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A linear chain of point masses coupled by harmonic springs is a standard model used to introduce
concepts of solid state physics. The well-ordered chain has sinusoidal standing wave normal modes
~if the ends are fixed! or traveling wave normal modes~if the ends are connected in a ring!.
Ballistically propagating wave packets can be built from these normal modes, and illustrate the
mechanism of heat propagation in insulating crystals. When the chain is disordered, new effects
arise. Ballistic propagation is replaced by diffusive propagation on length scales larger than the
mean free path for ballistic motion. However, a new length scale, the localization length, also enters.
On length scales longer than the localization length, neither ballistic nor diffusive propagation
occurs, and energy is trapped unless there are anharmonic forces. These ideas are illustrated by a
computer experiment. ©1998 American Association of Physics Teachers.
i

I. LINEAR CHAIN

Figure 1 shows a chain of point masses connected w
springs. Thenth mass has a nominal ‘‘equilibrium’’ position
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na, wheren is an integer, and a displacementun from the
nominal position. Denoting the spring between massn and
massn11 askn , the potential energy of the system is
497© 1998 American Association of Physics Teachers
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kn~un2un11!2 ~1!

since the springs are assumed to have unstretched lenga
equal to the spacing of the nominal positions. Newton’s la
read

Mn

d2un

dt2
52

]V

]un
. ~2!

This paper is concerned with the question of how vibratio
energy moves in time on such a chain.

All solutions of Newton’s laws can be written as superp
sitions of the ‘‘normal modes’’ of vibration. These are th
special solutions of Eq.~2! where every displacementun(t)
has the same time dependence,un(t)5Aunm cos(vmt1f).
The indexm ‘‘counts’’ the normal modes, which are equal
number to the number of masses~or ‘‘atoms’’! on the chain.
The pattern of displacements is given by the ‘‘eigenvecto
unm , and the time dependence cos(vmt1f) is independent of
the ‘‘atom index’’ n. The amplitude and phaseA andf are
free parameters to be fitted to initial data or chosen at w
When the chain is infinite and the springskn and massesMn

are all identical, the normal modes have the formunm

5cos(Qmna) or unm5sin(Qmna). The wave vectorsQm are
chosen to obey the boundary conditions on the chain;
infinite chain is mimicked by a finite chain ofN ‘‘atoms’’
with periodic boundary conditions, andQm52pm/Na obeys
the requirements ifm is an integer. OnlyN distinct patterns
unm5cos(Qmna) or unm5sin(Qmna) exist, and they can be
chosen to be all the cosines and sines for integersm from 0 to
N/2. The subscriptm is superfluous because the value ofQ is
an equally good label. The cosine and sine solutions have
same frequency, which turns out to be

vQ52Ak/M sin~Qa/2!,

as derived in elementary solid state texts.1 A particularly
useful superposition state is the traveling wave

un~ t !5uAQucos~Qna6vQt1fQ!. ~3!

uAQu andfQ are free parameters. These states, after qua
zation, have energy\vQ and are called ‘‘phonons.’’ The
model can be generalized to three-dimensional lattices
vector displacementsun . The resulting ‘‘phonon gas’’ pic-
ture is one of the basic building blocks of the physics
crystalline solids.

II. LOCALIZATION

This article is about some of the interesting changes
occur in the vibrations when the system is not perfectly
dered, but contains some random disorder. For simplicity
article considers one dimension and the case where

Fig. 1. A chain of point masses, showing the nominal positions—denote
thick vertical lines, the actual positions, and the displacementsun .
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masses are all the same but the springs have valuek
1dkn , wheredkn is a small random number. A fundament
and surprising result is that for an infinite chain, disorder n
only destroys the traveling wave nature of the normal mo
of vibration, but it also causes the normal modes to be ex
nentially localized in space.2 This means that beyond a su
ficient distance from the ‘‘center’’Rm of the mth normal
mode, the amplitude of vibration decays exponentially w
distance,

un}exp~2una2Rmu/jm!, ~4!

where the ‘‘localization length’’jm is a property of themth
normal mode. This phenomenon was first recognized
Anderson, and is referred to as ‘‘Anderson localization
The Nobel prize in 1977 was shared by Van Vleck, Mo
and Anderson. Anderson’s citation3 referred specifically to
his work on localization, and Mott’s4 referred to his subse
quent contributions to the same subject. A good recent
erence is the book by Sheng.5 Thouless6 has written a good
review of earlier work. There are two previous articles
AJP on localization on a chain,7,8 and a large literature o
articles and reviews on the properties of eigenstates
chains.9,10

Localization was first discussed as a property of a qu
tum electron in a disordered medium. A quantum elect
behaves much like a classical wave. The results of local
tion theory therefore translate into consequences for class
waves. The connection between the Newtonian equation
motion for vibrations on a chain and the Schro¨dinger equa-
tion for a particle free to move on a chain of atoms is d
cussed in Appendix C.

III. WAVE PACKETS

Our concern will be the long-time behavior of a vibr
tional disturbance~a superposition of normal modes! which
is initially spatially localized. A familiar example is a wav
packet on a perfect chain. It is convenient to use comp
numbers to represent the traveling wave solution, Eq.~3!,

un~ t !5AQei ~Qna2vQt !. ~5!

