
Global Computation in a Poorly Connected World:
Fast Rumor Spreading with No Dependence on Conductance

Keren Censor-Hillel
MIT

Bernhard Haeupler
MIT

Jonathan A. Kelner
MIT

Petar Maymounkov
MIT

Abstract. In this paper, we study the question of how efficiently a collection of interconnected
nodes can perform a global computation in the widely studied GOSSIP model of communication.
In this model, nodes do not know the global topology of the network, and they may only initiate
contact with a single neighbor in each round. This model contrasts with the much less restrictive
LOCAL model, where a node may simultaneously communicate with all of its neighbors in a single
round. A basic question in this setting is how many rounds of communication are required for
the information dissemination problem, in which each node has some piece of information and is
required to collect all others.

In the LOCAL model, this is quite simple: each node broadcasts all of its information in
each round, and the number of rounds required will be equal to the diameter of the underlying
communication graph. In the GOSSIP model, each node must independently choose a single
neighbor to contact, and the lack of global information makes it difficult to make any sort of
principled choice. As such, researchers have focused on the uniform gossip algorithm, in which each
node independently selects a neighbor uniformly at random. When the graph is well-connected,
this works quite well. In a string of beautiful papers, researchers proved a sequence of successively
stronger bounds on the number of rounds required in terms of the conductance φ, culminating in a
bound of O(φ−1 logn).

In this paper, we show that a fairly simple modification of the protocol gives an algorithm that
solves the information dissemination problem in at most O(D+ polylog(n)) rounds in a network of
diameter D, with no dependence on the conductance. This is at most an additive polylogarithmic
factor from the trivial lower bound of D, which applies even in the LOCAL model.

In fact, we prove that something stronger is true: any algorithm that requires T rounds in the
LOCAL model can be simulated in O(T + polylog(n)) rounds in the GOSSIP model. We thus
prove that these two models of distributed computation are essentially equivalent.

This work was partially supported by the Simons Postdoctoral Fellows Program and NSF grant CCF-0843915.

ar
X

iv
:1

10
4.

29
44

v1
 [

cs
.D

M
]

 1
4

A
pr

 2
01

1

1. Introduction

Many distributed applications require nodes of a network to perform a global task using only
local knowledge. Typically a node initially only knows the identity of its neighbors and gets to
know a wider local neighborhood in the underlying communication graph by repeatedly communi-
cating with its neighbors. Among the most important questions in distributed computing is how
certain global computation problems, e.g., computing a maximal independent set [21] or a graph
coloring [2], can be performed with such local constraints.

Many upper and lower bounds for distributed tasks are given for the well-known LOCAL
model [24, Chapter 2], which operates in synchronized rounds and allows each node in each round
to exchange messages of unbounded size with all of its neighbors. It is fair to say that the LOCAL
model is essentially the established minimal requirement for a distributed algorithm. Indeed, when-
ever a distributed algorithm is said to have running time T it is implied that, at the least, there
exists a T -round algorithm in the LOCAL model.

In many settings, practical system design or physical constraints do not allow a node to contact
all of its (potentially very large number of) neighbors at once. In this paper we focus on this case
and consider the GOSSIP model, which restricts each node to initiate at most one (bidirectional)
communication with one of its neighbors per round. In contrast to computations in the LOCAL
model, algorithms for the GOSSIP model have to decide which neighbor to contact in each round.
This is particularly challenging when the network topology is unknown.

Algorithms with such gossip constraints have been intensively studied for the so-called Rumor
problem (also known as the rumor spreading or information dissemination problem), in which each
node has some initial input and is required to collect the information of all other nodes. Most
previous papers analyzed the simple UniformGossip algorithm, which chooses a random neighbor
to contact in each round. The uniform gossip mixes well on well-connected graphs, and good bounds
for its convergence in terms of the graph conductance have been given [4,13,23]. However, it has
a tendency to repeatedly communicate between well-connected neighbors while not transmitting
information across bottlenecks. Only recently have algorithms been designed that try to avoid
this behavior. By alternating between random and deterministic choices, [3] showed that fast
convergence can be achieved for a wider family of graphs, namely, those which have large weak
conductance (a notion defined therein). However, while this outperformed existing techniques in
many cases, its running time bound still depended on a notion of the connectivity of the graph.

1.1. Our results. This paper significantly improves upon previous algorithms by providing
the first information spreading algorithm for the GOSSIP model that is fast for all graphs, with
no dependence on their conductance. Our algorithm requires at most O(D + polylog(n)) rounds
in a network of size n and diameter D. This is at most an additive polylogarithmic factor from
the trivial lower bound of O(D) rounds even for the LOCAL model. In contrast, there are many
graphs with polylogarithmic diameter on which all prior algorithms have Ω(n) bounds.

In addition, our results apply more generally to any algorithm in the LOCAL model. We show
how any algorithm that takes T time in the LOCAL model can be simulated in the GOSSIP
model in O(T + polylog(n)) time, thus incurring only an additional polylogarithmic cost in the
size of the network n. Our main result that leads to this simulation is an algorithm for the
GOSSIP model in which each node exchanges information (perhaps indirectly) with each of its
neighbors within a polylogarithmic number of rounds. This holds for every graph, despite the
possibility of large degrees. A key ingredient in this algorithm is a recursive decomposition of
graphs into clusters of sufficiently large conductance, allowing fast (possibly indirect) exchange
of information between nodes inside clusters. The decomposition guarantees that the number of
edges between pairs of nodes that did not exchange information decreases by a constant fraction.
To convert the multiplicative polylogarithmic overhead for each simulated round into the additive

1

overhead in our final simulation result we show connections between sparse graph spanners and
algorithms in the GOSSIP model. This allows us to simulate known constructions of nearly-
additive sparse spanners [26], which then in turn can be used in our simulations for even more
efficient communication.

1.2. Our Techniques. The key step in our approach is to devise a distributed subroutine in
the GOSSIP model to efficiently simulate one round of the LOCAL model by a small number of
GOSSIP rounds. In particular, the goal is to deliver each node’s current messages to all of its
neighbors, which we refer to as the NeighborExchange problem. Indeed, we exhibit such an
algorithm, called Superstep, which requires at most O(log3 n) rounds in the GOSSIP model for
all graphs:

Theorem 1.1. The Superstep algorithm solves NeighborExchange in the GOSSIP model in
O(log3 n) rounds.

Our design for the Superstep algorithm was inspired by ideas from [3] and started with an
attempt to analyze the following very natural algorithm for the NeighborExchange problem: In
each round each node contacts a random neighbor whose message is not yet known to it. While
this algorithm works well on most graphs, there exist graphs on which it requires a long time to
complete due to asymmetric propagation of messages. We give an explicit example and discuss this
issue in Section 6.

The Superstep algorithm is simple and operates by repeatedly performing log3 n rounds of
the UniformGossip algorithm, where each node chooses a random neighbor to contact at each
round, followed by a reversal of the message exchanges to maintain symmetry. From [4] or its
strengthening [14], it is known that all pairs of vertices (and in particular all pairs of neighbors)
that lie inside a high-conductance subset of the underlying graph exchange each other’s messages
within a single iteration. An existential graph decomposition result, given in Corollary 3.4, shows
that for any graph there is a decomposition into high-conductance clusters with at least a constant
fraction of intra-cluster edges. This implies that the number of remaining message exchanges
required decreases by a constant factor in each iteration, which results in a logarithmic number of
iterations until NeighborExchange is solved.

