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Abstract

Multiple description lattice vector quantization (MDLVQ) is a technique
for two-channel multiple description coding. We observe that MDLVQ, in the
form introduced by Servetto, Vaishampayan and Sloane in 1999, is inherently
optimized for the central decoder; i.e., for a zero probability of a lost descrip-
tion. With a nonzero probability of description loss, performance is improved
by modifying the encoding rule (using nearest neighbors with respect to “mul-
tiple description distance”) and by perturbing the lattice codebook. The per-
turbation maintains many symmetries and hence does not significantly effect
encoding or decoding complexity. An extension to more than two descriptions
with attractive decoding properties is outlined.

1 Introduction

The contents of this volume and the 1999 edition of these Proceedings indicate con-
siderable interest in multiple description (MD) coding. MD coding is a generalization
of classical source coding in which multiple bit streams are used to describe a source.
Each of these bit streams (descriptions) can be decoded separately; they also can
be decoded in any combination. The goal is roughly to have reconstruction quality
that improves as the number of received descriptions increases without introducing
too much redundancy between the descriptions. Background on MD coding and its
applications can be found in other papers in these Proceedings and in [1, 2].

For the most part, we consider techniques for two descriptions and use the con-
ventional notation of R1 and R2 for the rates of the two descriptions, D1 and D2,
respectively, for the distortions of reconstructions from these descriptions, and D0 for
the distortion of the reconstruction computed from both descriptions. Distortions D1

and D2 are called side distortions and D0 is called the central distortion. Similarly,
the corresponding decoders are called side and central decoders. The techniques con-
sidered here are balanced in that the rates are equal and the expected values of the
side distortions are equal.
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In this work, we concentrate on MD systems based on specially designed quantiz-
ers. Furthermore, to achieve the improvement promised by vector quantization while
limiting the computational burden, we concentrate on multiple description lattice vec-
tor quantization (MDLVQ) instead of less constrained methods (see, e.g. [3]). This
paper begins, in Section 2, by reviewing the MDLVQ technique proposed last year
by Servetto, Vaishampayan, and Sloane (SVS) [4]. The SVS algorithm is presented
for squared error distortion, and we maintain that here. Section 3 provides variations
on the SVS algorithm. We observe that the SVS encoder minimizes D0 and propose
instead a family of encoders that trade off D0 and D1. Since MD techniques are
only useful when both descriptions are not always received, the original SVS should
basically not be used—though our improvements will not necessarily be large. Small
additional improvements can be obtained by altering the decoder to use centroid re-
construction and by perturbing the lattice. Section 4 extends the SVS algorithm to
more than two descriptions. The general theory is complicated, but two examples
demonstrate encoding for which the decoder map depends only on the number of
descriptions received—not on which specific descriptions were received.

2 Multiple Description Quantization

The earliest practical MD scheme is Vaishampayan’s multiple description scalar quan-
tization (MDSQ) [1]. In MDSQ, one quantizes a real number x ∈ R using two different
scalar quantizers, with one quantizer output sent on each channel. If either channel
is received by itself, the original number is known to have been within a given quanti-
zation cell of that channel. If both channels are received, the original value is known
to have been in the intersection of its quantization cell in one channel and its quan-
tization cell in the other. In this manner, the system provides coarse information to
the side decoders and finer information to the central decoder.

One may alternatively view an MDSQ system as a partition of the real line along
with an injective mapping between partition cells and ordered pairs of indices. We
thus have discrete sets of indices I1 and I2 and a map ` : R → I1×I2. A partition cell
is then given by the set {x ∈ R | `(x) = (i, j)} for a given i ∈ I1, j ∈ I2. From this
we get the induced projected mappings `1 = π1(`) : R → I1 and `2 = π2(`) : R → I2,
which give us the individual scalar quantizers.