HereAQ is a complex number, related to the amplitude a
phase in Eq.~3! asAQ5uAQuexp(ifQ). As usual, it is implied
that the physical disturbance is thereal part of this complex
function. One advantage is that now the time dependenc
un(t) appears as a multiplicative factor exp(2ivQt), indepen-
dent of n, so that the traveling wave solutions can be
garded as ‘‘normal modes’’ rather than superpositions.

The most general solution of Newton’s laws is a super
sition of traveling waves, with arbitrary complex coefficien
AQ ,

un~ t !5
1

A2p
E

2p/a

p/a

dQAQei ~Qna2vQt !. ~6!

Here the sum over discrete wave vectorsQ52pm/Na is
written as an integral over a continuous set, because
spacing 2p/Na goes to zero for a long chain. A wave pack
is a spatially localized version of a traveling wave. The m
convenient representation is to let the amplitudeAQ peak at a
chosen wave vectorQ0 , and fall off with a Gaussian form,

AQ5Ae2 iQR0e2~1/2!b2~Q2Q0!2
. ~7!

y
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The phase factor exp(2iQR0) has the effect of making the
wave packet spatially centered at time zero on the ‘‘atom’
the locationna5R0 . An explicit form for un(t) can be
found if the spread 1/b of wave vectors is small enough th
the frequencyvQ can be approximated by a Taylor seri
around the central frequencyv0 ~equal tovQ evaluated at
Q5Q0 .! Similarly, the limits of the integral should safel
extend to 6` because the contribution fromuQu.p/a
should be negligible. Denote the Taylor expansion byvQ

'v01v0(Q2Q0)1a0(Q2Q0)2/2, wherev0 is the group
velocity dvQ /dQ and a0 is the second derivative
d2vQ /dQ2. Then the integral in Eq.~6! is performed by
completing the square in the exponent. The answer is

un~ t !5
A

~b21 ia0t !1/2

3expS 2
~na2R02v0t !2

2~b21 ia0t ! Dei ~Q0na2v0t !. ~8!

This is a pulse centered atR01v0t with a wave vectorQ0 ,
propagating ballistically with velocityv0 . As shown in Ap-
pendix C, the energy is related to the squared modulus of
wave,

uun~ t !u25
A2

~b41a0
2t2!1/2 expS 2

~na2R02v0t !2

~b41a0
2t2!/b2 D . ~9!

The center of this pulse is at positionR01v0t for all timest.
The spatial width of this pulse isA(b21a0

2t2/b2), which
equalsb for short times. At longer times, the pulse spreads
width. This happens because the different normal mode c

Fig. 2. The wave packet for short times. Time is measured in units of
period of the shortest vibration the chain can sustain. Distance is meas
in units of the mass separationa. The solid line is Eq.~8!. The dots are the
actual positions of the point masses, with displacement plotted vertically
clarity. The calculations are made for a chain of length 15 000a, with R0

chosen to be 7500a, Q051.8235/a, and b5A50a. The frequencyv0 is
79% of the maximum frequency of the chain. The normal modeQ0 has
phase velocityv0 /Q052.72 and group velocityv051.92. These are indi-
cated by sloping straight lines which denote the translation in time of a p
of constant phase and of the center of energy, respectively. One com
period 2p/v051.26 is shown.
499 Am. J. Phys., Vol. 66, No. 6, June 1998
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ponents propagate at slightly different group velocitiesvQ

5v01a0(Q2Q0). The width increases quadratically wit
time for intermediate times and linearly with time for larg
times.

Figure 2 shows such a Gaussian wave packet moving
linear chain. The spreading is not yet visible. The chain
actually disordered weakly, but the effects of disorder are
obvious for the short time interval shown.

IV. MODES OF TIME EVOLUTION

The aim of this article is to discover the nature of t
normal modes of a disordered lattice. The wave-packet c
struction just reviewed plays a crucial role. It is the meth
by which we understand the nature of the normal modes
the perfect ordered chain. Specifically, they are travel
waves, spatially extended with equal amplitude on all latt
points, but also they build pulse-like disturbances wh
propagateballistically. That is, they have a velocityv0 of
propagation. A similar wave-packet construction for the d
ordered lattice will reveal much about the nature of the n
mal modes.

Table I gives the various characteristic forms of time ev
lution of a pulse that may be expected. Two separate eff
can happen because of disorder. One is scattering of w
from the disorder. The other is localization. Scattering cau
the phase of the normal mode to become disorganized af
distance known as the ‘‘mean free path,’’ denoted byl m . For
distances longer thanl m a disturbance can no longer prop
gate ballistically but can still propagate diffusively. In on
dimension, the diffusion equation shows that a disturba
localized in a spatial region of widthb at t50 spreads over
a root-mean-square distanceA(b212Dt, whereD is the dif-
fusion constant. Localization means that diffusive propa
tion is prohibited at length scales longer than the localizat
lengthjm . On a one-dimensional lattice with weak disorde
there is a wide range of frequencies for whichl m!jm , al-
lowing diffusive propagation to occur over significant tim
and distances before ultimately reaching a maximum d
tance ofjm and stopping.