This gives a simple algorithm for solving the Rumor problem, which requires all nodes to
receive the messages of all other nodes: By iterating Superstep D times, where D is the diameter
of the network, one obtains an O(D · log3 n) round algorithm. This is at most an O(log3 n)-factor
slower than the trivial diameter lower bound and is a drastic improvement compared to prior upper
bounds [3,4,13,23], which can be of order O(n) even for networks with constant or logarithmic D.

Beyond the Rumor problem, it is immediate that the NeighborExchange problem bridges
the gap between the LOCAL and GOSSIP models in general. Indeed, we can simply translate
a single round of a LOCAL algorithm into the GOSSIP model by first using any algorithm for
NeighborExchange to achieve the local broadcast and then performing the same local com-
putations. We call this a simulation and more generally define an (α(G), β(G))-simulator as a
transformation that takes any algorithm in the LOCAL model that runs in T (G) rounds if the
underlying topology is G, and outputs an equivalent algorithm in the GOSSIP model that runs
in On(α(G)) ·T (G) +On(β) rounds. Thus, the simulation based on the Superstep algorithm gives
a (log3 n, 0)-simulator.

In many natural graph classes, like graphs with bounded genus or excluded minors, one can
do better. Indeed we give a simple argument that on any (sparse) graph with hereditary density δ
there is a schedule of direct message exchanges such that NeighborExchange is achieved in 2δ
rounds. Furthermore an order-optimal schedule can be computed in δ log n rounds of the GOSSIP
model even if δ is not known. This leads to a (δ, δ log n)-simulator.

2

Another way to look at this is that communicating over any hereditary sparse graph remains
fast in the GOSSIP model. Thus, for a general graph, if one knows a sparse subgraph that has
short paths from any node to its neighbors, one can solve the NeighborExchange problem by
communicating via these paths. Such graphs have been intensely studied and are known as spanners.
We show interesting connections between simulators and spanners. For one, any fast algorithm for
the NeighborExchange problem induces a sparse low-stretch spanner. The Superstep algorithm
can thus be seen as a new spanner construction in the GOSSIP model with the interesting property
that the total number of messages used is at most O(n log3 n). To our knowledge this is the first
such construction. This also implies that, in general, NeighborExchange requires a logarithmic
number of rounds (up to log log n factors perhaps) in the GOSSIP model. Considering in the
other direction, we show that any fast spanner construction in the LOCAL model can be used to
further decrease the multiplicative overhead of our (log3 n, 0)-simulator. Applying this insight to
several known spanner constructions [6,10,26,27] leads to our second main theorem:

Theorem 1.2. Every algorithm in the LOCAL model which completes in T = T (G) rounds when
run on the topology G can be simulated in the GOSSIP model in

O(1)·min
{
T · log3 n, T · 2log∗ n log n+ log4 n, T · log n+ 2log∗ n log4 n, T+ logO(1) n, T · δ+δ log n, T · ∆

}
rounds, where n is the number of nodes, ∆ the maximum degree and δ the hereditary density of G.

When we apply this result to the greedy algorithm for the Rumor problem, where T = D, we
obtain an algorithm whose O(D+ polylogn) rounds are optimal up to the additive polylogarithmic
term, essentially closing the gap to the known trivial lower bound of Ω(D).

1.3. Related Work. The problem of spreading information in a distributed system was in-
troduced by Demers et al. [5] for the purpose of replicated database maintenance, and it has been
extensively studied thereafter.

One fundamental property of the distributed system that affects the number of rounds required
for information spreading is the communication model. The random phone call model was intro-
duced by Karp et al. [15], allowing every node to contact one other node in each round. In our
setting, this corresponds to the complete graph. This model alone received much attention, such
as in bounding the number of calls [7], bounding the number of random bits used [14], bounding
the number of bits [12], and more.

The number of rounds it takes to spread information for the randomized algorithm
UniformGossip, in which every node chooses its communication partner for the next round uni-
formly at random from its set of neighbors, was analyzed using the conductance of the underlying
graph by Mosk-Aoyama and Shah [23], by Chierichetti et al. [4], and later by Giakkoupis [13],

whose work currently has the best bound in terms of conductance, of O(logn
Φ(G)) rounds, with high

probability.
Apart from the uniform randomized algorithm, additional algorithms were suggested for spread-

ing information. We shortly overview some of these approaches. Doerr et al. [8] introduce quasi-
random rumor spreading, in which a node chooses its next communication partner by determin-
istically going over its list of neighbors, but the starting point of the list is chosen at random.
Results are O(log n) rounds for a complete graph and the hypercube, as well as improved com-
plexities for other families of graphs compared to the randomized rumor spreading algorithm with
uniform distribution over neighbors. This was followed by further analysis of the quasi-random al-
gorithm [9,11]. A hybrid algorithm, alternating between deterministic and randomized choices [3],

was shown to achieve information spreading in O(c(logn
Φc(G) + c)) round, w.h.p., where Φc(G) is the

weak conductance of the graph, a measure of connectivity of subsets in the graph. Distance-based
3

bounds were given for nodes placed with uniform density in Rd [16,17], which also address gossip-
based solutions to specific problems such as resource location and minimum spanning tree.

The LOCALmodel of communication, where each node communicates with each of its neighbors
in every round, was formalized by Peleg [24]. Information spreading in this model requires a number
of rounds which is equal to the diameter of the communication graph. Many other distributed tasks
have been studied in this model, and below we mention a few in order to give a sense of the variety
of problems studied. These include computing maximal independent sets [1], graph colorings [2],
computing capacitated dominating sets [19], general covering and packing problems [20], and
general techniques for distributed symmetry breaking [28].

2. Preliminaries and Definitions

2.1. The UniformGossip Algorithm. The UniformGossip algorithm is a common algorithm
for Rumor. (It is also known as the PUSH-PULL algorithm in some papers, such as [13].) Initially
each vertex u has some message Mu. At each step, every vertex chooses a random incident edge
(u, v) at which point u and v exchange all messages currently known to them. The process stops
when all vertices know everyone’s initial messages. In order to treat this process formally, for any
fixed vertex v and its message Mv, we treat the set of vertices that know Mv as a set that evolves
probabilistically over time, as we explain next.

We begin by fixing an ambient graph G = (E, V), which is unweighted and directed. The
UniformGossip process is a Markov chain over 2V , the set of vertex subsets of G. Given a current
state S ⊆ V , one transition is defined as follows. Every vertex u picks an incident outgoing edge
au = (u,w) ∈ E uniformly at random from all such candidates. Let us call the set of all chosen
edges A = {au : u ∈ V } an activated set. Further let A◦ = {(u,w) : (u,w) ∈ A or (w, u) ∈ A} be
the symmetric closure of A. The new state of the chain is given by S ∪ B, where by definition a
vertex v is in the boundary set B if and only if there exists u ∈ S such that (u, v) ∈ A◦. Note that
V is the unique absorbing state, assuming a non-empty start.