However, just as one can construct single description vector quantizers that im-
prove upon the performance of scalar quantizers, one can construct multiple descrip-
tion vector quantizers that outperform their scalar counterparts. Analogously to
MDSQ, in multiple description vector quantization (MDVQ) we want discrete sets of
indices I1 and I2 along with a map ` : Rn → I1 × I2 (which induces the projected
mappings `1 = π1(`) : Rn → I1 and `2 = π2(`) : Rn → I2). The partition cells are
given by {x ∈ R

n | `(x) = (i, j)} for a given i ∈ I1, j ∈ I2. These cells are typically
designed to be the Voronoi cells of some collection of points.



2.1 Multiple Description Lattice Vector Quantization

Although superior in performance to its scalar counterpart, general vector quanti-
zation is computationally expensive. Restricting codebooks to lattices simplifies the
necessary calculations for encoding and decoding.

The problem now becomes that of choosing a lattice and designing a way of
assigning the indices. Servetto, Vaishampayan, and Sloane (SVS) provided such an
algorithm in [4]. Since our algorithms build upon the original algorithm of SVS, it is
summarized here for completeness.

We will need the concept of a geometrically similar sublattice:

Definition 1 Let Λ be a lattice. Λ′ is a geometrically similar sublattice of Λ if the
points of Λ′ are a subset of the points of Λ, and Λ′ = cAΛ for some scalar c and some
orthogonal matrix A with determinant 1.

Thus, a geometrically similar sublattice is a sublattice obtained by scaling and rotat-
ing the original lattice.

The SVS Algorithm [4] The SVS algorithm finds a triplet (Λ, Λ′, `), such that:

1. Λ is a lattice;

2. Λ′ is a geometrically similar sublattice of Λ; and

3. ` : Λ
inj.−→ Λ′ × Λ′.

The index of the sublattice N = |Λ/Λ′| controls the redundancy of the system.
We wish to label every point in the lattice with a pair of points on the similar

sublattice. We then encode using the Voronoi cells of the lattice points: A point
is encoded to λ ∈ Λ, and then π1(`(λ)) ∈ Λ′ is transmitted over one channel and
π2(`(λ)) ∈ Λ′ is transmitted over the other. If one channel is received, one can decode
to the sublattice. If both channels are received, one can decode to the lattice itself.
This thus provides coarse information if only one channel is transmitted successfully
and finer information if both channels are. To design the system, i.e., to find the map
`, SVS outlined the following algorithm (for more details, see [4]):

1. Choose a lattice Λ, a geometrically similar sublattice Λ′ of index N , and a group
W of rotations of the lattice that map back to the lattice.

2. Define ≡ such that λ1 ≡ λ2 if and only if

there exists τ ∈ W such that λ1 − πΛ′(λ1) = τ(λ2 − πΛ′(λ2)),

where πΛ′ maps a point to its nearest sublattice neighbor. Points are equivalent
under this relation if and only if they are in the same orbit of W relative to
their nearest sublattice neighbors.

3. Define E ⊆ Λ′ × Λ′ by

E = {(λ′
1, λ

′
2) ∈ Λ′ × Λ′ : ‖λ′

1 − λ′
2‖ ≤ ‖cλA‖},



where Λ′ = cAΛ and λ ∈ Λ′ is a lattice point of maximal norm in the Voronoi
cell of 0 ∈ Λ′. The elements of E will be called edges.

In other words, a valid label (λ′
1, λ

′
2)—an edge—for a point λ on the original

lattice must consist of sublattice points at a certain, bounded distance from
each other. This, of course, makes sense, since we do not want to code a point
p with sublattice points too far away from it; it would produce a huge side
distortion.

4. Define ≡′ such that e1 ≡′ e2 with e1, e2 ∈ E if and only if they both serve as
minimal vectors in the same similar sublattice of Λ.

5. Two-color the edges in E so that the colors alternate along any straight line of
adjacent edges.

This step is not strictly necessary (one can randomly assign colors); however,
it is in the original algorithm so we include it here. This step breaks the tie in
assigning which point would get (a, b) versus (b, a), for example.

6. For each equivalence class of ≡, select an equivalence class of ≡′ to be matched
with it. As there will be several ways of choosing this matching, perform a
numerical optimization over the different choices to select the one that yields
the optimal results.

