
MIT-CTP-4091

Breaking and making quantum money: toward a new
quantum cryptographic protocol

Andrew Lutomirski1 Scott Aaronson2 Edward Farhi1 David Gosset1

Avinatan Hassidim1 Jonathan Kelner2,3 Peter Shor1,2,3
1Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139

2Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, MA 02139

3Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139
luto@mit.edu aaronson@csail.mit.edu farhi@mit.edu dgosset@mit.edu

avinatanh@gmail.com kelner@mit.edu shor@math.mit.edu

Abstract: Public-key quantum money is a cryptographic protocol in which a bank can create quantum
states which anyone can verify but no one except possibly the bank can clone or forge. There are
no secure public-key quantum money schemes in the literature; as we show in this paper, the only
previously published scheme [1] is insecure. We introduce a category of quantum money protocols
which we call collision-free. For these protocols, even the bank cannot prepare multiple identical-
looking pieces of quantum money. We present a blueprint for how such a protocol might work as well
as a concrete example which we believe may be insecure.

Keywords: quantum money; cryptography; random matrices; and markov chains

1 Introduction
In 1969, Wiesner [10] pointed out that the no-

cloning theorem raises the possibility of uncopy-
able cash: bills whose authenticity would be guar-
anteed by quantum physics.1 Here’s how Wies-
ner’s scheme works: besides an ordinary serial
number, each bill would contain (say) a few hun-
dred photons, which the central bank polarized in
random directions when it issued the note. The
bank remembers the polarization of every photon
on every bill ever issued. If you want to verify
that a bill is genuine, you take it to the bank, and
the bank uses its knowledge of the polarizations
to measure the photons. On the other hand, the
No-Cloning Theorem ensures that someone who
doesn’t know the polarization of a photon can’t
produce more photons with the same polarizations.
Indeed, copying a bill can succeed with probability
at most (5/6)n, where n is the number of photons

1This is the same paper that introduced the idea of quan-
tum cryptography. Wiesner’s paper was not published until
the 1980s; the field of quantum computing and information (to
which it naturally belonged) had not yet been invented.

per bill.
Despite its elegance, Wiesner’s quantum money

is a long way from replacing classical money. The
main practical problem is that we don’t know how
to reliably store polarized photons (or any other co-
herent quantum state) for any appreciable length of
time.

Yet, even if we could solve the technological
problems, Wiesner’s scheme would still have a se-
rious drawback: only the bank can verify that a bill
is genuine. Ideally, printing bills ought to be the
exclusive prerogative of the bank, but the check-
ing process ought to be open to anyone—think of
a convenience-store clerk holding up a $20 bill to
a light.

But, with quantum mechanics, it may be pos-
sible to have quantum money satisfying all three
requirements:

1. The bank can print it. That is, there is an
efficient algorithm to produce the quantum
money state.

2. Anyone can verify it. That is, there is an effi-

1

ar
X

iv
:0

91
2.

38
25

v1
 [

qu
an

t-
ph

]
 2

1
D

ec
 2

00
9

cient measurement that anyone can perform
that accepts money produced by the bank
with high probability and minimal damage.

3. No one (except possibly the bank) can copy
it. That is, no one other than the bank can effi-
ciently produce states that are accepted by the
verifier with better than exponentially small
probability.

We call such a scheme a public-key quantum
money scheme, by analogy with public-key cryp-
tography. Such a scheme cannot be secure
against an adversary with unbounded computa-
tional power, since a brute-force search will find
valid money states in exponential time. Surpris-
ingly, the question of whether public-key quantum
money schemes are possible under computational
assumptions has remained open for forty years,
from Wiesner’s time until today.

The first proposal for a public-key quantum
money scheme, along with a proof that such
money exists in an oracle model, appeared in [1].
We show in section 3 that the proposed quantum
money scheme is insecure.

In this paper we introduce the idea of collision-
free quantum money, which is public-key quan-
tum money with the added restriction that no one,
not even the bank, can efficiently produce two
identical-looking pieces of quantum money. We
discuss the prospect of implementing collision-
free quantum money and its uses in section 2 be-
low.

The question of whether secure public-key
quantum money exists remains open.

2 Two kinds of quantum money
All public-key quantum money schemes need

some mechanism to identify the bank and prevent
other parties from producing money the same way
that the bank does. A straightforward way of ac-
complishing this is to have the money consist of a
quantum state and a classical description, digitally
signed by the bank, of a circuit to verify the quan-
tum state. Digital signatures secure against quan-
tum adversaries are believed to exist, so we do not
discuss the signature algorithm in the remainder of
the paper.

Alternatively, if the bank produces a fixed num-
ber of quantum money states, it could publish a list

of all the verification circuits of all the valid money
states, and anyone could check that the verifier of
their money state is in that list. This alternative is
discussed further in section 2.2.

2.1 Quantum money with a classical secret
Public-key quantum money is a state which can

be produced by a bank and verified by anyone.
One way to design quantum money is to have the
bank choose, for each instance of the money, a
classical secret which is a description of a quan-
tum state that can be efficiently generated and use
that secret to manufacture the state. The bank then
constructs an algorithm to verify that state and dis-
tributes the state and a description of the algorithm
as “quantum money.” We will refer to protocols of
this type as quantum money with a classical secret.
The security of such a scheme relies on the dif-
ficulty of deducing the classical secret given both
the verification circuit and a copy of the state.

A simple but insecure scheme for this type of
quantum money is based on random product states.
The bank chooses a string of n uniformly ran-
dom angles θi between 0 and 2π. This string is
the classical secret. Using these angles, the bank
generates the state |ψ〉 = ⊗i|θi〉 where |θi〉 =
cos θi|0〉 + sin θi|1〉 and chooses a set of (say) 4-
local projectors which are all orthogonal to |ψ〉.
The quantum money is the state |ψ〉 and a clas-
sical description of the projectors, and anyone can
verify the money by measuring the projectors.

It is NP-hard to produce the state |ψ〉 given only
a description of the projectors, and given only the
state, the no-cloning theorem states that the state
cannot be copied. However, this quantum money
is insecure because of a fully quantum attack [5]
that uses a copy of the state and the description of
the projectors to produce additional copies of the
state. A more sophisticated example of quantum
money with a classical secret is described in [1]. A
different scheme was proposed Mosca and Stebila
in [8]. The latter scheme requires a classical oracle
that we do not know how to construct.