We say that an edge (u,w) is activated if (u,w) ∈ A◦. If we let S model the set of nodes in
possession of the message Mv of some fixed vertex v and we assume bidirectional message exchange
along activated edges, the new state S ∪ B (of the Markov process) actually describes the set of
nodes in possession of the message Mv after one distributed step of the UniformGossip algorithm.

Consider a τ -step Markov processK, whose activated sets at each step are respectivelyA1, . . . , Aτ .
Let the reverse of K, written Krev, be the τ -step process defined by the activated sets Aτ , . . . , A1,
in this order. For a process K, let K(S) denote the end state when started from S.

Without loss of generality, for our analysis we will assume that only a single “starting” ver-
tex s has an initial message Ms. We will be interested in analyzing the number of rounds of
UniformGossip that ensure that all other vertices learn Ms, which we call the broadcast time.
Clearly, when more than one vertex has an initial message, the broadcast time is the same since all
messages are exchanged in parallel.

Lemma 2.1 (Reversal Lemma). If u ∈ K({w}), then w ∈ Krev({u}).

In communication terms, the lemma says that if u receives a message originating at w after τ
rounds determined by K, then w will receive a message originating at u after τ rounds determined
by Krev.

Proof. The condition u ∈ K({w}) holds if and only if there exists a sequence of edges
(ei1 , . . . , eir) such that eij ∈ A◦ij for all j, the indices are increasing in that i1 < · · · < ir, and

the sequence forms a path from w to u. The presence of the reversed sequence in Krev implies
w ∈ Krev({u}). 2

4

2.2. Conductance. The notion of graph conductance was introduced by Sinclair [29]. We
require a more general version, which we introduce here. We begin with the requisite notation on
edge-weighted graphs. We assume that each edge (u, v) has a weight wuv ∈ [0, 1]. For an unweighted
graph G = (V,E) and any u, v ∈ V , we define wuv = 1 if (u, v) ∈ E and wuv = 0 otherwise. Now
we set w(S, T) =

∑
u∈S,v∈T wuv. Note that in this definition it need not be the case that S∩T = ∅,

so, e.g., w(S, S), when applied to an unweighted graph, counts every edge in S twice. The volume
of a set S ⊆ V with respect to V is written as vol(S) = w(S, V). Sometimes we will have different
graphs defined over the same vertex set. In such cases, we will write the identity of the graph as
a subscript, as in volG(S), in order to clarify which is the ambient graph (and hence the ambient
edge set). Further, we allow self-loops at the vertices. A single loop at v of weight α is modeled by
setting wvv = 2α, because both ends of the edge contribute α.

For a graph G = (V,E) and a cut (S, T) where S, T ⊆ V and S ∩ T = ∅ (but where T ∪ S does
not necessarily equal all of V), the cut conductance is given by

(1) ϕ(S, T) =
w(S, T)

min
{

volG(S), volG(T)
} .

For a subset H ⊆ V we need to define the conductance of H (embedded) in V . We will use this
quantity to measure how quickly the UniformGossip algorithm proceeds in H, while accounting
for the fact that edges in (H,V −H) may slow down the process. The conductance of H in G is
defined by

(2) Φ(H) = min
S⊆H

ϕ(S,H − S)

Note that the classical notion of conductance of G (according to Sinclair [29]) equals Φ(V) in
our notation.

When we want to explicitly emphasize the ambient graph G within which H resides, we will
write ΦG(H).

A few arguments in this paper will benefit from the notion of a “strongly induced” graph of a
vertex subset of an ambient graph G.

Definition 2.2. Let U ⊆ V be a vertex subset of G. The strongly induced graph of U in G is a
(new) graph H with vertex set U , whose edge weight function h : U × U → R is defined by

huv =

{
wuv, if u 6= v,

wuu +
∑

x∈V−U wux, if u = v.

Note that by construction we have ΦH(U) = ΦG(U). The significance of this notion is the
fact that the Markov process, describing the vertex set in possession of some message Ms for
a starting vertex s ∈ U in the UniformGossip algorithm executed on the strongly induced H,
behaves identically to the respective process in G observed only on U . In particular, this definition
allows us to use Theorem 1 of [13] in the following form:

Theorem 2.3. For any graph G = (V,E) and a subgraph U ⊆ V and any start vertex in U , the
broadcast time of the UniformGossip algorithm on U is O(ΦG(U)−1 log |U |) rounds w.h.p.

3. Solving NeighborExchange in O(log3 n) Rounds

The idea behind our algorithm for solving the NeighborExchange problem is as follows.
For every graph there exists a partition into clusters whose conductance is high, and therefore the
UniformGossip algorithm allows information to spread quickly in each cluster. The latter further
implies that pairs of neighbors inside a cluster exchange their messages quickly (perhaps indirectly).
What remains is to exchange messages across inter-cluster edges. This is done recursively. In the

5

following subsection we describe the conductance decomposition and then in Subsection 3.2 we give
the details for the algorithm together with the proof of correctness.

3.1. Conductance Decomposition of a Graph. As described, our first goal is to partition
the graph into clusters with large conductance. The challenge here is to do so while limiting the
number of inter-cluster edges, so that we can efficiently apply this argument recursively. (Otherwise,
this could be trivially done in any graph, for example by having each node as a separate cluster.)
We are going to achieve this in the following lemma whose proof (found in Appendix A) is very
similar to that of Theorem 7.1 in [30]. Note that for our eventual algorithm, we are only going to
need an existential proof of this clustering and not an actual algorithm for finding it.

Lemma 3.1. Let S ⊆ V be of maximum volume such that vol(S) ≤ vol(V)/2 and ϕ(S, V −S) ≤ ξ,
for a fixed parameter ξ ≥ Φ(G). If vol(S) ≤ vol(V)/4, then Φ(V − S) ≥ ξ/3.

Lemma 3.1 says that if a graph has no sparse balanced cuts, then it has a large subgraph which
has no sparse cuts. The following corollary establishes that Lemma 3.1 holds even in the case when
the ambient graph is itself a subgraph of a larger graph.

Corollary 3.2. Let U ⊆ V and let S ⊆ U be of maximum volume such that vol(S) ≤ vol(U)/2
and ϕ(S,U − S) ≤ ξ, for a fixed parameter ξ ≥ Φ(U). If vol(S) ≤ vol(U)/4, then Φ(U − S) ≥ ξ/3.

Proof. Observe that the proof of Lemma 3.1 holds when the graph has loops, i.e. wuu 6= 0
for some u’s. Let H be the strongly induced graph of U . It follows from the definition that for any
two disjoint sets A,B ⊆ U we have volG(A) = volH(A) and w(A,B) = h(A,B). We can therefore
apply Lemma 3.1 to H and deduce that the statement holds for the respective sets in G. 2

We are now ready to state and analyze the strong clustering algorithm. We emphasize that
this is not a distributed algorithm, but an algorithm that only serves as a proof of existence of the
partition. First, consider the following subroutine:

Cluster(G,U,ξ):
The inputs are a graph G = (V,E), a subset U ⊆ V and a parameter 0 < ξ < 1.

