element that lies in this smallest q fraction is therefore
(m

�
sr
)

(msr)
. The expected error is this probability multiplied by B. One

can verify that this is a convex function by taking the second-
order discrete derivative. When m is large, the probability can be
approximated by (1− q)sr , which is obviously convex.

Also, the error propagates linearly (with a constant factor of 1)
for such nodes. In other words, if all inputs to a minimization (or
maximization) node are subject to an error of E[|xi − x̂i|] ≤ δ,
the output will have error δ + E

�
r(sr). Now, if we replace Er(sr)

in Eq.(9) with this function we just derived, all of the analysis in
Section 5 goes through unchanged.

It is also straightforward to verify that if one uses the variance
of the error, Vr(sr) = Er(sr)B.
Argmin and Argmax Reduction Nodes. We can similarly define
percentile argmin and argmax nodes, where the output value is a
pair (i, v) in which i is the index for the smallest/largest element
and v is the actual minimum or maximum value. The error depends
exclusively on the element v. We can output the index i, but it can
not be used as a value in arithmetic expressions.

9. Related Work

Empirical Accuracy-Performance Tradeoffs. Profitably trading
accuracy for performance is a well known practice, often done at an
algorithmic or system level. For many computationally expensive
problems, researchers have developed approximation, randomized,
or iterative algorithms which produce an approximate solution with
guaranteed error bounds [25]. Researchers have also proposed a
number of system-level techniques that specifically aim to trade
accuracy for performance, energy, or fault tolerance. The proposed
techniques operate at the level of hardware [4, 17, 34], system
software [9, 13, 17, 20, 21], and user applications [2, 3, 6, 14, 24,
27, 28, 30, 31, 33].

Previous research has explored the tradeoff space by running
and comparing the results of the original and transformed programs
on either training inputs [12, 27, 28, 31] or online for chosen
production inputs [2, 3, 13, 33]. The result of this exploration
is often an empirical approximation of the accuracy-performance
tradeoff curve. This approximation may be valid only for inputs
similar to those used to construct the empirical curve. In some
cases the approximation comes with empirical statistical accuracy
bounds [27, 28]. In other cases there are no accuracy bounds at
all. This paper, in contrast, statically analyzes the computation to
produce a (1 + �)-approximation to the exact tradeoff curve. This
approximation provides guaranteed probabilistic accuracy bounds
that are valid for all legal inputs.
Probabilistic Accuracy Bounds For Single Loops. Researchers
have recently developed static analysis techniques for character-
izing the accuracy effects of loop perforation (which transforms
loops to execute only a subset of their iterations) [22, 23] or loops
with approximate function memoization (which transforms func-
tions to return a previously computed value) [6]. These techniques
analyze single loops and do not characterize how the accuracy ef-
fects propagate through the remaining computation to affect the
output. This paper, in contrast, presents a technique that character-
izes and exploits the accuracy-performance curve available via sub-
stitution and sampling transformations applied to complete compu-
tations. Unlike previous research, the techniques presented in this
paper capture how global interactions between multiple approxi-
mate transformations propagate through the entire computation (in-
stead of just a single loop) and does not require specification of
probability distributions of the inputs.
Analytic Properties of Programs. Researchers have developed
techniques to identify continuous or Lipschitz-continuous pro-
grams [5, 6, 18, 19, 26]. Identified applications include differ-
ential privacy [5, 6, 26] and robust functions for embedded sys-
tems [6, 18, 19]. This paper, in contrast, presents techniques that
apply accuracy-aware transformations to obtain new computations
that occupy more desirable points on the underlying accuracy-
performance tradeoff curve that the transformations induce.



Smooth interpretation [7, 8] uses a gradient descent based
method to synthesize control parameters for imperative computer
programs. The analysis returns a set of parameters that minimize
the difference between the expected and computed control values
for programs that control cyberphysical interactions.
Approximate Queries in Database Systems. Modern databases
often enable users to define queries that operate on some subset
of the records in a given table. Such queries come with no accu-
racy or performance guarantees. Researchers have explored multi-
ple directions for supporting approximate queries with probabilistic
guarantees. Approximate aggregate queries let a user specify a de-
sired accuracy bound or execution time of a query [1, 15, 16]. The
database then generates a sampling strategy that satisfies the spec-
ification [15, 16] or uses a cached sample, when applicable [1].
Online queries compute the exact answer for the entire data-set,
but provide intermediate results and confidence bounds [11]. Prob-
abilistic databases [35] operate on inherently uncertain data. The
accuracy bounds of all queries (including aggregation) depend on
the uncertainty of data.

These systems work with specific classes of queries defined in
a relational model. They sample data but do not consider multiple
function implementations. They also do not provide general mech-
anisms to achieve optimal accuracy-performance tradeoffs for sam-
pling when processing complex nested queries.

10. Conclusion

Despite the central role that approximate computations play in
many areas of computer science, there has been little research into
program optimizations that can trade off accuracy in return for
other benefits such as reduced resource consumption. We present
a model of computation for approximate computations and an
algorithm for applying accuracy-aware transformations to opti-
mize these approximate computations. The algorithm produces
a randomized program, which randomly selects one of multiple
weighted alternative program configurations to maximize perfor-
mance subject to a specified expected error bound.

Given the growing importance of approximation in computa-
tion, we expect to see more approximate optimization algorithms in
the future. We anticipate that these algorithms may share many of
the key characteristics of the computations and optimizations that
we present in this paper: program transformations that trade off ac-
curacy in return for performance, the ability to optimize programs
in the presence of errors that propagate globally across multiple
composed programming constructs, and randomization to improve
performance and tractability.
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