All quantum money schemes which rely on
a classical secret in this way have the property,
shared with ordinary bank notes and coins, that an
unscrupulous bank can produce multiple pieces of
identical money. Also, if there is a classical secret,
there is the risk that some classical algorithm can
deduce the secret from the verification algorithm

2

(we show in section 3 that the scheme of [1] fails
under some circumstances for exactly this reason).

2.2 Collision-free quantum money
An alternative kind of quantum money is

collision-free. This means that the bank cannot
efficiently produce two pieces of quantum money
with the same classical description of the verifica-
tion circuit. This rules out protocols in which the
verification circuit is associated with a classical se-
cret which allows the bank to produce the state.
(For example, in the product state construction in
the previous section, the set of angles would allow
the bank to produce any number of identical pieces
of quantum money.)

Collision-free quantum money has a useful
property that even uncounterfeitable paper money
(if it existed) would not have: instead of just digi-
tally signing the verification circuit for each piece
of money, the bank could publish a list describing
the verification circuit of each piece of money it in-
tends to produce. These verification circuits would
be like serial numbers on paper money, but, since
the bank cannot cheat by producing two pieces of
money with the same serial number, it cannot pro-
duce more money than it says. This means that the
bank cannot inflate the currency by secretly print-
ing extra money.

We expect that computationally secure
collision-free quantum money is possible.
We do not have a concrete implementation of
such a scheme, but in the next few sections, we
give a blueprint for how a collision-free quantum
money scheme could be constructed. We hope
that somebody produces such a scheme which will
not be vulnerable to attack.

2.2.1 Quantum money by postselection
Our approach to collision-free quantum money

starts with a classical set. For concreteness, we
will take this to be the set of n-bit strings. We need
a classical function L that assigns a label to each
element of the set. There should be an exponen-
tially large set of labels and an exponentially large
number of elements with each label. Furthermore,
no label should correspond to more than an expo-
nentially small fraction of the set. The function L
should be as obscure and have as little structure as
possible. The same function can be used to gener-
ate multiple pieces of quantum money. Each piece

of quantum money is a state of the form

|ψ`〉 =
1√
N`

∑
x s.t. L(x)=`

|x〉

along with the label ` which is used as part of the
verification procedure (N` is the number of terms
in the sum). The function L must have some addi-
tional structure in order to verify the state.

Such a state can be generated as follows. First,
produce the equal superposition over all n-bit
strings. Then compute the function L into an an-
cilla register and measure that register to obtain a
particular value `. The state left over after mea-
surement will be |ψ`〉.

The quantum money state |ψ`〉 is the equal su-
perposition of exponentially many terms which
seemingly have no particular relationship to each
other. Since no label occurs during the postse-
lection procedure above with greater than expo-
nentially small probability, the postselection pro-
cedure would have to be repeated exponentially
many times to produce the same label ` twice. If
the labeling function L is a black box with no ad-
ditional structure, then Grover’s lower bound rules
out any polynomial time algorithm that can pro-
duce the state |ψ`〉 given only knowledge of `. We
conjecture that it is similarly difficult to copy a
state |ψ`〉 or to produce the state |ψ`〉 ⊗ |ψ`〉 for
any ` at all.

It remains to devise an algorithm to verify the
money.

2.2.2 Verification using rapidly mixing
Markov chains

The first step of any verification algorithm is to
measure the function L to ensure that the state is a
superposition of basis vectors associated with the
correct label `. The more difficult task is to verify
that it is the correct superposition |ψ`〉.

Our verification procedure requires some addi-
tional structure in the function L: we assume that
we know of a classical Markov matrix M which,
starting from any distribution over bit strings with
the same label `, rapidly mixes to the uniform dis-
tribution over those strings but does not mix be-
tween strings with different `. This Markov chain
must have a special form: each update must consist
of a uniform random choice over N update rules,
where each update rule is deterministic and invert-
ible. We can consider the action of the operator M

3

on the Hilbert space in which our quantum money
lives (M is, in general, neither unitary nor Hermi-
tian). Acting on states in this Hilbert space, any
valid quantum money state |ψ`〉 is a +1 eigenstate
of M and, in fact,

Mr ≈
∑
l

|ψ`〉〈ψ`| (1)

where the approximation is exponentially good for
polynomially large r. This operator, when re-
stricted to states with a given label `, approxi-
mately projects onto the money state |ψ`〉. After
measuring the label ` as above, the final step of our
verification procedure is to measure Mr for suffi-
ciently large r as we describe below. Even using
the Markov chain M , we do not know of a gen-
eral way to efficiently copy quantum money states
|ψ`〉.

Any deterministic, invertible function corre-
sponds to a permutation of its domain; we can
write the Markov matrix as the average of N such
permutations Pi over the state space, where Pi cor-
responds to the ith update rule. That is

M =
1
N

N∑
i=1

Pi.

We define a controlled update U of the state,
which is a unitary quantum operator on two reg-
isters (the first holds an n-bit string and the second
holds numbers from 1 to N)

U =
∑
i

Pi ⊗ |i〉〈i|.

Given some initial quantum state on n qubits,
we can add an ancilla in a uniform superposition
over all i (from 1 to N). We then apply the uni-
tary U , measure the projector of the ancilla onto
the uniform superposition, and discard the ancilla.
The Kraus operator sum element corresponding to
the outcome 1 is(

I ⊗ 1√
N

N∑
i=1

〈i|

)
U

(
I ⊗ 1√

N

N∑
i=1

|i〉

)

=
1
N

N∑
i=1

Pi

= M.

This operation can be implemented with one call to
controlled-Pi and additional overhead logarithmic
in N . Repeating this operation r times, the Kraus
operator corresponding to all outcomes being 1 is
Mr. The probability that all of the outcomes are
1 starting from a state |φ〉 is ‖Mr|φ〉‖2 and the
resulting state is Mr|φ〉/ ‖Mr|φ〉‖2. If choose a
large enough number of iterations r, we approxi-
mate a measurement of

∑
l |ψ`〉〈ψ`| as in eq. 1.

This construction has the caveat that, if the out-
comes are not all 1, the final state is not (1 −
Mr)|ψ〉. This can be corrected by deferring all
measurements, computing an indicator of whether
all outcomes were 1, and uncomputing everything
else, but, as we do not care about the final state of
bad quantum money, we do not need this correc-
tion.

2.3 An example of quantum money by post-
selection

2.3.1 Constructing a label function
One approach to creating the labeling functionL

from Sec. 2.2.1 is to concatenate the output of mul-
tiple single-bit classical cryptographic hash func-
tions,2 each of which acts on some subset of the
qubits in the money state. We will describe such a
scheme in this section, which has promising prop-
erties but is most likely insecure.