V. NORMAL MODES OF THE DISORDERED
CHAIN

What is the nature of the normal modes when the chai
disordered? For a finite chain ofN ‘‘atoms,’’ the normal
modes can be explicitly found on a computer by finding t
eigenvaluesvm

2 and eigenvectorsum& of an N3N real sym-
metric matrix, as explained in Appendix B. The indexm runs
from 0 to N and labels the normal modes. The notationum&
denotes a column vector whose elements^1um&5u1m ,...,
^num&5unm ,... contain the displacement pattern of themth
normal mode at thenth atom. A solution of Newton’s laws
u1(t),...,un(t),... is compactly denoted by the column ve

e
red

r

nt
ete

Table I. Modes of time evolution of a packet.

Center of pulse Squared width of puls

propagating R01vt b21a0
2t2/b2

diffusing R0 b212Dt
localized R0 j2
499P. B. Allen and J. Kelner
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tor uU(t)&. The symbolun& denotes a column vector which
all zeros except for a 1 in thenth entry, so that̂ nuU(t)&
denotesun(t). The normal modes span the space of poss
statesuU& of the chain, and can be chosen to be orthonorm
^mum8&5dm,m8 . An example of normal modes and vect
notation for a four-atom chain is given in Appendix B.

Figure 3 shows a histogram of the density of vibration
states of a 3000 ‘‘atom’’ chain. The spring constantskn were
chosen in the formkn5k(11r n), wherer n is chosen by a
random number generator and is uniformly distributed in
interval (20.07,0.07). This corresponds to a weak disord
The corresponding answers for a strongly disordered c
with r n randomly distributed in (20.7,0.7) can be seen in
recent paper.11 The result is compared with Eq.~A6! for the
perfect chain. The small random disorder hardly affects
overall frequency spectrum, except to broaden the pea
v5vmax.

A very useful diagnostic for localization is the ‘‘participa
tion ratio’’ pm of the normal modeum& introduced by Bell
and Dean.12 The inverse of this is defined by

15^mum&5(
n

u^num&u2, ~10!

1/pm5(
n

u^num&u4. ~11!

Equation ~10! just states a normalization condition on th
normal modes. For a traveling wave in a perfect crystal,
amplitude is the same at every site, sou^num&u251/N, and
1/pm51/N. For a hypothetical state which is localized on
single point,u^num&u2 is zero everywhere except at that poi
where it is 1, and 1/pm51. Thus the participation ratiopm
measures the number of sites where the stateum& has a sig-
nificant amplitude. For a one-dimensional system, the lo
ization lengthjm is pma. Figure 4 shows the results for th
disordered chain, averaged over modes withvm in frequency
bins.

It is important to realize that the actual object of interes
not the 3000 ‘‘atom’’ chain~corresponding to 1mm length in

Fig. 3. Calculated vibrational density of states for the disordered ch
compared with the exact density of states of the ordered chain@Eq. ~A6!#.
As shown here and in Fig. 4, frequency is measured in units ofV
5Ak/M . The perfect chain hasvmax52 in these units. In the rest of th
paper, time is measured in units of the period 2p/vmax of the fastest vibra-
tion, and the value ofvmax is 2p.
500 Am. J. Phys., Vol. 66, No. 6, June 1998
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actual atomic dimensions! but instead a ‘‘macroscopic’’ sys
tem of much longer length. We would like to extract fro
our calculation information which applies to systems of u
limited length. Suppose we had a much larger computer
could manage 33106 ‘‘atoms’’ ~or 1-mm sample.! The spec-
trum shown in Fig. 3 would be unchanged. However, t
modes in Fig. 4 which have localization length 1000a,j
5pa,3000a would in the next calculation have longer lo
calization lengths. The fact thatj saturates at'2000a in Fig.
4 is ~from this point of view! an artifact of the finite size of
the sample studied. It is known13 that the true behavior ofj
as a function of eigenfrequencyv is j}v22. For any finite
size chain, the normal modes at low enoughv will extend
from one end of the chain to the other, but for a larger cha
the modes at the same frequency will be localized. For
infinite chain, only modes of infinitely small frequency a
delocalized. As the lengthN of a chain increases, the numb
of modes which extend throughout the chain should incre
asN1/2, but the fraction of modes which appear delocaliz
should decrease asN21/2.

The other important property of the normal modes of t
disordered chain is their mean free pathl m . There is no
formula which enablesl m to be calculated from just the ei
genvectorum&. The definition begins by asserting that to fir
approximation we have traveling wave states with wave v
tor Q. Then the mean free pathl Q is defined as the distanc
a wave packet~of central wave vectorQ! can travel on av-
erage before its trajectory is randomized by scattering fr
the disorder. In the next section a computer experiment
implement this definition. Disorder is put in by choosing
specific set of spring constantskn5k(11r n) with r n ran-
domly and uniformly distributed in the interval (2R,R),
whereR serves as the small parameter of the theory. A t
oretical value forl Q can be found by perturbation theory
The answer, derived in Appendix A, is

l Q

a
5

3

4 S 1

RD 2S vmax
2 2vQ

2

vQ
2 D . ~12!