1. Find a subset S ⊆ U of maximum volume such that vol(S) ≤ vol(U)/2 and ϕ(S,U−
S) ≤ ξ.

2. If no such S exists, then stop and output a single cluster {U}. Otherwise,
3a. If vol(S) ≤ vol(U)/4, output {U − S} ∪ Cluster(G,S,ξ).
3b. If vol(S) > vol(U)/4, output Cluster(G,S,ξ) ∪ Cluster(G,U − S,ξ).

The clustering algorithm for a graph G = (V,E) is simply a call to Cluster(G,V ,ξ). The following
theorem is proven in Appendix B.

Theorem 3.3. For every 0 < ζ < 1, every graph G = (V,E) with edge weights wuv ∈ {0}∪ [1,+∞)

has a partition V = V1 ∪ · · · ∪ Vk such that Φ(Vi) ≥ ζ
log4/3 vol(V) , for all i, and

∑
i<j w(Vi, Vj) ≤

3ζ
2 vol(V).

In this paper, we are going to use the following specialization of this theorem, obtained by
plugging in ζ = 1/3:

Corollary 3.4. Every unweighted graph on m edges has a clustering that cuts at most m
2 edges

and each cluster has conductance at least 1
3 log4/3 2m .

3.2. The Superstep Algorithm for the NeighborExchange Problem. In this section,
we will the describe the Superstep algorithm, which solves the NeighborExchange problem.
Recall that, for this problem, all vertices v are assumed to possess an initial message Mv, and the
goal is for every pair of neighbors to know each other’s initial messages.

6

We now describe our communication protocol, which specifies a local, per-vertex rule that tells
a node which edge to choose for communication at any given round. It is assumed that the node
will greedily transmit all messages known to it whenever an edge is chosen for communication. The
protocol described here will employ some auxiliary messages, which are needed exclusively for its
internal workings.

The Superstep subroutine described in this section is designed to ensure that, after a single
invocation, all neighbors (u,w) in an undirected graph G have exchanged each other’s initial mes-
sages. Clearly then, D invocations of Superstep, where D is the diameter of G, ensure that a
message starting at vertex v reaches all u ∈ V , and this holds for all messages. D invocations of
Superstep thus resolve the Rumor problem.

If E is a set of undirected edges, let ~E = {(u,w) : {u,w} ∈ E} be the corresponding directed
graph.

Superstep(G,τ):
The parameter G = (V,E) is an unweighted, undirected graph, and τ is a positive integer.

Set F0 := ~E and i := 0. While Fi 6= ∅, repeat:
1. (First half)

1a. Initialize every vertex v with a new auxiliary message a(v), unique to v.
(This messages is added to the set of initial messages that v happens to know
currently.)

1b. Perform the UniformGossip algorithm with respect to Fi for τ rounds. And
denote the outcome of the random activated edge choices by Ki

1c. For every vertex u and neighbor w, let Xuw be the indicator that u received
a(w)

2. (Second half)
2a. Initialize every vertex v with a fresh auxiliary message b(v), unique to v
2b. Perform Krev

i , the reverse process of the one realized in Step 1b
2c. For every vertex u and neighbor w, let Yuw be the indicator that u received

b(w)
3. (Pruning) Compute the set of pruned directed edges Pi =

{
(u,w) : Xuw +Yuw > 0

}
4. Set Fi+1 := Fi − Pi and i := i+ 1

It is easily verified that the above algorithm can be implemented in the GOSSIP model of com-
munication.

Theorem 3.5. Let G = (V,E) be an undirected, unweighted graph with |V | = n and |E| = m.
Then, after one invocation of Superstep(G,τ), where τ = Θ

(
log2m

)
, the following hold with

probability 1− 1/nΩ(1):

(i) Every pair of neighbors {u,w} ∈ E receive each other’s messages.
(ii) The algorithm performs Θ

(
log3m

)
distributed rounds.

Our proof of Theorem 3.5 is structured as follows. Let ~E = F0, . . . , Fd = ∅ be the respective
edge sets of each iteration in Superstep. We are going to show that, with probability 1− 1/nΩ(1),
the following invariants are maintained at each iteration:

(a) The directed edge set Fi is symmetric in the sense that (u,w) ∈ Fi ⇒ (w, u) ∈ Fi,
(b) The size of Fi reduces by a constant factor at each iteration. Formally, vol(Fi+1) ≤

1
2 vol(Fi), and

(c) After the i-th iteration, for every (u,w) ∈ ~E − Fi+1, vertex u has received the message of
vertex w and vice-versa.

Since Fd = ∅, claim (c) implies part (i) of Theorem 3.5. Claim (b) implies that the maximum
number of iterations is log 2m. Noting that every iteration entails 2τ distributed rounds, establishes
part (ii) of Theorem 3.5.

7

Proof of Claim (a): Initially, F0 is symmetric by construction. Inductively, assume that Fi
is symmetric. The Reversal Lemma applied to Ki and Krev

i implies Xuw = Ywu, for all u,w ∈ V .
This in turn implies that Xuw + Yuw = Xwu + Ywu, so Pi is symmetric. Since Fi is symmetric by
hypothesis, we can conclude that Fi+1 = Fi − Pi is symmetric as well. 2

Proof of Claim (b): Consider the graph Gi = (V, Fi) on the edge set Fi. Since Fi is symmet-
ric, by Claim (a), we can treat Gi as undirected for the purposes of analyzing the UniformGossip

algorithm. Let V1 ∪ · · · ∪ Vk be the decomposition of Gi promised by Corollary 3.4. (Note that the
corollary holds for disconnected graphs, which may arise.) We thus have Φ(Vj) ≥ 1

3 log 4/32m , for all

1 ≤ j ≤ k.
The choice τ = O

(
3 log4/3 2m · logm

)
ensures, via Theorem 2.3, that the first UniformGossip

execution in every iteration mixes on all Vj with probability 1− 1/nΩ(1). Mixing in Vj implies that
for every internal edge (u,w), where u,w ∈ Vj and (u,w) ∈ Fi, the vertices (u,w) receive each
other’s auxiliary messages. The latter is summarized as Xuw = Xwu = 1. Applying the Reversal
Lemma to the second execution of the UniformGossip algorithm, we deduce that Yuw = Ywu = 1
as well. These two equalities imply, by the definition of Pi, that Pi is a superset of the edges not cut
by the decomposition V1 ∪ · · · ∪ Vk. Equivalently, Fi+1 is a subset of the cut edges. Corollary 3.4,
however, bounds the volume of the cut edges by 1

2 vol(Fi), which concludes the proof of Claim
(b). 2

Proof of Claim (c): Initially, ~E−F0 = ∅ and so the claim holds trivially. By induction, the

claim holds for edges in ~E−Fi. And so it suffices to establish that u and v exchange their respective
payload messages for all (u,w) ∈ Pi. However, this is equivalent to the conditions Xuw + Yuw > 0,
which are enforced by the definition of Pi. 2

Finally, our main result, Theorem 1.1, follows as a corollary of Theorem 3.5.