We start by randomly choosing d
√
ne subsets of

the n bits, where each bit is in 10 of the subsets.
We associate a different binary valued hash func-
tion with each subset. The hash function associ-
ated with a particular subset maps the bits in that
subset to either 0 or 1. The labeling function L is
the d
√
ne-bit string which contains the outputs of

all the hash functions.
The bank can produce a random pair (`, |ψ`〉),

where |ψ`〉 is the uniform superposition of all bit
strings that hash to the values corresponding to the
label `, by using the algorithm in Sec. 2.2.1.

2.3.2 Verifying the Quantum Money
As in Sec. 2.2.2, we verify the money using a

Markov chain. The update rule for the Markov
chain is to choose a bit at random and flip the bit
if and only if flipping that bit would not change

2A simpler apprach would be to hash the entire n-bit string
onto a smaller, but still exponentially large, set of labels. We do
not pursue this approach because we do not know of any way
to verify the resulting quantum money states.

4

the label (i.e. if all of the hash function that in-
clude that bit do not change value, which happens
with roughly constant probability). This Markov
chain is not ergodic, because there are probably
many assignments to all the bits which do not al-
low any of the bits to be flipped. These assign-
ments, along with some other possible assignments
that mix slowly, can be excluded from the superpo-
sition, and the verification circuit may still be very
close to a projector onto the resulting money state.

2.3.3 A weakness of this quantum money
A possible weakness of our hash-based labeling

function as defined above is that the label is not
an opaque value—the labels of two different bit
strings are related to the difference between those
strings. Specifically, the problem of finding strings
that map to a particular label ` is a constraint sat-
isfaction problem, and the Hamming distance be-
tween the label `′ = L (x) and ` is the number of
clauses that the string x violates.

We are concerned about the security of this
scheme because it may be possible to use the struc-
ture of the labeling function to implement algo-
rithms such as the state generation algorithm in [2],
which, under certain circumstances, could be used
to produce the money state. For example, consider
a thermal distribution for which each bit string
has probability proportional to e−βc(x), where β
is an arbitrary constant and c (x) is the number
of clauses that the string x violates. If for all
β we could construct a rapidly mixing Markov
chain with this stationary distribution, then we
could apply the state generation algorithm men-
tioned above. A naive Metropolis-Hastings con-
struction that flips single bits gives Markov chains
that are not rapidly mixing at high β, but some
variants may be rapidly mixing. We do not know
whether quantum sampling algorithms based on
such Markov chains can run in polynomial time.

Due to this type of attack, and because we do
not have a security proof, we do not claim that this
money is secure.

3 Insecurity of a previously published
quantum money scheme

The only currently published public-key quan-
tum money scheme, an example of quantum
money with a classical secret, was proposed in [1].

We refer to this scheme as stabilizer money. We
show that stabilizer money is insecure by present-
ing two different attacks that work in different pa-
rameter regimes. For some parameters, a classi-
cal algorithm can recover the secret from the de-
scription of the verification circuit. For other pa-
rameters, a quantum algorithm can generate states
which are different from the intended money state
but which still pass verification with high probabil-
ity. Neither attack requires access to the original
money state.

The stabilizer money is parametrized by integers
n, m and l and by a real number ε ∈ [0, 1]. These
parameters are required to satisfy 1

ε2 � l.
The quantum money state is a tensor product of

l different stabilizer states, each on n qubits, and
the classical secret is a list of Pauli group opera-
tors which stabilize the state. The bank generates
an instance of the money by choosing a random
stabilizer state for each of the l registers. To pro-
duce the verification circuit, the bank generates an
m × l table of n qubit Pauli group operators. The
(i, j)th element of the table is an operator

Eij = (−1)bijAij1 ⊗A
ij
2 ...⊗Aijn

where each Aijk ∈ {1, σx, σy, σz} and bij ∈
{0, 1}. Each element Eij of the table is generated
by the following procedure:

1. With probability 1− ε choose the bij and, for
each k, Aijk uniformly at random.

2. With probability ε choose the operator Eij to
be a uniformly random element of the stabi-
lizer group of |Ci〉.

To verify the quantum money state, for each i the
authenticator chooses j (i) ∈ [m] at random and
measures

Q =
1
l

∑
i

I⊗i−1 ⊗ Ei,j(i) ⊗ I⊗m−i. (2)

The authenticator accepts iff the outcome is greater
than or equal to ε

2 . Note that measuring the op-
erator Q is equivalent to measuring the operator
Ei,j(i) for each register i ∈ [l] and then averag-
ing the results, since the measurements on differ-
ent registers commute.

The state |C1〉|C2〉...|Cl〉 is accepted by this
procedure with high probability since the proba-
bility of measuring a +1 for the operatorEi,j(i) on

5

the state |Ci〉 is 1+ε
2 . The mean value of the op-

erator Q in the state |C1〉|C2〉...|Cl〉 is therefore ε,
since it is simply the average of theEi,j(i) for each
register i ∈ [l]. The parameter l is chosen so that
l
ε2 = Ω (n) so the probability that one measures Q
to be less than ε

2 is exponentially small in n.
Our attack on this money depends on the param-

eter ε. Our proofs assume that m = poly(n), but
we expect that both attacks work beyond the range
in which our proofs apply.

3.1 Attacking the verification circuit for
ε ≤ 1

16
√
m

For ε ≤ 1
16
√
m

and with high probability over
the table of Pauli operators, we can efficiently gen-
erate a state that passes verification with high prob-
ability. This is because the verification algorithm
does not project onto the intended money state but
in fact accepts many states with varying probabil-
ities. On each register, we want to produce a state
for which the expected value of the measurement
of a random operator from the appropriate column
of E is sufficiently positive. This is to ensure that,
with high probability, the verifier’s measurement
of Q will have an outcome greater than ε

2 . For
small ε, there are many such states on each register
and we can find enough of them by brute force.

We find states that pass verification by working
on one register at a time. For each register i, we
search for a state ρi with the property that

Tr

 1
m

m∑
j=1

Eij

 ρi

 ≥ 1
4
√
m

+O

(
1
m2

)
.

(3)
As we show in Appendix A, we can find such states
efficiently on enough of the registers to construct a
state that passes verification.