This result is shown in Fig. 4. Note thatl Q diverges as 1/R2

as the strength of the perturbationR goes to zero, and also

in
Fig. 4. The participation ratiop5j/a of the vibrational normal modes o
the disordered chain, calculated according to Eq.~11!, is shown as a histo-
gram, averaged over frequency bins. The dashed line is a schematic ext
lation to larger size chains. The mean free pathl /a calculated from Eq.~12!
is shown as the smooth curve.
500P. B. Allen and J. Kelner
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~similar to j! as 1/vQ
2 as the frequencyvQ goes to zero.

When the same calculation is done for three-dimensiona
brational waves, the long-wavelength mean free path
verges as 1/vQ

4 , which is the vibrational version of Rayleig
scattering.

VI. TIME EVOLUTION ON THE DISORDERED
CHAIN

Using Fig. 4, we have chosen an appropriate freque
v051.581V50.79vmax and wave vectorQ051.8235/a for
computer experiments with a wave packet. These cho
correspond to a predicted mean free path of 92a and local-
ization length of 740a. Then there is a sequence of leng
scalesl ~wavelength!! l ~mean free path!!j ~localization
length!!L ~sample size!. Actually the sample size is only
four times larger than the localization length. A wave loc
ized with j'L/4 has exponential tails on both sides, whi
causes the disturbance to interact with the boundary.
avoid such surface effects, we have embedded the 3000
section in the middle of a 15 000 atom chain.

What is the appropriate definition of a wave packet on
disordered chain? Our answer is to use the perfect c
formulas, Eqs.~6!–~8!, to pick displacements and velocitie
at time t50. This gives a candidate initial pulse. For a pe
fect chain, by construction, this pulse is built from eige
states whose frequencies are confined to the windowv0

6v0 /b. For the disordered chain, the exact eigenmodes
fer from the plane-wave states of the perfect chain, so th
is no longer perfect confinement of the frequency spectr
of the pulse to this window. Our aim is to discover the natu
of normal modes of the disordered chain for frequencies n
v0 . Therefore we ‘‘filtered’’ the initial pulse by expandin
in the exact eigenstatesum& and then multiplying each ampli
tude by the factor exp@2(vm2v0)

2/2dv2#.14

The pulse can now be propagated forward in time, us
either Eq.~C5! or else direct forward integration in time o
Newton’s laws, as explained in Appendix D. The two proc
dures gave the same result.

The energy on the chain is distributed in time-varyi
fashion between kinetic energy of moving atoms and pot
tial energy of distorted chains. There are several sens
ways, and no unique way, ofdefininga quantityEn(t), the
local energy at timet associated with atomn. For example,
one can use all the kinetic energy of atomn and half the
potential energy of each of the two connected springs
sensible definition should be additive,(nEn(t)5Etot . It
should make no substantive difference which sensible d
nition is used. Our definition, Eq.~C6!, explained in Appen-
dix C, is novel and is chosen because of mathematical
computational elegance, but it is not necessary to use suc
abstract definition. Once the local energyEn(t) is defined,
one can use it graphically and also algebraically to define
centerR(t) of a pulse and the widthA^r 2(t)& of a pulse:

R~ t ![(
n

naEn~ t !Y (
n

En~ t !,

~13!

^r 2~ t !&[(
n

~na2R~ t !!2En~ t !Y (
n

En~ t !.

Figure 5 shows the spatial evolution of the energy~defined
in Appendix C! of the wave for the first ten units of time
501 Am. J. Phys., Vol. 66, No. 6, June 1998
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The detailed local energy distribution evolves in a comp
cated way, but on this time scale, no broadening or ot
significant change of shape of the envelope of the pulse
be seen with resolution of a few percent. Within the envelo
an interesting substructure is starting to develop, which
mentioned again at the end of Sec. VI. If the chain had b
perfect, the pulse broadening predicted by Eq.~9! would
have been'1% at t510, consistent with the figure. Th
measured full width at half-maximum of the energy distrib
tion is '12a, which agrees with the formula 2Aln 2b for the
Gaussian profile of Eq.~9!.

At somewhat longer times, shown in Fig. 6, several n
effects are seen. Byt550 the main part of the pulse ha
traveled ballistically a distance of 93a, 3% less than pre-
dicted from the group velocityv051.92 for the perfect lat-
tice. The width of this main pulse is 60% wider than att
50, exactly as predicted by Eq.~9! for the perfect lattice.
However, the pulse height has shrunk by a factor of 2;
area under the leading pulse is not conserved. Inspectio
the upper curve of Fig. 6, or equivalently, the lower curve
Fig. 7, shows that the missing energy is mostly in a f
secondary pulses which have split off the main pulse at
termediate times and are propagating backward. Appare
at approximatelyt57 andt519 the pulse encountered som
particularly severe fluctuations in the spring–constant dis
der which reflected part of the incident energy. Byt5200,
shown in the top panel of Fig. 7, most of the energy is
secondary pulses with directions of propagation which
effectively random. The wave is now well out of the ballist
and into the diffusive regime.