4. Solving NeighborExchange in Hereditary Sparse Graphs

Now we ask what can be achieved if instead of exchanging information indirectly as done in
the Superstep algorithm, we exchange information only directly between neighbors. We will show
in this section that this results in very simple deterministic algorithms for an important class of
graphs that includes bounded genus graphs and all graphs that can be characterized by excluded
minors [18,22]. The results here will be used for the more general simulators in Section 5.

As before we will focus on solving the NeighborExchange problem. One trivial way to solve
this problem is for each node to contact its neighbors directly, e.g., by using a simple round robin
method. This takes at most ∆ time, where ∆ is the maximum-degree of the network. However,
in some cases direct message exchanges work better. One graph that exemplifies this is the star
graph on n nodes. While it takes ∆ = n time to complete a round robin in the center, after just a
single round of message exchanges each leaf has initiated a bidirectional link to the center and thus
exchanged its messages. On the other hand, scheduling edges cannot be fast on dense graphs with
many more edges than nodes. The following lemma shows that the hereditary density captures how
efficient direct message exchanges can be on a given graph:

Lemma 4.1. Let the hereditary density δ of a graph G be the minimal integer such that for every
subset of nodes S the subgraph induced by S has at most density δ, i.e., at most δ|S| edges.

(1) Any schedule of direct message exchanges that solves the NeighborExchange problem
on G takes at least δ rounds.

(2) There exists a schedule of the edges of G such each node needs only 2δ direct message
exchanges to solve the NeighborExchange problem.

8

Proof. Since the hereditary density of G is δ, there is a subset of nodes S ⊆ V with at least
δ|S| edges between nodes in S. In each round, each of the |S| nodes is allowed to schedule at most
one message exchange, so a simple pigeonhole principle argument shows that at least one node
needs to initiate at least δ message exchanges.

For the second claim, we are going to show that for any ε > 0 there is an O(ε−1 log n)-time
deterministic distributed algorithm in the LOCAL model that assigns the edges of G to nodes such
that each node is assigned at most 2(1 + ε)δ edges. Then setting ε < (3δ)−1 makes the algorithm
inefficient but finishes the existential proof.

The algorithm runs in phases in which, iteratively, a node takes responsibility for some of the
remaining edges connected to it. All edges that are assigned are then eliminated and so are nodes
that have no unassigned incident edges. In each phase, every node of degree at most 2(1 + ε)δ
takes responsibility for all of its incident edges (breaking ties arbitrarily). At least a 1/(1 + 1

ε)
fraction of the remaining nodes fall under this category in every phase. This is because otherwise,
the number of edges in the subgraph would be more than (|S| − |S|/(1 + 1

ε))(2(1 + ε)δ)/2 = |S|δ,
which would contradict the fact thatthe hereditary densityof the graph equals δ of. What remains
after each phase is an induced subgraph which, by definition of the hereditary density, continues
to have hereditary density at most δ. The number of remaining nodes thus decreases by a factor of
1− 1/(1 + 1

ε) in every phase and it takes at most O(log1+ε n) phases until no more nodes remain,
at which point all edges have been assigned to a node. 2

We note that the lower bound of Lemma 4.1 is tight in all graphs, i.e., the upper bound of 2δ
can be improved to δ. Graphs with hereditary density δ, also known as (0, δ)-sparse graphs, are
thus exactly the graphs in which δ is the minimum number such that the edges can be oriented to
form a directed graph with outdegree at most δ. This in turn is equivalent to the pseudoarboricity
of the graph, i.e., the minimum number of pseudoforests needed to cover the graph. Due to the
matroid structure of pseudoforests, the pseudoarboricity can be computed in polynomial time. For
our purposes the (non-distributed) algorithms to compute these optimal direct message exchange
schedule are too slow. Instead, we present a simple and fast algorithm, based on the LOCAL
algorithm in Lemma 4.1, which computes a schedule that is within a factor of 2 + ε of the optimal.
We note that the DirectExchange algorithm presented here works in the GOSSIP model and
furthermore does not require the hereditary density δ to be known a priori. The following is the
algorithm for an individual node v:

DirectExchange:

Set δ′ = 1 and H = ∅. H is the subset of neighbors in Γ(v) that node v has exchanged
messages with. Repeat:

δ′ = (1 + ε)δ′

for O(1
ε · log n) rounds do
if |Γ(v) \H| ≤ δ′

during the next δ′ rounds exchange messages with all neighbors in Γ(v)\
H
terminate

else
wait for δ′ rounds

update H

Theorem 4.2. For any constant ε > 0, the deterministic algorithm DirectExchange solves the

NeighborExchange problem in the GOSSIP model using O(δ logn
ε2

) rounds, where δ is the hered-

itary density of the underlying topology. During the algorithm, each node initiates at most 2(1+ε)2δ
exchanges.

9

Proof. Let δ be the hereditary density of the underlying topology. We know from the proof of
Lemma 4.1 that the algorithm terminates during the for-loop if δ′ is at least 2(1 + ε)δ. Thus, when
the algorithm terminates, δ′ is at most 2(1 + ε)2δ which is also an upper bound on the number of
neighbors contacted by any node. In the (i + 1)th-to-last iteration of the outer loop, δ′ is at most
2(1+ε)2δ/(1+ε)i, and the running time for this phase is thus at most 2(1+ε)2δ/(1+ε)i ·O(1

ε log n).

Summing up over these powers of 1/(1+ ε) results in a total of at most δ/((1+ ε)−1) ·O(1
ε log n) =

O(δ logn
ε2

) rounds. 2

5. Simulators and Graph Spanners

In this section we generalize our results to arbitrary simulations of LOCAL algorithms in the
GOSSIP model and point out connections to graph spanners, another well-studied subject.

Recall that we defined the NeighborExchange problem exactly in such a way that it simulates
in the GOSSIP model what is done in one round of the LOCAL model. With our solutions,
an O(δ log n)-round algorithm and an O(log3 n)-round algorithm for the NeighborExchange
problem in the GOSSIP model, it is obvious that we can now easily convert any T -round algorithm
for the LOCAL model to an algorithm in the GOSSIP model, e.g., by T times applying the
Superstep algorithm. In the case of the DirectExchange algorithm we can do even better. While
it takes O(δ log n) rounds to compute a good scheduling, once it is known it can be reused and
each node can simply exchange messages with the same O(δ) nodes without incurring an additional
overhead. Thus, simulating the second and any further rounds can be easily done in O(δ) rounds
in the GOSSIP model. This means that any algorithm that takes O(T) rounds to complete in the
LOCAL model can be converted to an algorithm that takes O(δT +δ log n) rounds in the GOSSIP
model. We call this a simulation and define simulators formally as follows.

Definition 5.1. An (α, β)-simulator is a way to transform any algorithm A in the LOCAL model
to an algorithm A′ in the GOSSIP model such that A′ computes the same output as A and if A
takes O(T) rounds than A′ takes at most O(αT + β) rounds.

Phrasing our results from Section 3.2 and Section 4 in terms of simulators we get the following
corollary.