3.2 Recovering the classical secret for ε ≥
c√
m

We describe how to recover the classical secret
(i.e. a description of the quantum state), and thus
forge the money, when the parameter ε ≥ c√

m
for

any constant c > 0. We observe that each column
of the table E contains approximately εm com-
muting operators, with the rest chosen randomly,
and if, in each column, we can find a set of com-
muting operators that is at least as large as the

planted set, then any quantum state stabilized by
these operators will pass verification.

We begin by casting our question as a graph
problem. For each column, letG be a graph whose
vertices correspond to the m measurements, and
connect vertices i and j if and only if the corre-
sponding measurements commute. The vertices
corresponding to the planted commuting measure-
ments now form a clique, and we aim to find it.

In general, it is intractable to find the largest
clique in a graph. In fact, it is NP-hard even to
approximate the size of the largest clique within
n1−ε, for any ε > 0 [11]. Finding large cliques
planted in otherwise random graphs, however, can
be easy.

For example, if ε = Ω
(

logm√
m

)
, then a simple

classical algorithm will find the clique. This algo-
rithm proceeds by sorting the vertices in decreas-
ing order of degree and selecting vertices from the
beginning of the list as long as the selected vertices
continue to form a clique.

We can find the planted clique for ε ≥ c√
m

for
any constant c > 0 in polynomial time using a
more sophisticated classical algorithm that may be
of independent interest. If the graph were obtained
by planting a clique of size ε

√
m in a random graph

drawn from G(m, 1/2), Alon, Krivelevich, and
Sudakov showed in [3] that one can find the clique
in polynomial time with high probability.3 Unfor-
tunately, the measurement graph G is not drawn
from G(m, 1/2), so we cannot directly apply their
result. However, we show in appendix A that if G
is sufficiently random then a modified version of
their algorithm works.

4 Conclusions
Quantum money is an exciting and open

area of research. Wiesner’s original scheme is
information-theoretically secure, but is not public-
key. In this paper, we proved that the stabilizer
construction for public-key quantum money [1] is
insecure for most choices of parameters, and we
expect that it is insecure for all choices of pa-
rameters. We drew a distinction between schemes

3Remember that G (m, p) is the Erds-Rnyi distribution over
m-vertex graphs in which an edge connects each pair of ver-
tices independently with probability p. The AKS algorithm was
later improved [6] to work on subgraphs of G(n, p) for any
constant p, but our measurement graph G is not of that form.

6

which use a classical secret and those which are
collision-free. We gave a blueprint for how a
collision-free scheme might be devised. We de-
scribed an illustrative example of such a scheme,
but we have serious doubts as to its security.

It remains a major challenge to base the secu-
rity of a public-key quantum money scheme on any
previously-studied (or at least standard-looking)
cryptographic assumption, for example, that some
public-key cryptosystem is secure against quan-
tum attack. Much as we wish it were otherwise,
it seems possible that public-key quantum money
intrinsically requires a new mathematical leap of
faith, just as public-key cryptography required a
new leap of faith when it was first introduced in
the 1970s.

5 Acknowledgments
This work was supported in part by funds pro-

vided by the U.S. Department of Energy un-
der cooperative research agreement DE-FG02-
94ER40818, the W. M. Keck Foundation Cen-
ter for Extreme Quantum Information Theory, the
U.S. Army Research Laboratory’s Army Research
Office through grant number W911NF-09-1-0438,
the National Science Foundation through grant
numbers CCF-0829421, CCF-0843915, and CCF-
0844626, a DARPA YFA grant, the NDSEG fel-
lowship, the Natural Sciences and Engineering
Research Council of Canada, and Microsoft Re-
search.

References
[1] S. Aaronson. Quantum copy-protection and

quantum money. In Computational Complex-
ity, Annual IEEE Conference on, pages 229–
242, 2009.

[2] D. Aharonov and A. Ta-Shma. Adiabatic
Quantum State Generation. SIAM Journal on
Computing, 37:47, 2007.

[3] N. Alon, M. Krivelevich, and B. Sudakov.
Finding a large hidden clique in a random
graph. In Proceedings of the ninth an-
nual ACM-SIAM symposium on Discrete al-
gorithms, pages 594–598. Society for Indus-
trial and Applied Mathematics Philadelphia,
PA, USA, 1998.

[4] Noga Alon and Asaf Nussboim. k-wise in-
dependent random graphs. In FOCS, pages
813–822. IEEE Computer Society, 2008.

[5] Edward Farhi, David Gosset, Avinatan Has-
sidim, Andrew Lutomirski, Daniel Nagaj,
and Peter Shor. Quantum state restora-
tion and single-copy tomography. 2009,
0912.3823.

[6] Uriel Feige and Robert Krauthgamer. Find-
ing and certifying a large hidden clique in
a semirandom graph. Random Struct. Algo-
rithms, 16(2):195–208, 2000.

[7] Z. Füredi and J. Komlos. The eigenvalues of
random symmetric matrices. Combinatorica,
1(3):233–241, 1981.

[8] Michele Mosca and Douglas Stebila. Quan-
tum coins, 2009.

[9] M.A. Nielsen and I.L. Chuang. Quan-
tum computation and quantum information.
2000.

[10] S. Wiesner. Conjugate coding. SIGACT
News, 15(1):78–88, 1983. Original
manuscript written circa 1970.

[11] David Zuckerman. Linear degree extractors
and the inapproximability of max clique and
chromatic number. Theory of Computing,
3(1):103–128, 2007, toc:v003/a006.

A Details of the attack against stabi-
lizer money for ε ≤ 1

16
√

m

For ε ≤ 1
16
√
m

and with high probability in the
table of Pauli operators, we can efficiently generate
a state that passes verification with high probabil-
ity. Our attack may fail for some choices of the
table used in verification, but the probability that
such a table of operators is selected by the bank is
exponentially small.

Recall that each instance of stabilizer money is
verified using a classical certificate, which consists
of an m× l table of n qubit Pauli group operators.
The (i, j)th element of the table is an operator

Eij = (−1)bijAij1 ⊗A
ij
2 ...⊗Aijn

where each Aijk ∈ {1, σx, σy, σz} and bij ∈
{0, 1}.

We will use one important property of the algo-
rithm that generates the table of Pauli operators:

7

with the exception of the fact that −I⊗n cannot
occur in the table, the distribution of the tables is
symmetric under negation of all of the operators.