Although the ballistic leading edge of the pulse continu
to contain quite a lot of the energy until at leastt5200, the
center of energy, defined in Eq.~13!, already begins to devi-
ate from a ballistic trajectory as early ast550. Figure 8
shows the time evolution of the center of energy for tw
pulses, prepared with identical recipes but started at two
ferent locations that are 25 ‘‘atoms’’ apart. Byt5200 the
center reaches its maximum excursion of 150, and then

Fig. 5. The local energy at fairly short times.
501P. B. Allen and J. Kelner
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ceeds to wander slowly by625 ‘‘atoms.’’ This wandering
seems chaotic, but in fact, in the technical sense of ‘‘cha
it is just the opposite. Chaotic behavior is by definition
divergence of initially close trajectories which grows exp
nentially in time. It is quite remarkable how ‘‘nonchaotic
Fig. 8 is. Absence of chaos is a fundamental property of
systems of coupled harmonic oscillators, but we did not
ticipate either the long-time fluctuations of Fig. 8 or the i
sensitivity to starting point.

Quantum mechanics enriches classical mechanics by
fering a vivid particle interpretation of wave behavior. Th
pulse evolution shown in Figs. 5–7 is equivalent to the e
lution of ucu2 for a quantum electron on a chain of atoms.
is a ‘‘band’’ electron experiencing weak scattering from d
order in the lattice. For a while it propagates ballistical
corresponding to a single classical trajectory, but then it s
ters and no longer has a single deterministic route. Instea
is a superposition of trajectories. The waveform gives a
tistical description of where the particle has gone. For so
purposes it is adequate to ignore interference between di
ent trajectories, and to think of the time evolution as an
semble of random walks. At this level, a Boltzmann g
theory description works, and describes the time evolution
this ensemble in terms of scattering probabilities at differ
sites. This is the spirit behind the mean free path calcula
of Appendix A.

As discussed in Sec. V, the mean free pathl is predicted to
be 92a, and the localization lengthj is found to be 740a.
This enables us to understand Fig. 8. After ballistica
propagating a distance of aboutl , the propagation become
randomized and no further change of the center of energ
expected, except for some statistical fluctuations which
pend on the initial conditions. Our two pulses have simi
initial conditions and propagate through the same disorde
regions. Localization should not be an important factor u

Fig. 6. The local energy at medium times. The bold line represents the
of the center of energy of the leading pulse. There are also secondary p
traveling from right to left at larger times, whose paths are represente
thinner solid lines, and one of the many weak multiply scattered pulse
indicated by the dashed line. The top panel is repeated on a different sc
Fig. 7.
502 Am. J. Phys., Vol. 66, No. 6, June 1998
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the wave has propagated a distancej. Ballistic propagation
at a velocity of 1.92 would reach a distancej in t'400.
However, by this time there is little remaining ballistic b
havior, and theory predicts diffusive spreading with^r 2&
52Dt. Statistical theory gives in one dimensionD5v l ,
which is predicted to be 180 for our pulse. Diffusion shou
then be observed for times until 2Dt5j2, or t'1500.

The squared width of the energy pulse is defined in E
~13!, and plotted in Fig. 9. For times up tot'1000 the nu-
merical data agree well with the diffusive prediction, exce
that the value ofD obtained from the linear slope is'300
rather than 180. If this revised value ofD is used to predict
when the localization length is reached, the answer,t'900,
agrees very well with the breakdown of linear behavior
^r 2& vs t seen in Fig. 9.

For timest.1000, a new regime occurs, as is shown
Fig. 10. The pulse no longer varies much in time, at le

th
ses
y
is
in

Fig. 7. The local energy at fairly long times.

Fig. 8. The center of energy vs time. The straight line drawn near
vertical axis represents ballistic propagation with group velocity 1.92.
502P. B. Allen and J. Kelner
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until details are examined. Energy was initially inserted in
normal modes of frequencyvm near v0 , but arranged to
interfere destructively, except in a narrow spatial region
width b near R0 . For t.1000, the original pattern of de
structive interference has disappeared, and the full sp
extent of the eigenstates is seen in the pulse. Since the e
states decay exponentially for distances greater thaj
'740, the pulse cannot go farther and is localized. As ti
evolves, the relative phases of the different localized nor
modes changes, and the detailed spatial pattern of the en
pulse changes. This leads to a surprising secular fluctua
of the center of energy seen in Fig. 8 and a weak fluctua
in the width seen in Fig. 9.

A careful look at Figs. 6, 7, and 10 shows an effect wh
contradicts a too-classical particle interpretation. The lo

Fig. 9. Squared width of the packet vs time. The straight line repres
diffusive propagation witĥ r 2&52Dt andD5309.

Fig. 10. The local energy at very long times.
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energy does not spread uniformly in space, but is very sp
This is not an artifact, but an interesting interference eff
which is not contained in the description in terms of diff
sion. Scattered waves from different spatial fluctuations
spring constants interfere strongly with each other, so t
parts of the chain have large oscillation amplitudes and o
parts have nearly zero amplitude, in a pattern which evol
in time. This effect is noticeable long before localization s
in. However, it is ~in a sense! a precursor of localization
because the origin of localization has been traced to dest
tive interference between incident and backscattered w
components. The appearance of this interference effect
fore the onset of localization is one of a class of effe
known in the solid state literature as ‘‘wea
localization.’’ 15,16