This is the most important step; here, one actually finds an optimal index
assignment `. It consists of deciding which orbit of points (out of those in
Step 2) gets associated with which class of edges (out of those in Step 4).

7. Using the group and the sublattice, extend the matching of equivalence classes
to the entire lattice. Use the coloring from Step 5 to determine the order of the
points in the sublattice pairs (i.e., which sublattice point gets transmitted over
which channel).

This algorithm facilitates the design of an effective MD vector quantizer. When used
to construct a two-dimensional vector quantizer using a hexagonal lattice, the distor-
tion product d0d1 improves by 0.3674 dB ≈ 8.8% over MDSQ, an improvement per
channel of slightly more than the 0.1671 dB by which the hexagonal lattice improves
upon the cubic lattice Z2 [5]. Increasing the dimension of the quantizer further im-
proves the performance, with the eight-dimensional E8 lattice and the 24-dimensional
Leech lattice yielding gains of 0.65 dB and 1.03 dB, respectively, over the Z2 lattice.

The modifications described in the next section provide improvements that are at
times larger than these, even while maintaining the essential encoding and decoding
complexity of the two-dimensional hexagonal lattice. Thus improving the encoding
and decoding rules may be a lower-complexity alternative to increasing the vector
dimension. Furthermore, the principles of the next section apply to an MDLVQ of
the SVS type for any base lattice and sublattice.



3 Altering the Encoding and Decoding

The observation that motivated this work is the following: The encoding rule of the
SVS algorithm uses the Voronoi cells of the original (fine) lattice. Since the decoding
is to the resolution of the fine lattice only when both descriptions are received, this
is inherently an optimization for the central decoder—at the expense of the side
decoders. But MD coding is useless unless the side decoders are sometimes used, so
it should be possible to improve on the encoding in SVS.

Suppose the criterion of interest is actually a function of the central and side
distortions f(D0, D1, D2). Then the encoding should explicitly minimize this quantity.
(The SVS criterion is D0.) For concreteness, this section uses the average distortion
conditioned on receiving at least one description as the performance criterion. Similar
results would be obtained with other performance criteria.

Assume descriptions are lost independently with probability ρ. Omitting the case
of receiving neither description and normalizing properly gives

AMSE =
1 − ρ

1 + ρ
D0 +

ρ

1 + ρ
(D1 + D2). (1)

AMSE is used to indicate that it is an average of MSE distortions.

3.1 Average Performance of MDLVQ

After the choice of a lattice and a sublattice, the original SVS algorithm provides a
(D0, D1) operating point by optimizing the index assignment. Fig. 4(a) of [4] provides
several such points for the two-dimensional hexagonal lattice with sublattice indices
ranging from 7 to 127. The source is uniformly distributed over a region much larger
than the Voronoi cells of the lattice. These data can be used to compute the optimal
index as a function of the parameter p, as shown in Fig. 1(a). For p > 0.01849,
the optimal index is 7.1 The optimal labeling for index 7 is shown in Fig. 1(b); this
example is the basis for the rest of the examples of this section.

3.2 Voronoi Cells with Respect to Average MSE

To minimize the average MSE (1), the encoder should use Voronoi cells with respect
to a corresponding distance measure. We thus make the following definitions:

Definition 2 For a ∈ Λ and `(a) = (x, y), where x, y ∈ Λ′, let π1(a) = x and
π2(a) = y.

Definition 3 For x ∈ R
n and a ∈ Λ, let the multiple description distance between x

and a at loss parameter p be

dp(x, a) =
√

1−p
1+p

‖x − a‖2 + p
1+p

(‖x − π1(a)‖2 + ‖x − π2(a)‖2). (2)

1Only the data from [4] is used, so the index is optimal from among the index set used there.
When limited to the original SVS encoding, for sufficiently large p it becomes optimal to simply
repeat the data over both channels.
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Fig. 1: (a) The sublattice index that minimizes the AMSE criterion (1) as a function of
the parameter p for the two-dimensional hexagonal lattice. Index 7 is optimal for p >
0.01849. (b) The optimal index assignment for the index-7 sublattice. Doublet labels are
the transmitted indices and singlet labels are the names of the sublattice points.