The verification algorithm works by choosing,
for each i, a random j (i) ∈ [m]. The verifier then
measures

Q =
1
l

∑
i

I⊗i−1 ⊗ Ei,j(i) ⊗ I⊗m−i. (4)

The algorithm accepts iff the outcome is greater
than or equal to ε

2 . Note that measuring the op-
erator Q is equivalent to measuring the operator
Ei,j(i) for each register i ∈ [l] and then averag-
ing the results, since the measurements on differ-
ent registers commute.

To better understand the statistics of the operator
Q, we consider measuring an operator Ei,j(i) on a
state ρi, where j(i) ∈ [m] is chosen uniformly at
random. The total probability p1(ρi) of obtaining
the outcome +1 is given by

p1(ρi) =
1
m

m∑
j=1

Tr
[(

1 + Ei,j(i)

2

)
ρi

]

=
1 + Tr

[
H(i)ρi

]
2

where (for each i ∈ [l]) we have defined the Hamil-
tonian

H(i) =
1
m

m∑
j=1

Eij .

We use the algorithm described below to inde-
pendently generate an n qubit mixed state ρi on
each register i ∈ [l]. At least 1/4 of these states
ρi (w.h.p. over the choice of the table E) will have
the property that

Tr[H(i)ρi] ≥
1

4
√
m

+O

(
1
m2

)
(5)

and the rest have

p1(ρi) ≥
1
2
−O

(
1
m

)
(6)

which implies that

E
i
p1(ρi) ≥

1
2

+
1

8
√
m

+O

(
1
m2

)
.

We use the state

ρ = ρ1 ⊗ ρ2 ⊗ ...⊗ ρl

as our forged quantum money. If the verifier se-
lects j (i) at random and measures Q (from equa-
tion 4), then the expected outcome is at least
1
4 (1

4
√
m

+ O(1
m2)) + 3

4O(1
m), and the probabil-

ity of an outcome less than 1
32
√
m

(for ε ≤ 1
16
√
m

,
the verifier can only reject if this occurs) is expo-
nentially small for m sufficiently large by inde-
pendence of the registers. Therefore the forged
money state ρ is accepted by Aaronson’s verifier
with probability that is exponentially close to 1 if
ε ≤ 1

16
√
m

.
Before describing our algorithm to generate the

states {ρi}, we must understand the statistics (in
particular, we consider the first two moments) of
each H(i) on the fully mixed state I

2n . We will
assume that, for j 6= k, Eij 6= Eik. We also as-
sume that the operators ±I ⊗ I ⊗ I... ⊗ I do not
appear in the list. Both of these assumptions are
satisfied with overwhelming probability. The first
and second moments of H(i) are

Tr
[
H(i) I

2n

]
= 0

and

Tr
[(
H(i)

)2 I

2n

]
(7)

= 2−n Tr

 1
m2

∑
j

(Ei,j)
2 +

1
m2

∑
j 6=k

Ei,jEi,k

=

1
m
. (8)

Now let us define fi to be the fraction (out of 2n)
of the eigenstates of H(i) which have eigenvalues
in the set [1

2
√
m
, 1]∪ [−1,− 1

2
√
m

]. Since the eigen-

values of H(i) are bounded between −1 and 1, we
have

Tr
[(
H(i)

)2 I

2n

]
≤ fi + (1− fi)

1
4m

.

Plugging in equation 8 and rearranging we obtain

fi ≥
3

4m− 1
.

We also define gi to be the fraction of eigenstates
of H(i) that have eigenvalues in the set [1

2
√
m
, 1].

The distribution (for any fixed i) of Eij as gener-
ated by the bank is symmetric under negation of

8

all the Eij , so with probability at least 1/2 over the
choice of the operators in the row labeled by i, the
fraction gi satisfies

gi ≥
3

8m− 2
. (9)

We assume this last inequality is satisfied for at
least 1/4 of the indices i ∈ [l], for the particular
table Eij that we are given. The probability that
this is not the case is exponentially small in l.

Ideally, we would generate the states ρi by
preparing the fully mixed state, measuring H(i),
keeping the result if the eigenvalue is at least 1

2
√
m
,

and otherwise trying again, up to some appropriate
maximum number of tries. After enough failures,
we would simply return the fully mixed state. It
is easy to see that outputs of this algorithm would
satisfy eq. 3 with high probability.

Unfortunately, we cannot efficiently measure
the exact eigenvalue of an arbitrary Hermi-
tian operator, but we can use phase estimation,
which gives polynomial error using polynomial re-
sources. In appendix A.2 we review the phase esti-
mation algorithm which is central to our procedure
for generating the states ρi. In section A.1, we de-
scribe an efficient algorithm to generate ρi using
phase estimation and show that the resulting states,
even in the presence of errors due to polynomial-
time phase estimation, are accepted by the verifier
with high probability, assuming that the table Eij
has the appropriate properties.

A.1 Procedure to Generate ρi
We now fix a particular value of i and, for con-

venience, define H = 1
4H

(i) so that all the eigen-
values of H lie in the interval [− 1

4 ,
1
4]. We denote

the eigenvectors of H by {|ψj〉} and write

e2πiH |ψj〉 = e2πiφj |ψj〉.

The positive eigenvalues of H map to phases φj in
the range[0, 1

4] and negative eigenvalues of H map
to [3

4 , 1].
We label each eigenstate of H as either “good”

or “bad” according to its energy. We say an eigen-
state |ψj〉 is good if φj ∈ [1

16
√
m
, 1

4].Otherwise we
say it is bad (which corresponds to the case where
φj ∈ [0, 1

16
√
m

) ∪ [3
4 , 1]).

We use the following algorithm to produce a
mixed state ρi.

1. Set k = 1.

2. Prepare the completely mixed state I
2n . In

our analysis of this step, we will imagine
that we have selected an eigenstate |ψp〉 of H
uniformly at random, which yields identical
statistics.

3. Use the phase estimation circuit to measure
the phase of the operator e2πiH . Here the
phase estimation circuit (see appendix A.2)
acts on the original n qubits in addition to
q = r + dlog(2 + 2

δ)e ancilla qubits, where
we choose

r = dlog(20m)e

δ =
1
m3

.

4. Accept the resulting state (of the n qubit reg-
ister) if the measured phase φ′ = z

2q is in the
interval [1

8
√
m
− 1

20m ,
1
2]. In this case stop and

output the state of the first register. Otherwise
set k = k + 1.