Corollary 5.2. For a graph G of n nodes, hereditary density δ, and maximum degree ∆, the
following hold:

• There is a randomized (log3 n, 0)-simulator.
• There is a deterministic (∆, 0)-simulator.
• There is a deterministic (2(1 + ε)2δ,O(δε−2 log n))-simulator for any ε > 0 or, simply,

there is a (δ, δ log n)-simulator.

Note that for computations that require many rounds in the LOCAL model the (2(1 +
ε)2δ,O(δε−2 log n))-simulator is a log n-factor faster than repeatedly applying the DirectExchange

algorithm. This raises the question whether we can similarly improve our (log3 n, 0)-simulator to
obtain a smaller multiplicative overhead for the simulation.

What we would need for this is to compute, e.g., using the Superstep algorithm, a schedule
that can then be repeated to exchange messages between every node and its neighbors. What we
are essentially asking for is a short sequence of neighbors for each node over which each node can
indirectly get in contact with all its neighbors. Note that any such schedule of length t must at
least fulfill the property that the union of all edges used by any node is connected (if the original
graph G is connected) and even more that each node is connected to all its neighbors via a path
of length at most t. Subgraphs with this property are called spanners. Spanners are well-studied
objects, due to their extremely useful property that they approximately preserve distances while

10

potentially being much sparser than the original graph. The quality of a spanner is described by
two parameters, its number of edges and its stretch, which measures how well it preserves distances.

Definition 5.3 (Spanners). A subgraph S = (V,E′) of a graph G = (V,E) is called an (α, β)-
stretch spanner if any two nodes u, v with distance d in G have distance at most αd+ β in S.

From the discussion above it is also clear that any solution to the NeighborExchange problem
in the GOSSIP model also computes a spanner as a byproduct.

Lemma 5.4. If A is an algorithm in the GOSSIP model that solves the NeighborExchange
problem in any graph G in T rounds then this algorithm can be used to compute a (T, 0)-stretch
spanner with hereditary density T in O(T) rounds in the GOSSIP model.

While there are spanners with better properties than the (log3 n, 0)-stretch and log3 n-density
implied by Lemma 5.4 and Theorem 3.5, our construction has the interesting property that the
number of messages exchanged during the algorithm is at most O(n log3 n), whereas all prior
algorithms rely on the broadcast nature of the LOCAL model and therefore use already O(n2)
messages in one round on a dense graph. Lemma 5.4 furthermore implies a nearly logarithmic
lower bound on the time that is needed in the GOSSIP model to solve the NeighborExchange
problem:

Corollary 5.5. For any algorithm in the GOSSIP model that solves the NeighborExchange
problem there is a graph G on n nodes on which this algorithm takes at least ω(logn

log logn) rounds,.

Proof. Assume an algorithm takes at most T (n) rounds on any graph with n nodes. The edges
used by the algorithm form a T (n)-stretch spanner with density T (n), as stated in Lemma 5.4. For
values of T (n) which are too small it is known that such spanners do not exist [25]. More specifically

it is known that there are graphs with n nodes, density at least 1/4n1/r and girth r, i.e., the length
of the smallest cycle is r. In such a graph any (r − 2)-stretch spanner has to be the original graph
itself, since removing a single edge causes its end-points to have distance at least r−1, and thus the
spanner also have density 1/4n1/r. Therefore T (n) ≥ argminr{r − 2, 1/4n1/r} = ω(logn

log logn). 2

Interestingly, it is not only the case that efficient simulators imply good spanners but the next
lemma shows as a converse that good existing spanner constructions for the LOCAL model can be
used to improve the performance of simulators.

Theorem 5.6. If there is an algorithm that computes an (α, β)-stretch spanner with hereditary
density δ in O(T) rounds in the LOCAL model than this can be combined with an (α′, β′)-simulator
to an (αδ, Tα′ + β′ + δ log n+ δβ)-simulator.

Proof. For simplicity we first assume that β = 0, i.e., the spanner S computed by the al-
gorithm in the LOCAL model has purely multiplicative stretch α and hereditary density δ. Our
strategy is simple: We are first going to compute the good spanner by simulating the spanner
creation algorithm from the LOCAL model using the given simulator. This takes Tα′ + β′ rounds
in the GOSSIP model. Once this spanner S is computed we are only going to communicate via
the edges in this spanner. Note that for any node there is a path of length at most α to any of
its neighbors. Thus if we perform α rounds of LOCAL-flooding rounds in which each node for-
wards all messages it knows of to all its neighbors in S each node obtains the messages of all its
neighbors in G. This corresponds exactly to a NeighborExchange in G. Therefore if we want
to simulate T ′ rounds of an algorithm A in the LOCAL model on G we can alternatively perform
αT LOCAL computation rounds on S while doing the LOCAL computations of A every α rounds.
This is a computation in the LOCAL model but on a sparse graph. We are therefore going to
use the (O(δ), O(δ log n))-simulator from Corollary 5.2 to simulate this computation which takes

11

O(δαT ′ + δ log n) rounds in the GOSSIP model. Putting this together with the Tα′ + β′ rounds
it takes to compute the spanner S we end up with δαT ′ + δ log n+ Tα′ + β′ rounds in total.

In general (i.e., for β > α) it is not possible (see, e.g., Corollary 5.5) to simulate the LOCAL
algorithm step by step. Instead we rely on the fact that any LOCAL computation over T rounds can
be performed by each node first gathering information of all nodes in a T -neighborhood and then
doing LOCAL computations to determine the output. For this all nodes simply include all their
initial knowledge (and for a randomized algorithm all the random bits they might use throughout
the algorithm) in a message and flood this in T rounds to all node in their T -neighborhood. Because
a node now knows all information that can influence its output over a T -round computation it can
now locally simulate the algorithm for itself and its neighbors to the extend that its output can be
determined. Having this we simulate the transformed algorithm as before: We first precomute S
in Tα′ + β′ time and then simulate the T ′ rounds of flooding in G by performing αT ′ + β rounds
of LOCAL-flooding in S. Using the (O(δ), O(δ log n))-simulator this takes O(δ(αT ′ + β) + δ log n)
rounds in the GOSSIP model.

2

Corollary 5.7. There is a (2log∗ n log n, log4 n)-simulator, a (log n, 2log∗ n log4 n)-simulator and a
(O(1), polylogn)-simulator.