Definition 4 The Voronoi cell with respect to multiple description distance of an
element a ∈ Λ with loss parameter p is

Vp(a) = {x ∈ R
n : dp(x, a) ≤ dp(x, b), ∀b ∈ Λ}.

Encoding using Voronoi cells with respect to multiple description distance gives a
family of encoders parameterized by p. Although p is inspired by the loss probability
ρ, they are not necessarily equal. If they are equal, it follows immediately from the
definitions that partitioning with Voronoi cells with respect to multiple description
distance minimizes AMSE.

To test this method and determine the magnitude of the improvements, calcula-
tions were made with the MDLVQ shown in Fig. 1(b). The new Voronoi cells for
several values of the loss parameter p are shown in Fig. 2. Note how the shapes of the
cells change as p increases. When p is zero, the new Voronoi cells are exactly the same
as the standard Voronoi cells of Λ, since a point will be decoded to the point on the
fine lattice with probability 1. As p increases, certain “central” cells emerge that are
larger than the others. These are the cells of points on the sublattice Λ′. Encoding
to points on Λ′ is preferred because these points are decoded without error, even at
the side decoders. The other cells belong to points of Λ \Λ′. The index assignment `
maps these other points to ordered pairs of two distinct sublattice points, a closer one
and a farther one. As p increases, the large side distortion associated with the farther
sublattice point makes encoding to this point unattractive. This effect continues to
get more pronounced until the side cells disappear at p = 1.

Encoding with the new Voronoi cells gives a set of (D0, D1) operating points
indexed by p. These are shown by the top curve in Fig. 3(a). The leftmost point
(circled) is the sole operating point of the SVS algorithm; the modified encoding gives
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Fig. 2: Shapes of Voronoi cells with respect to multiple description distance for various loss
parameters p: (a) 0.0, (b) 0.1, (c) 0.2, (d) 0.4, (e) 0.6, (f) 0.8.

a range of operating points. All the reported distortions are normalized such that
D0 with the original SVS encoding is 0 dB. The lower curve in Fig. 3(a) shows the
improvement obtained by using centroid reconstruction as opposed to reconstructing
to the original lattice points.

From a (D0, D1) operating point, we can compute AMSE as a function of the
loss probability. Fig. 3(b) shows a variety of such performance profiles. The top solid
curve corresponds to the original SVS algorithm or, equivalently, design parameter
p = 0. The dotted curves are (from steepest to flattest) for p = 0.1, 0.2, . . . , 0.9. The
best performance, shown with the lower solid curve, is obtained when the probability
of description loss equals the design parameter p. An additional improvement of up
to 0.1 dB, peaking at p ≈ 0.28, is obtained by using centroid reconstruction.

The improvement over the SVS algorithm (in dB) increases approximately lin-
early with the probability of description loss, leading to large improvements at high
probabilities. As this method adds negligibly to the complexity of the system, these
improvements come virtually for free.

3.3 Perturbing the Lattice

The elongated shapes of the cells associated with Λ \ Λ′, along with the fact that
these cells do not even contain the corresponding central decoder points at large p,
suggest that locations of the points can be modified to improve the performance of
the system. To this end, we perturb the lattice.

In perturbing the lattice, we wish to retain a highly structured set of points. If
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Fig. 3: (a) The operating point of the SVS algorithm with the index-7 sublattice of the
hexagonal lattice along with the ranges of operating points obtained with our improved
encoding and decoding. (The normalization is described in the text.) (b) Average dis-
tortion (1) as a function of the probability of description loss. The top solid curve is
for loss parameter p = 0, i.e., the unaltered SVS algorithm. The dotted curves are for
p = 0.1, 0.2, . . . , 0.9. The lower solid curve is the lower convex hull, which is obtained
when the parameter p matches the actual probability of description loss.

we fail to do so, the algorithmic complexity of encoding will become prohibitively
large. Thus, we leave the sublattice points in their original locations. Next, we use
the equivalence relation ≡ defined in the SVS algorithm to partition the remaining
points into equivalence classes. (Points are equivalent if they are in the same orbit
of W relative to their nearest sublattice neighbors.) We can now move a single point
in each equivalence class and then use the group to extend this perturbation to the
rest of the lattice. The specific perturbations that optimize the system can be found
through a numerical optimization.