5. If k = m2 + 1 then stop and output the fully
mixed state. Otherwise go to step 2.

We have chosen the constants in steps 3 and 4 to
obtain an upper bound on the probability pb of ac-
cepting a bad state in a particular iteration of steps
2, 3, and 4:

pb = Pr (|ψp〉 is bad and you accept)
≤ Pr (accept given that |ψp〉 was bad)

≤ Pr
(
|φp − φ′| >

1
16
√
m
− 1

20m

)
≤ Pr

(
|φp − φ′| >

1
20m

)
≤ δ by equation 14.

Above, we considered two cases depending on
whether or not the inequality 9 is satisfied for the
register i. We analyze the algorithm in these two
cases separately.

Case 1: Register i satisfies inequality 9
In this case, choosing p uniformly,

Pr
(

1
4
≥ φp ≥

1
8
√
m

)
≥ 3

8m− 2
(10)

9

This case occurs for at least 1/4 of the indices i ∈
[l] with all but exponential probability.

The probability pg that you pick a good state (in
a particular iteration of steps 2, 3, and 4) and then
accept it is at least

pg = Pr (|ψp〉 is good and you accept)

≥ Pr
(

1
4
≥ φp ≥

1
8
√
m

and you accept
)

= Pr
(

1
4
≥ φp ≥

1
8
√
m

)
× Pr

(
accept given

1
4
≥ φp ≥

1
8
√
m

)
≥ Pr

(
1
4
≥ φp ≥

1
8
√
m

)
(1− δ)

≥ 3
8m− 2

(
1− 1

m3

)
≥ 1

4m
, for m sufficiently large.

Thus the total probability of outputting a good
state is (in a complete run of the algorithm)

Pr(output a good state) (11)

=
m2∑
k=1

pg(1− pg − pb)k−1

=
pg

pg + pb

(
1− (1− pg − pb)m

2
)

≥ pg
pg + pb

(
1− (1− pg)m

2
)

≥ pg
pg + δ

(
1− (1− pg)m

2
)
.

≥ pg
pg + δ

(
1− e−pgm

2
)

(12)

≥ 1
1 + 4

m2

(
1− e−pgm

2
)

for m sufficiently large.

= 1−O
(

1
m2

)
So in this case, the state ρi will satisfy

Tr
[
H(i)ρi

]
≥ Pr (output a good state)

1
4
√
m

− (1− Pr (output a good state))

=
1

4
√
m

+O

(
1
m2

)
.

Case 2: Register i does not satisfy inequal-
ity 9

This case occurs for at most 3/4 of the indices
i ∈ [l] with all but exponentially small probability.

The probability of accepting a bad state for reg-
ister i at any point is

Pr (accept a bad state ever) ≤
m2∑
k=1

δ =
1
m
. (13)

So the state ρi which is generated by the above
procedure will satisfy

Tr
[
H(i)ρi

]
≥ −Pr (accept a bad state ever)

= − 1
m
.

We have thus shown that equation 5 holds for all
indices i which satisfy inequality 9 and that equa-
tion 6 holds for the rest of the indices. As dis-
cussed above, this guarantees (assuming at least
1/4 of the indices i satisfy inequality 9) that our
forged state ρ = ρ1 ⊗ ρ2 ⊗ ...⊗ ρl is accepted by
the verifier with high probability if ε ≤ 1

16
√
m

.

A.2 Review of the Phase Estimation Algo-
rithm

In this section we review some properties of the
phase estimation algorithm as described in [9]. We
use this algorithm in appendix A to measure the
eigenvalues of the operator e2πiH . The phase es-
timation circuit takes as input an integer r and a
parameter δ and uses

q = r + dlog(2 +
2
δ

)e

ancilla qubits. When used to measure the opera-
tor e2πiH , phase estimation requires as a subrou-
tine a circuit which implements the unitary opera-
tor e2πiHt for t ≤ 2r, which can be approximated
efficiently if 2r = poly(n). This approximation
of the Hamiltonian time evolution incurs an error
which can be made polynomially small in n using
polynomial resources (see for example [9]). We
therefore neglect this error in the remainder of the
discussion. The phase estimation circuit, when ap-
plied to an eigenstate |ψj〉 of H such that

e2πiH |ψj〉 = e2πiφj |ψj〉,

10

and with the q ancillas initialized in the state |0〉⊗q ,
outputs a state

|ψj〉 ⊗ |aj〉

where |aj〉 is a state of the ancillas. If this ancilla
register is then measured in the computational ba-
sis, the resulting q bit string z will be an approxi-
mation to φj which is accurate to r bits with prob-
ability at least 1− δ in the sense that

Pr
(∣∣∣φj − z

2q

∣∣∣ > 1
2r

)
≤ δ. (14)

In order for this algorithm to be efficient, we
choose r and δ so that 2r = poly(n) and δ =

1
poly(n) .

B Insecurity of the Stabilizer Money
for ε ≥ c√

m

In this section, we will describe how to forge
the Stabilizer Money when the number of commut-
ing measurements is at least c

√
m for any constant

c > 0. We will consider each column of the table
separately. For the ith column, let M = Mi be the
list of possible measurements for ψ = ψi, and let
K = Ki denote the set of commuting measure-
ments that stabilize ψ. Set k = |K| and m = |M |.
We will first consider the case k > 100

√
m, and

we will then show how to reduce the case k >
c
√
m to this case for any constant c > 0. The algo-

rithm we present has success probability 4/5 over
the choice of the random measurements. We have
not attempted to optimize this probability, and it
could be improved with a more careful analysis.

We begin by casting our question as a graph
problem. Let G be a graph whose vertices cor-
respond to the m measurements, and connect ver-
tices i and j if and only if the corresponding mea-
surements commute. The set K now forms a
clique, and we aim to find it.

In general, it is intractable to find the largest
clique in a graph. In fact, it is NP-hard even to
approximate the size of the largest clique within
n1−ε, for any ε > 0 [11]. However, if the graph
is obtained by planting a clique of size ε

√
m in an

(Erds-Rnyi) random graph drawn fromG(m, 1/2),
Alon, Krivelevich, and Sudakov showed that one
can find the clique in polynomial time with high
probability [3]. Unfortunately, the measurement

graph G is not drawn from G(m, 1/2), so we can-
not directly apply their result. However, we shall
show that G is sufficiently random that a modi-
fied version of their approach can be made to go
through. The main tool that we use is to show that
G is k-wise independent and that this is enough for
a variant of the clique finding algorithm to work. k
wise independent random graphs were studied by
[4], although they were interested in other proper-
ties of them.