Proof. We are going to construct the simulators with increasingly better multiplicative over-
head by applying Theorem 5.6 to existing spanner constructions [6, 10, 26, 27] for the LOCAL
model. We first construct a (log2 n, log4 n)-simulator by combining our new (log3 n, 0)-simulator
with the deterministic spanner construction in [6]. The construction in [6] takes O(log n) rounds in
the LOCALmodel and adds at most one edge to each node per round. Using α = T = δ = O(log n),
α′ = log3 n and β = β′ = 0 in Theorem 5.6 gives the desired (log2 n, log4 n)-simulator. Having
this simulator, we can use [27] to improve the multiplicative overhead while keeping the addi-
tive simulation overhead the same. In [27] an α = (2log∗ n log n)-stretch spanner with constant
hereditary density δ = O(1) is constructed in T = O(2log∗ n log n)-time in the LOCAL model. Us-
ing these parameters and the (log2 n, log4 n)-simulator in Theorem 5.6 leads to the strictly better
(2log∗ n log n, log4 n)-simulator claimed here. Having this simulator, we can use it with the random-
ized spanner construction in [10]. There, an α-stretch spanner, with α = O(log n), is constructed
in T = O(log3 n)-time in the LOCAL model by extracting a subgraph with Ω(log n) girth. Such
a graph has constant hereditary density δ = O(1), as argued in [25]. Using these parameters and
the (2log∗ n log n, log4 n)-simulator in Theorem 5.6 leads to the (log n, 2log∗ n log4 n)-simulator. Fi-
nally, we can use any of these simulators together with the nearly-additive (5+ε, polylogn)-spanner
construction from [26] to obtain our last simulator. It is easy to verify that the randomized con-
struction named ADlog logn in [26] can be computed in a distributed fashion in the LOCAL model
in polylogn time and has hereditary density δ = O(1). This together with any of the previous
simulators and Theorem 5.6 results in a (O(1),polylogn)-simulator. 2

With these various simulators it is possible to simulate a computation in the LOCAL model
with very little (polylogarithmic) multiplicative or additive overhead in the GOSSIP model. Note
that while the complexity of the presented simulators is incomparable, one can interleave their
executions (or the executions of the simulated algorithms) and thus get the best runtime for any
instance. This, together with the results from Corollary 5.7 and 5.2, proves our main result of
Theorem 1.2.

6. Discussion

This paper presents a more efficient alternative to the UniformGossip algorithm that allows
fast rumor spreading on all graphs, with no dependence on their conductance. We then show how

12

… … …

v

w u1

uO(n) CO(n)

C1

z1

zO(logn)

w u1 C1

Figure 1. An example illustrating the behavior of the algorithm choosing a random
neighbor whose information is still unknown.

this leads to fast simulation in the GOSSIP model of any algorithm designed for the LOCAL
model by constructing sparse spanners. This work leaves some interesting directions for future
work, which we discuss below.

First, as mentioned in the introduction, there are cases in which the algorithm where each
node chooses a neighbor uniformly at random only from among those it has not yet heard from
(directly or indirectly), performs slower than the optimal. An example is the graph in Figure 6,
where Ci stands for a clique of size O(1) in which every node is also connected to the node xi.
In this example, it takes 2 rounds for the node w to hear about the node v (through nodes in
{z1, . . . , zO(logn)}). During these rounds there is a high probability that a constant fraction of the
nodes in {u1, . . . , uO(n)} did not yet hear from neither v nor w. With high probability, a constant
fraction of these will contact w before contacting v, after which they will not contact v anymore
because they will have heard from it through w. This leaves O(n) nodes which v has to contact
directly (since nodes in {z1, . . . , zO(logn)} are no longer active since they already heard from both
of their neighbors), resulting in a linear number of rounds for NeighborExchange.

We note, however, that this specific example can be solved by requiring nodes that have heard
from all their neighbors to continue the algorithm after resetting their state, in the sense that they
now consider all their neighbors to be such that they have not heard from (this is only for the sake
of choosing the next neighbor to contact, the messages they send can include previous information
they received). Therefore, we do not rule out the possibility that this algorithm works well, but
our example suggests that this may not be trivial to prove.

Second, regarding our solution to the Rumor problem, the Superstep algorithm, as presented,
can be implemented in synchronous environments in a straightforward manner. To convert our
algorithm to the asynchronous setting, one needs to synchronize the reversal step. Synchronization
is a heavy-handed approach and not desirable in general.

To alleviate this problem, we believe, it is possible to get rid of the reversal step altogether.
The basic idea is to do away with the hard decisions to “remove” edges once a message from a
neighbor has been received. And instead to multiplicatively decrease the weight of such edges
for the next round. This approach would introduce a slight asymmetry in each edge’s weight in
both directions. In order to analyze such an algorithm, it is needed to understand the behavior
of RandomNeighbor in the general asymmetric setting. In this setting, each vertex uses its own
distribution over outgoing links when choosing a communication partner at each step. We believe
that understanding the asymmetric RandomNeighbor is an open problem of central importance.

13

References

[1] L. Barenboim and M. Elkin. Sublogarithmic distributed MIS algorithm for sparse graphs using nash-williams
decomposition. In Proceedings of the twenty-seventh ACM Symposium on Principles of Distributed Computing
(PODC), pages 25–34, New York, NY, USA, 2008. ACM.

[2] L. Barenboim and M. Elkin. Distributed (δ+ 1)-coloring in linear (in δ) time. In Proceedings of the 41st Annual
ACM Symposium on Theory of Computing (STOC), pages 111–120, New York, NY, USA, 2009. ACM.

[3] K. Censor-Hillel and H. Shachnai. Fast information spreading in graphs with large weak conductance. In Pro-
ceedings of the 22nd ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 440–448, 2011.

[4] F. Chierichetti, S. Lattanzi, and A. Panconesi. Almost tight bounds for rumour spreading with conductance. In
Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC), pages 399–408, 2010.

[5] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart, and D. Terry.
Epidemic algorithms for replicated database maintenance. In Proceedings of the sixth Annual ACM Symposium
on Principles of Distributed Computing (PODC), pages 1–12, 1987.

[6] B. Derbel, C. Gavoille, D. Peleg, and L. Viennot. On the locality of distributed sparse spanner construction.
In Proceedings of the twenty-seventh ACM Symposium on Principles of Distributed Computing (PODC), pages
273–282, New York, NY, USA, 2008. ACM.

[7] B. Doerr and M. Fouz. Asymptotically optimal randomized rumor spreading. CoRR, abs/1011.1868, 2010.
[8] B. Doerr, T. Friedrich, and T. Sauerwald. Quasirandom rumor spreading. In Proceedings of the nineteenth Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 773–781, Philadelphia, PA, USA, 2008. Society
for Industrial and Applied Mathematics.

[9] B. Doerr, T. Friedrich, and T. Sauerwald. Quasirandom rumor spreading: Expanders, push vs. pull, and robust-
ness. In 36th International Colloquium on Automata, Languages and Programming (ICALP)(1), pages 366–377,
2009.

[10] D. Dubhashi, A. Mei, A. Panconesi, J. Radhakrishnan, and A. Srinivasan. Fast distributed algorithms for
(weakly) connected dominating sets and linear-size skeletons. J. Comput. Syst. Sci., 71:467–479, November
2005.

[11] N. Fountoulakis and A. Huber. Quasirandom rumor spreading on the complete graph is as fast as randomized
rumor spreading. SIAM Journal on Discrete Mathematics, 23(4):1964–1991, 2009.

[12] P. Fraigniaud and G. Giakkoupis. On the bit communication complexity of randomized rumor spreading. In
Proceedings of the 22nd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 134–
143, New York, NY, USA, 2010. ACM.