VII. HIGHER DIMENSIONS

Vibrations in solids are generally three dimensional
character. Unfortunately, computer simulations in three
mensions become much harder. A matrix size of 30
33000 no longer handles a spatial length of 3000a, but ~re-
membering the three spatial degrees of freedom for e
atom! only 10a, which is short enough that localization e
fects become mixed with finite size effects. The most imp
tant new effect ind53 is a sharp boundary in the frequenc
spectrum which separates states which are strictly delo
ized ~impossible in lower dimensions! from states which are
localized. Near the boundary, the localized states have v
long values ofj, diverging as the boundary is approache
Farther away from the boundary, the localization lengths
become very short, if the disorder is great enough. On
delocalized side of the boundary, the extended states h
very short mean free paths, going close to zero as the bo
ary is approached. Therefore, ballistic propagation does
occur in this part of the spectrum, and states can be ca
‘‘intrinsically diffusive.’’ Wave-packet-like states formed in
this region of the spectrum show neither a ballistic no
localized regime, and continue diffusing until they fill th
sample. On the localized side of the boundary, but cl
enough thatjm is large, one could perhaps construct sup
positions of normal modes, like wave packets, which wo
be initially localized on a shorter length scale thanjm . The
time evolution of such a disturbance would be diffusive, w
no ballistic region, until the size of the disturbance equa
jm , at which time further spreading would stop. It is pro
ably impossible in three dimensions to find a spectral reg
where ballistic propagation as well as diffusion and localiz
tion can all be seen as a wave packet evolves. Verify
these ideas numerically is not easy, and controversy still
mains.
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APPENDIX A: PERTURBATIVE TREATMENT OF
WEAK DISORDER

Localization cannot be found by adding disorder pertur
tively to the theory of a perfect crystal. The fact that mod

ts
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are always localized in one dimension indicates that ordin
perturbation theory cannot succeed at long times. Howe
for a wave packet on a weakly disordered chain, there is
interval of time between the scattering timet5 l /v and the
time when the distanceA(2Dt) of diffusion equals the local-
ization lengthj, during which the effect of localization is
unimportant and perturbation theory gives a useful desc
tion of diffusion.

Even though the pulse propagation problem is purely c
sical, the quantum version offers a simpler treatment.
historical evidence for this, heat conduction in insulators w
first understood qualitatively by Debye in 1912 using clas
cal ideas, but only after Peierls introduced the quantum v
sion in 1929 did the theory become complete and predict
The highT limit of Peierls’s theory gives the correct class
cal theory which Debye’s work foreshadowed. The deriv
tion of Eq. ~12! is a technical detail which the reader is fre
to skip.

First write the Hamiltonian in terms of quantum raisin
and lowering operatorsaQ

† andaQ for the uncoupled oscilla-
tors Q of the ordered chain,

H5H01H1 , ~A1!

H05(
Q

\vQS aQ
† aQ1

1

2D , ~A2!

H15
1

N (
Q,Q8

VQQ8aQ
† aQ8. ~A3!

H0 is the ordered chain, andH1 contains the random dis
order. The frequencyvQ is, as before,vmaxusin(Qa/2)u,
where the maximum frequency isvmax52AK52V. The
scattering potentialVQQ8 depends on the particular choice
random numbersKn . We are interested in the average rate
scattering, and can average this over an ensemble of
domly prepared chains. The standard perturbative formu

1

tQ
5

2p

N\ (
Q8

^uVQQ8u
2&d~\vQ2\vQ8!, ~A4!

where the angular brackets denote the ensemble average
not hard to show that

^uVQQ8u
2&5 1

6~\vQ!~\vQ8!R
2. ~A5!

The only significantQ8 dependence remaining in the sum
Eq. ~A4! is a factor of the vibrational density of state
D(vQ), namely,17

D~v!5
1

N
(
Q

d~\vQ2\v!5
2

p\

1

Avmax
2 2v2

. ~A6!

This is the formula which is plotted in Fig. 3. Finally, Eq
~12! for the mean free pathl Q5vQtQ follows by combining
Eqs. ~A4! and ~A5! and using the formula vQ

5(a/2)Avmax
2 2vQ

2 .

APPENDIX B: VECTOR NOTATION

Displacement information for a chain ofN masses can be
encoded in a vectoruU(t)& which hasN components, one fo
each ‘‘atom’’ un(t)5^nuU(t)&. As a specific illustration,
consider a line of four masses connected by springskn . It is
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convenient to use periodic or Born–Von Karman bound
conditions, which can be visualized in several ways. O
visualization is to embed the four atoms in an infinite line
atoms, enforcing the conditionun(t)5un14(t) which says
that each group of four atoms has an identical motion. A
other visualization is to bend the line into a ring as in Fig. 1
Let Kn denotekn /M . In vector form, Newton’s equations o
motion are

d2uU&
dt2

52K•uU&, ~B1!

whereK is 1/M times the 434 matrix of second derivatives
of the potential,

K5S K41K1 2K1 0 2K4

2K1 K11K2 2K2 0

0 2K2 K21K3 2K3

2K4 0 2K3 K31K4

D ,

~B2!

uU&5S u1

u2

u3

u4

D .