B.1 Properties of the Measurement Graph
To analyze G, it will be convenient to use a lin-

ear algebraic description of its vertices and edges.
Recall that any stabilizer measurement on n qubits
can be described as a vector in F2n

2 as follows:
• for j ≤ n, set the jth coordinate to 1 if and

only if the operator restricted to the jth qubit
is X or Y , and
• for n < j ≤ 2n, set the jth coordinate to

1 if and only if the operator restricted to the
(j − n)th qubit is Y or Z.

For v, w ∈ F2n
2 , let

〈v, w〉 = vT
(

0n In
In 0n

)
w,

where In and 0n are the n×n identity and all-zeros
matrices, respectively. It is easy to check that the
stabilizer measurements corresponding to v and w
commute if and only if 〈v, w〉 = 0 (over F2).

Using this equivalence between Pauli group op-
erators and vectors, each vertex u of the graph
G is associated with a vector su. There is an
edge between vertices u and v in G if and only
if 〈su, sv〉 = 0. This means that the 2mn bits that
encode the vectors {su} also encode the entire ad-
jacency matrix of G. There are m (m− 1) /2 pos-
sible edges inG, so the distribution of edges inG is
dependent (generically, m (m− 1) /2) > 2mn).
Fortunately, this dependence is limited, as we can
see from the following lemma.

Lemma 1. Let v1, . . . vt, u be measurements such
that sv1 , . . . svt , su are linearly independent, and
let x1, . . . , xt ∈ {0, 1} be arbitrary. Let v
be a random stabilizer measurement such that
〈sv, svi〉 = xi for every i and the vectors
sv1 , . . . , svt , su, sv are linearly independent. Then

Pr(〈sv, su〉 = 0) = 1/2±O
(

1
22(n−t)

)
.

11

Proof. The vector sv ∈ {0, 1}2n is chosen uni-
formly at random from the set of vectors satisfying
the following constraints:

1. For every i, we have 〈sv, svi〉 = xi.

2. The vectors sv1 , . . . svt , su, sv are linearly in-
dependent.

Let S0 denote the set of vectors that satisfy these
constraints and have 〈sv, su〉 = 0, and let S1 be
the set of vectors that satisfy these constraints and
have 〈sv, su〉 = 1. We have

Pr(〈sv, su〉 = 0) =
|S0|

|S0 + S1|
.

The vectors sv1 , . . . svt , su are linearly indepen-
dent, so there are 22n−t−1 solutions to the set of
equations 〈sv, su〉 = 1 and 〈sv, svi〉 = xi for all i.
This implies that |S1| ≤ 22n−t−1.

Constraint 2 rules out precisely the set of vectors
in the span of sv1 , . . . , svt , su. This is a (t + 1)-
dimensional subspace, so it contains 2t+1 points,
and thus |S0| ≥ 22n−t−1 − 2t+1. It follows that

Pr(〈sv, su〉 = 0) ≥ 22n−t−1 − 2t+1

22n−t − 2t+1

=
1
2
− 1

22n−2t − 1

=
1
2
−O

(
1

22(n−t)

)
.

Repeating this argument gives the same bound for
Pr(〈sv, su〉 = 1), from which the desired result
follows.

B.2 Finding Planted Cliques in Random
Graphs

Our algorithm for finding the clique K will be
identical to that of Alon, Krivelevich, and Su-
dakov [3], but we will need to modify the proof of
correctness to show that it still works in our setting.
In this section, we shall give a high level descrip-
tion of [3] and explain the modifications necessary
to apply it to G. The fundamental difference is
that Alon et al. rely on results from random ma-
trix theory that use the complete independence of
the matrix entries to bound mixed moments of ar-
bitrarily high degree, but we only have guarantees
about moments of degree O(logm). As such, we

must adapt the proof to use only these lower order
moments.

Let G(m, 1/2, k) be a random graph from
G(m, 1/2) augmented with a planted clique of
size k, and let A be its adjacency matrix. Let
λ1 ≥ λ2 ≥ · · · ≥ λm be the eigenvalues of A,
and let v1, . . . , vm be the corresponding eigenvec-
tors. To find the clique, Alon et al. find the set
W of vertices with the k largest coordinates in v2.
They then prove that, with high probability, the set
of vertices that have at least 3k/4 neighbors in W
precisely comprise the planted clique.

The analysis of their algorithm proceeds by ana-
lyzing the largest eigenvalues of A. They begin by
proving that the following two bounds hold with
high probability:
• λ1 ≥

(
1
2 + o(1)

)
m, and

• λi ≤ (1 + o(1))
√
m for all i ≥ 3.

The second of these bounds relies heavily on a re-
sult by Fredi and Komls about the eigenvalues of
matrices with independent entries. The indepen-
dence assumption will not apply in our setting, and
thus we will need to reprove this bound for our
graph G. This is the main modification that we
will require to the analysis of [3].

They then introduce a vector z that has zi =
(m − k) when vertex i belongs to the planted
clique, and has zi = −k otherwise. Using
the above bounds, they prove that, when one ex-
pands z in the eigenbasis of A, the coefficients of
v1, v3, . . . , vm are all small compared to ||z||, so
z has most of its norm coming from its projection
onto v2. This means that v2 has most of its weight
on the planted clique, which enables them to prove
the correctness of their algorithm.

Other than the bound on λ3, . . . , λm, the proof
goes through with only minor changes. The bound
on λ1 = (1 + o(1))m/2, follows from a simple
analysis of the average degree, which holds for the
measurement graph as well. The rest of their proof
does not make heavy use of the structure of the
graph. The only change necessary is to replace var-
ious tail bounds on the binomial distribution and
Chebyschev bounds with Markov bounds. These
weaker bounds result in a constant failure proba-
bility and weaker constants, but they otherwise do
not affect the proof. (For brevity, we omit the de-
tails.) As such, our remaining task is to bound λi
for i ≥ 3.

12

B.3 Bounding λ3, . . . , λm

To bound the higher eigenvalues of the adja-
cency matrix, Alon et al. apply the following theo-
rem of Fredi and Komls [7]:

Lemma 2. Let R be a random symmetric m ×m
matrix in whichRi,i = 0 for all i, and the other en-
tries are independently set to ±1 with Pr(Ri,j =
1) = Pr(Ri,j = −1) = 1

2 . The largest eigenvalue
ofR is at mostm+O(m1/3 logm) with high prob-
ability.