This manner of perturbing the lattice retains the structure of the system and allows
the perturbation to be described using a small amount of information. In addition,
the asymptotic algorithmic complexity of encoding and decoding is unaffected.

Sample results of numerically optimized perturbations are shown in Fig. 4. Note
that the side cells are relatively circular in shape, as desired. The improvement with
respect to AMSE is significant, peaking at about 0.18 dB.

4 More Descriptions

This section briefly describes extensions of the SVS algorithm to more than two
descriptions. The algorithm presented in [4] relies heavily on the the fact that there
are exactly two channels, and thus a generalization is not immediate. The algorithm
here will use iterated sublattices, i.e., an ordered set of lattices such that each lattice
is a sublattice of all lattices that precede it. For M descriptions, there are a total
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Fig. 4: Shapes of Voronoi cells with respect to multiple description distance after pertur-
bation for various loss parameters p: (a) 0.1, (b) 0.2, (c) 0.4.

of M lattices Λ1 ⊂ Λ2 ⊂ · · · ⊂ ΛM . The index assignment problem is to design a
mapping ` : ΛM → ΛM

1 .
The key innovation in our construction is the requirement that for each number of

descriptions received d, there is a (single) decoding function that maps the received
vector to Λd. This means that we need only M decoders instead of 2M − 1 (one
for each nonempty subset of descriptions). The general theory is complicated, so
we present two examples of three-description labelings to demonstrate the desired
properties. These examples, shown in Fig. 5, are again based on the two-dimensional
hexagonal lattice.

Consider the example of Fig. 5(a). Suppose the source vector lies close to the
point labeled aba (in the Voronoi cell of that point in Λ3). The labeling is unique, so
if all three descriptions are received, the source will be reconstructed to the resolution
of Λ3. Deleting one description leaves ba, aa, or ab. (Note that we have kept the
ordering of the two received labels.) These are nearby points on Λ2, so the distortion
is only a little worse than the resolution of Λ2. Finally, if one description is received,
the reconstruction is the nearest point of Λ1 (point a) two-thirds of the time and
the second-nearest point of Λ1 (point b) one-third of the time. The reader can work
out details for other points. The worst-case reconstructions are as follows: from one
description, the second closest point of Λ1 (including ties); and for two descriptions,
the fourth closest point of Λ2. The example of Fig. 5(b) is similarly designed to give
good performance. The sublattice indices used are higher, so the redundancy is lower.

All of the methods mentioned in the previous section for improving encoding and
decoding can be applied to systems with more than two descriptions as well. Encoding
and decoding remain simple.

5 Conclusions

This paper presents variations on, and extensions of, the MDLVQ algorithm of
Servetto, Vaishampayan and Sloane. The variations are focused on providing ad-
ditional (D0, D1) operating points. The merit of these new operating points has been
established through the average MSE, a weighted average of central and side dis-
tortions. Another way to be convinced of their worth is to note that each point in
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Fig. 5: Examples of index assignments for three-description coding. Triplet labels apply to
the finest lattice Λ3 and are actually transmitted; doublet labels apply to the middle lattice
Λ2 and are used for reconstructing from two descriptions; the reconstruction labels for one
description are omitted because they are clear from Fig. 1(b). These index assignments
allow a single decoder mapping (not three) for one received description and a single decoder
mapping (again, not three) for two received descriptions. (a) |Λ3/Λ2| = 3, |Λ2/Λ1| = 7; (b)
|Λ3/Λ2| = 7, |Λ2/Λ1| = 7.

Fig. 4(a) of [4] can be replaced by a curve as in Fig. 3(a). This certainly decreases
(improves) the lower convex hull of (D0, D1) points.

The extension of the SVS algorithm provides a technique for more than two de-
scriptions. A trivial generalization would necessitate 2M −1 decoder mappings for M
descriptions; the generalization sketched here requires only M decoders.
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