[13] G. Giakkoupis. Tight bounds for rumor spreading in graphs of a given conductance. In 28th International Sym-
posium on Theoretical Aspects of Computer Science (STACS), pages 57–68, Dagstuhl, Germany, 2011. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[14] G. Giakkoupis and P. Woelfel. On the randomness requirements of rumor spreading. In Proceedings of the 22nd
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 449–461, 2011.

[15] R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking. Randomized rumor spreading. In Proceedings of the
41st Annual Symposium on Foundations of Computer Science (FOCS), page 565, Washington, DC, USA, 2000.
IEEE Computer Society.

[16] D. Kempe, J. Kleinberg, and A. Demers. Spatial gossip and resource location protocols. In Proceedings of the
thirty-third Annual ACM Symposium on Theory of Computing (STOC), pages 163–172, New York, NY, USA,
2001. ACM.

[17] D. Kempe and J. M. Kleinberg. Protocols and impossibility results for gossip-based communication mechanisms.
In Proceedings of the 43rd Symposium on Foundations of Computer Science (FOCS), pages 471–480, Washington,
DC, USA, 2002. IEEE Computer Society.

[18] A. Kostochka. Lower bound of the hadwiger number of graphs by their average degree. Combinatorica, 4:307–316,
1984. 10.1007/BF02579141.

[19] F. Kuhn and T. Moscibroda. Distributed approximation of capacitated dominating sets. Theor. Comp. Sys.,
47:811–836, November 2010.

[20] F. Kuhn, T. Moscibroda, and R. Wattenhofer. The price of being near-sighted. In Proceedings of the seventeenth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 980–989, New York, NY, USA, 2006.
ACM.

[21] M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM Journal on Computing,
15(4):1036–1053, 1986.

[22] W. Mader. Homomorphieeigenschaften und mittlere kantendichte von graphen. Mathematische Annalen,
174:265–268, 1967. 10.1007/BF01364272.

14

[23] D. Mosk-Aoyama and D. Shah. Computing separable functions via gossip. In Proceedings of the twenty-fifth
Annual ACM Symposium on Principles of Distributed Computing (PODC), pages 113–122, New York, NY,
USA, 2006. ACM.

[24] D. Peleg. Distributed computing: a locality-sensitive approach. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2000.

[25] D. Peleg and A. Schäffer. Graph spanners. Journal of graph theory, 13(1):99–116, 1989.
[26] S. Pettie. Low distortion spanners. ACM Transactions on Algorithms (TALG), 6:7:1–7:22, December 2009.
[27] S. Pettie. Distributed algorithms for ultrasparse spanners and linear size skeletons. Distributed Computing,

22(3):147–166, 2010.
[28] J. Schneider and R. Wattenhofer. A new technique for distributed symmetry breaking. In Proceeding of the 29th

ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC), pages 257–266, New York,
NY, USA, 2010. ACM.

[29] A. Sinclair. Algorithms for random generation and counting: a Markov chain approach. Birkhauser Verlag, Basel,
Switzerland, Switzerland, 1993.

[30] D. A. Spielman and S.-H. Teng. Spectral sparsification of graphs. CoRR, abs/0808.4134, 2008.

Appendix A. Proof of Lemma 3.1

Proof. Assume, towards a contradiction, that Φ(V −S) < ξ/3. Then, there exists a cut (P,Q)
of V − S with ϕ(P,Q) < ξ/3 and specifically

(3) max

{
w(P,Q)

vol(P)
,
w(P,Q)

vol(Q)

}
≤ ξ

3

Henceforth, let Q be the smaller of the two, i.e. vol(Q) ≤ vol(V − S)/2.
We are going to show that ϕ(S ∪ Q,P) ≤ ξ and either S ∪ Q or P should have been chosen

instead of S.
Consider the case vol(S ∪Q) ≤ vol(V)/2. In this case,

ϕ(S ∪Q,P) =
w(S, P) + w(Q,P)

vol(S ∪Q)
=
w(S, P) + w(Q,P)

vol(S) + vol(Q)

≤ max

{
w(S, P)

vol(S)
,
w(Q,P)

vol(Q)

}
≤ max

{
w(S, P) + w(S,Q)

vol(S)
,
w(Q,P)

vol(Q)

}
≤ max

{
ξ, ξ/3

}
= ξ

This establishes a contradiction, because ϕ(S ∪Q,P) ≤ ξ and vol(S) < vol(S ∪Q) ≤ vol(V)/2.
Now let’s consider the case vol(S ∪Q) > vol(V)/2. First, we argue that vol(S ∪Q) cannot be

too large. We use that vol(Q) ≤ 1
2 vol(V − S) = 1

2(vol(V)− vol(S)).

(4) vol(S ∪Q) = vol(S) + vol(Q) ≤ vol(S) +
vol(V)− vol(S)

2
=

vol(V) + vol(S)

2
≤ 5

8
vol(V)

Hence, vol(P) ≥ 3
8 vol(V). In addition, for the cut size, we have

w(S ∪Q,P) = w(S, P) + w(Q,P)

≤ ξ vol(S) +
ξ

3
vol(Q)

≤ ξ vol(S) +
ξ

3

vol(V)− vol(S)

2

≤ 5

6
ξ vol(S) +

1

6
ξ vol(V)

=
3

8
ξ vol(V)

15

And now we can bound the cut conductance:

(5) ϕ(S ∪Q,P) =
w(S ∪Q,P)

vol(P)
≤

3
8ξ vol(V)
3
8 vol(V)

= ξ

This also establishes a contradiction because ϕ(S∪Q,P) ≤ ξ while vol(S) ≤ 1
4 vol(V) < 3

8 vol(V) ≤
vol(P) ≤ 1

2 vol(V). 2

Appendix B. Proof of Theorem 3.3

Proof. The depth K of the recursion is, by construction, at most log4/3 vol(V) assuming that

the smallest non-zero weight is 1. Let Ri ⊆ 2V be a collection of the U -parameters of invocations
of Cluster at depth 0 ≤ i ≤ K of the recursion. (So, for example, R0 = {V }.) For a set U let
S(U) be the small side of the cut produced by Cluster(G,U,ξ), or ∅ if no eligible cut was found.
We can then bound the total weight of cut edges as∑

0≤i≤K

∑
U∈Ri

w
(
S(U), U − S(U)

)
≤

∑
0≤i≤K

∑
U∈Ri

ξ vol
(
S(U)

)
≤

∑
0≤i≤K

∑
U∈Ri

ξ

2
vol(U)

≤ ξ

2

∑
0≤i≤K

∑
U∈Ri

vol(U) ≤ ξ

2

∑
0≤i≤K

vol(V) ≤
ξ log4/3 vol(V)

2
vol(V),

Where we use the convention w(∅, S) = 0. If we set ξ = 3ζ
log4/3 vol(V) , for some 0 < ζ < 1, then

Corollary 3.2 establishes the theorem. 2

16

	1. Introduction
	2. Preliminaries and Definitions
	3. Solving NeighborExchange in O(log3 n) Rounds
	4. Solving NeighborExchange in Hereditary Sparse Graphs
	5. Simulators and Graph Spanners
	6. Discussion
	References
	Appendix A. Proof of Lemma ??
	Appendix B. Proof of Theorem ??