We will prove a slightly weaker variant of this
lemma for random measurement graphs. Let B be
a matrix that is generated by picking m random
stabilizer measurements M1, . . . ,Mm and setting
Bi,i = 0, Bi,j = 1 if Mi commutes with Mj ,
and Bi,j = −1 if Mi anticommutes with Mj . The
main technical result of this section will be the fol-
lowing:

Theorem 3. With high probability, the largest
eigenvalue of B is at most 10

√
m.

Alon et al.[3] show how to transform a bound
on the eigenvalues of R into a bound on the third
largest eigenvalue of A. This reduction does not
depend on the properties of G, and it works in our
case when applied to B. This gives a bound of
10
√
m on the third largest eigenvalue of the adja-

cency matrix of G.
The proof of Theorem 3 will rely on the follow-

ing lemma, which shows that the entries of small
powers of the matrix B have expectations quite
close to those of R.

Lemma 4. For t ≤ O(logm),

E
[
(Bt)i,j

]
= E

[
(Rt)i,j

]
± 1

2Ω(n−t) .

Proof. [Proof of Lemma 4] With high probability,
for every subset of vertices U such that |U | < t ≤
O(logm), we have that the set {su |u ∈ U} is lin-
early independent over F2. We condition the rest
of our analysis on this high probability event.

We begin by expanding the quantity we aim to

bound:

E
[
(Bt)i,j

]
= E

 ∑
`2,...`t

t+1∏
α=1

B`α,`α+1

=
∑
`2,...`t

E

[
t+1∏
α=1

B`α,`α+1

]
(15)

where we take set `1 = i and `t+1 = j, and
we sum over all possible values of the indices
`2, . . . , `t.

We break the nonzero terms in this summation
into two types of monomials: those in which every
matrix element appears an even number of times,
and those in which at least one element appears
an odd number of times. In the former case, the
monomial is the square of a ±1-valued random
variable, so we have

E

[∏
α

B`α,`α+1

]
= E

[∏
α

R`α,`α+1

]
= 1,

and it suffices to focus on the latter case. By the
same reasoning, we can drop any even number of
occurrences of an element, so it suffices to estimate
the expectations of monomials of degree at most t
in which all of the variables are distinct.

Any such monomial in the Ri,j has expectation
zero by symmetry, so we need to provide an upper
bound on terms of the form

∏q
α=1B`α,`α+1 , where

q ≤ t ≤ r and each matrix element appears at most
once.

Consider the probability thatBq−1,q = 1, where
we take the probability over the choice of the
2n bit string sq , given that for any α ≤ q, we
have Bα,α+1 = xα for some value xα. We are
computing this expectation conditioned on the the
su being linearly independent, so we can apply

13

Lemma 1. This gives

E
q∏

α=1

B`α,`α+1

=
∑

x1,...xq−1

Pr(〈s`α , s`α+1〉 = xα)

×
{

Pr(〈sq−1, sq〉 = 1|x1, . . . xq−1)

− Pr(〈sq−1, sq〉 = −1|x1, . . . xq−1)
}

≤O
(

1
22(n−t)

)
·
∑

x1,...xq−1

Pr(〈s`α , s`α+1〉 = xα)

=O
(

1
22(n−t)

)
.

There are nO(logm) terms in the summation of
eq. , and we have shown that each term is at most
O
(
1/22(n−t)), so we obtain

E
[
(Bt)i,j

]
≤ O

(
nO(logm)

22(n−t)

)
=

1
2Ω(n)

,

as desired.

We can now use this lemma to prove Theorem 3.

Proof. [Proof of Theorem 3] Consider a random
matrix R, with Ri,i = 0 and each other cell
distributed independently at random according to
Pr(Ri,j = 1) = Pr(Ri,j = −1) = 1

2 . Lemma 3.2
of [7] shows that, for t < m1/3,

Tr(E(Rt)) = mt/2+14t.

For t ≥ 10 logm, Lemma 4 implies that

Tr(E(Bt)) = Tr(E(Rt))± 1
2Ω(n−t)

= mt/2+14t ± 1
2Ω(n−t) .

Let λ1 ≥ · · · ≥ λn be the eigenvalues of B. For
any even t, one has that

TrBt =
∑
i

λti ≥ λt1.

Applying this relation with t = 10 logm gives:

Pr(λ1 ≥ 10
√
m) = Pr

(
λt1 ≥ (10

√
m)t

)
≤ (10

√
m)−tEλt1 ≤ (10

√
m)−tmt/2+14t

= m

(
4
10

)t
< 1/m4.

Plugging the bound from Theorem 3 into the ar-
gument from the section B.2 and computing the
correct constants yields that the algorithm finds a
planted clique in G of size at least 100

√
m with

probability 4/5.

B.4 Finding Cliques of Size c
√
m

To break stabilizer money for all ε ≥ c√
m

, we
extend our algorithm to find cliques of size c

√
m

for any c > 0. In [3], Alon et al. show how to
bootstrap the above scheme to work for any c.

The procedure used by Alon et al. is to iterate
over all sets of vertices of size log(100/c), and,
for each such set S, to try to find a clique in the
graph GS of the vertices that are connected to all
of the vertices in S.

When S is in the planted clique, GS also con-
tains the clique. However, |GS | ≈ c|G|/100, as
most of the vertices that are outside the clique are
removed. AsGS behaves like a random graph with
the same distribution as the original graph but with
a planted clique of size 100

√
|GS |, one can find it

using the second largest eigenvector.
To use the same algorithm in our case, we ap-

ply Lemma 4 with parameter k + log 100/c. This
shows that, up to a small additive error, the ex-
pected value of the kth power of the adjacency
matrix of GS behaves like the expected value of
the kth power of the adjacency matrix of a random
graph, which was all that we used in the proof.

14

	Introduction
	Two kinds of quantum money
	Quantum money with a classical secret
	Collision-free quantum money
	Quantum money by postselection
	Verification using rapidly mixing Markov chains

	An example of quantum money by postselection
	Constructing a label function
	Verifying the Quantum Money
	A weakness of this quantum money

	Insecurity of a previously published quantum money scheme
	Attacking the verification circuit for 116m
	Recovering the classical secret for cm

	Conclusions
	Acknowledgments
	References
	Details of the attack against stabilizer money for 116m
	Procedure to Generate i
	Review of the Phase Estimation Algorithm

	Insecurity of the Stabilizer Money for cm
	Properties of the Measurement Graph
	Finding Planted Cliques in Random Graphs
	Bounding 3,…,m
	Finding Cliques of Size cm