The real-symmetric matrixK has some special propertie
which continue to hold for chains of atoms of arbitra
length N, namely: ~1! on the diagonal occur the positiv
numbersKn211Kn ; ~2! on the adjacent subdiagonals occ
the negative numbers2Kn ; ~3! all further subdiagonals are
filled with zeros except for the far corners which conta
2KN ; ~4! the sum of the elements in each row and in ea
column is zero. This last property expresses the translatio
invariance of the potential energy, namely, the fact tha
each atom~at positionna1un! is given an additional con-
stant displacementd, the potential energy is unchanged a
there is no additional restoring force. It is also easy to pro
that for any displacement vectoruU&, the quantitŷ UuKuU&
is just 2V/M , which is twice the potential energy per un
mass stored in that displacement pattern, a non-nega
number. Therefore the matrixK is a non-negative matrix.

Fig. 11. A chain of four point masses, with periodic boundary conditio
For equal spring constants, the patterns of the four vibrational normal m
are shown. The mass points are numbered 1,2,3,4 in the counterclock
direction starting with the rightmost point.
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The eigenvalues and eigenvectors ofK play a special role.
Denote these vectors byum& and the corresponding eigenva
ues by vm

2 . The eigenvalues of a non-negative re
symmetric matrix are real and non-negative, so they h
real and non-negative square rootsvm , which are the fre-
quencies of the ‘‘normal modes’’ of oscillation. The motio
given byAmum&cos(vmt1fm) ~with Am andfm arbitrary real
numbers! is a solution of Newton’s laws. This solution has
stationary displacement pattern which oscillates in time si
soidally. It is a standing wave ‘‘stationary state’’ or norm
mode. For the chain of four atoms shown in Fig. 11, t
displacement patterns of the four normal modes are eas
find if the springskn5MV2 have all equal values. The no
mal mode displacements are indicated in the figure, and
given by the orthonormal vectors

u0&5
1

2 S 1
1
1
1
D , u1&5

1

&

S 1
0

21
0
D ,

~B3!

u2&5
1

&

S 0
1
0

21
D , u3&5

1

2 S 1
21
1

21
D .

The corresponding eigenfrequencies arev050, v15v2

5&V, andv352V. Notice that the mode labeledu0& has
every atom displaced equally, which means that it is a u
form translation. Therefore this mode has no restoring for
the corresponding frequency is 0. Rather than a sinuso
oscillation, the motion corresponding to this vector
u0&(u01v0t), i.e., a translation with constant velocity
Modes u1& and u2& are degenerate; therefore linear combin
tions of u1& and u2& are also normal modes. In particular, th
modes (u1&6 i u2&)/& are traveling waves, whereas the re
resentation in Eq.~B3! using real numbers corresponds
standing waves.

The most general solution of Newton’s laws is a super
sition of normal mode oscillations with arbitrary amplitud
and phases. As an example, the initial value problem can
solved once the initial positionsuU(0)& and initial velocities
uV(0)& are known. It is easy to verify~from the complete-
ness and orthogonality of the eigenvectorsum&! that the solu-
tion is

uU~ t !&5(
m

F um&^muU~0!&cos~vmt !

1um&^muV~0!&
sin~vmt !

vm
G , ~B4!

uV~ t !&5(
m

@ um&^muV~0!&cos~vmt !

2um&^muU~0!&vm sin~vmt !]. ~B5!

For the caseum&5u0&, we use the limit asvm approaches
zero, sin(vmt)/vm→t.

APPENDIX C: COMPLEX NOTATION; RELATION
TO SCHRÖDINGER EQUATION

For a single harmonic oscillator, the solution of the init
value problem,x(t)5x(0)cos(vt)1@v(0)/v#sin(vt) is often
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written as x(t)5Re@A exp(2ivt)#, where A is a complex
number of modulusuAu5Ax(0)21v(0)2/v2 and phasef
5tan21(v(0)/vx(0)). There is more than one way to genera
ize this notation to the problem of coupled oscillators, but
following version seems particularly interesting. Define
complex vector

uW~ t !&5uV~ t !&2 iVuU~ t !&. ~C1!

The real vectorsuV(t)& and uU(t)& are defined as in Eqs
~B5! and ~B4!. The matrixV obeysV25K; that is, it is the
positive square root of the matrixK. To be explicit,V can be
written as

V5(
m

vmum&^mu. ~C2!

To be even more explicit, for the four-atom chain of th
previous section, whenKi is a constant,K, the matrixV can
be constructed using Eqs.~C2! and ~B3!, and is

V5
K

2 S 11& 21 12& 21

21 11& 21 12&

12& 21 11& 21

21 12& 21 11&

D . ~C3!

The square of this matrix is indeed Eq.~B2!.
The complex vectoruW(t)& encodes almost all dynamica

information about the system of oscillators. Velocities are
the real part ofuW(t)& and positions~except for the absolute
position of the center of mass! are in the imaginary part
Center of mass position information is lost becauseV oper-
ating on a constant vectoruU& gives zero. In technical lan
guage,uW(t)& is orthogonal to the null space ofV and K,
while the null space contains the center of mass informat
The center of mass moves with uniform velocity, and w
choose a reference frame at rest with respect to the cent
mass.

One of the interesting things about the vectoruW(t)& is
that Newton’s laws become

i
duW~ t !&

dt
5VuW~ t !&. ~C4!

If V is reinterpreted as a Hamiltonian, anduW(t)& as a state
vector, then this is a time-dependent Schro¨dinger equation.
The solution is

uW~ t !&5e2 iVtuW~0!&, ~C5!

which is just a symbolic version of Eqs.~B4! and~B5!. The
classical one-dimensional lattice vibration problem is is
morphic to the quantum problem of a single electron pro
gating on a chain of atoms, each of which has a single orb
available for the electron. The basis vectorun& refers in the
quantum problem to the orbital on siten, and ^nuC(t)&
~analogous tônuW(t)&! is the amplitude for the electron t
be on this site. The Hamiltonian matrixH has elementsHmn

to hop from sitem to siten which are the quantum analog o
Vmn , the matrix elements of the square root of the sprin
constant matrix.

There is one point of difference between the classi
wave on the chain and the quantum electron, namely, ve
uQ50&, which has equal amplitude at every site, is a u
form translation of the classical lattice, with no restorin
force, and thus a corresponding null eigenvalue. This has
505P. B. Allen and J. Kelner



rm
n
b
ke
c

in

Th

-
c
-
a

,

o

le
x
th
c

a
ke
le
n

lse

-

nd

s
it-
e
t

s

s

ith

ds
of
this

cket
od
g
s.

lly
ed-

se
, and

.

in

od.

d.

pic

cal-

ira,
ys.

u,

tion

ne-

s.

tes,

’

ial

our
c-
or
m

s,’’

ical

l
rk,

i-
analog in the electron propagation problem. The unifo
translation of the lattice guarantees the existence of sou
like propagation. That is, for a long chain there must
eigenstates of the vibrational problem which look locally li
uniform translations and have very low frequencies. Su
states are uniquely resistant to localization, with diverg
localization lengths as the frequency goes to zero.

The usefulness of the Schro¨dinger form of Newton’s laws
in our case is the following. The Schro¨dinger equation has a
conserved quantity,̂C(t)uC(t)&, or the norm of the wave
function, which expresses particle number conservation.
corresponding lattice quantity,^W(t)uW(t)&, must also be
conserved, and it is easy to see that it is just 2E/M , twice the
total ~kinetic plus potential! energy per unit mass of the os
cillating masses. The importance of this is that sin
^W(t)uW(t)&5(nu^nuW(t)&u2, we have just written the en
ergy as an additive sum of single-site quantities, and we
entitled ~if we wish! to define

En~ t ![~M /2!u^nuW~ t !&u2 ~C6!

as the local energyEn(t) at siten. In the quantum problem
we are curious about the time evolution ofu^nuC(t)&u2, the
occupancy of siten; similarly, in the classical problem we
will study the time evolution ofEn(t), a quantity which
appears naturally in the equations of motion once we ad
this notation.

APPENDIX D: NUMERICAL METHODS

A workstation with 256 Mbytes of memory can hand
matrices of size 300033000. Like the example of Appendi
B, we chose periodic boundary conditions at the ends of
3000 ‘‘atom’’ chain. The resulting 3000 eigenvectors, ea
containing 3000 entries, using double precision~8-byte
words! occupies 72 Mbytes of storage—roughly the same
a 12-volume encyclopedia. The matrix diagonalization ta
a few hours on an IBM series 6000 computer. In princip
since the matrix for a chain is banded, faster methods ca
used, but for our purposes it was not necessary.

Once the eigenvectors and eigenvalues are known, and
initial values of the displacement and velocity of the pu
are given, the future valuesuW(t)& can be found from the
initial value using Eq.~C5!. In practice this means a se
quence of vector product calculations,

^nuW~ t !&5(
m

^num&e2 ivmt^muW~0!&, ~D1!

which takesN2 operations to update theN complex numbers
^nuW(t)&. For roughly the same computational time, a
much less storage, one can calculate a series ofN updates
^nuW(t i)& for t i5(t1 ,t2 ,...,tN) equally spaced time interval
by direct forward integration of Newton’s laws with a su
ably smallDt5t22t1 . The algorithm we used is a simpl
difference method,18 sometimes called the ‘‘Verle
algorithm,’’ 19

un~ t1Dt !52un~ t !2un~ t2Dt !1
1

m
Fn~ t !Dt2, ~D2!

which can be derived from the expansionun(t6Dt)5un(t)
6u̇n(t)Dt1(1/2m)Fn(t)Dt2 by adding the plus and minu
equations. This algorithm is correct up to orderDt4 and
gives very accurate answers for oscillator problems whenDt
is chosen'1% of the period of the fastest oscillator. Thu
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we can get a complete trajectory over 30 units of time w
the same expense as a single update using Eq.~D1! once for
an arbitrary time. We have verified that the two metho
agree well up to times of 700 or greater. Knowledge
eigenvectors was necessary to set up the wave packet;
knowledge was used to finduW(2Dt)&, which is needed to
start Eq.~D2!.

Once the leading edges of the propagating wave pa
reach the ends of the 3000 ‘‘atom’’ chain, the vector meth
Eq. ~D1! begins to yield spurious effects from the wrappin
around of the chain implicit in periodic boundary condition
Hard wall or free boundary conditions would yield equa
spurious reflection effects. These are all avoided by emb
ding the 3000 ‘‘atom’’ chain in a much longer chain who
spring constants are chosen by the same random recipe
using forward integration of Newton’s law, Eq.~D2!, for the
long chain.
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