
An Almost-Linear-Time Algorithm for Approximate Max Flow in
Undirected Graphs, and its Multicommodity Generalizations

Jonathan A. Kelner
kelner@mit.edu

MIT

Yin Tat Lee
yintat@mit.edu

MIT

Lorenzo Orecchia
orecchia@mit.edu

MIT

Aaron Sidford
sidford@mit.edu

MIT

Abstract. In this paper, we introduce a new framework for approximately solving flow problems
in capacitated, undirected graphs and apply it to provide asymptotically faster algorithms for the
maximum s-t flow and maximum concurrent multicommodity flow problems. For graphs with n ver-
tices and m edges, it allows us to find an ε-approximate maximum s-t flow in time O(m1+o(1)ε−2),

improving on the previous best bound of Õ(mn1/3poly(1/ε)). Applying the same framework in
the multicommodity setting solves a maximum concurrent multicommodity flow problem with k

commodities in O(m1+o(1)ε−2k2) time, improving on the existing bound of Õ(m4/3poly(k, ε−1)).

Our algorithms utilize several new technical tools that we believe may be of independent in-
terest:

• We give a non-Euclidean generalization of gradient descent and provide bounds on its per-
formance. Using this, we show how to reduce approximate maximum flow and maximum
concurrent flow to oblivious routing.

• We define and provide an efficient construction of a new type of flow sparsifier. Previous
sparsifier constructions approximately preserved the size of cuts and, by duality, the value of
the maximum flows as well. However, they did not provide any direct way to route flows in the
sparsifier G′ back in the original graph G, leading to a longstanding gap between the efficacy
of sparsification on flow and cut problems. We ameliorate this by constructing a sparsifier G′

that can be embedded (very efficiently) into G with low congestion, allowing one to transfer
flows from G′ back to G.

• We give the first almost-linear-time construction of an O(mo(1))-competitive oblivious routing

scheme. No previous such algorithm ran in time better than Ω̃(mn). By reducing the running
time to almost-linear, our work provides a powerful new primitive for constructing very fast
graph algorithms.

We also note that independently Jonah Sherman produced an almost linear time algorithm for
maximum flow and we thank him for coordinating submissions.

ar
X

iv
:1

30
4.

23
38

v2
 [

cs
.D

S]
 2

3
Se

p
20

13

mailto:kelner@mit.edu
mailto:yintat@mit.edu
mailto:orecchia@mit.edu
mailto:sidford@mit.edu

1. Introduction

Given a graph G = (V,E) in which each edge e ∈ E is assigned a nonnegative capacity ~µe,

the maximum s-t flow problem asks us to find a flow ~f that routes as much flow as possible
from a source vertex s to a sink vertex t while sending at most ~µe units of flow over each edge
e. Its generalization, the maximum concurrent multicommodity flow problem, supplies k
source-sink pairs (si, ti) and asks for the maximum α such that we may simultaneously route α

units of flow between each source-sink pair. That is, it asks us to find flows ~f1, . . . , ~fk (which we

think of as corresponding to k different commodities) such that ~fi sends α units of flow from si to

ti, and
∑

i |~fi(e)| ≤ ~µe for all e ∈ E.
These problems lie at the core of graph algorithms and combinatorial optimization, and they

have been extensively studied over the past 60 years [26, 1]. They have found a wide range of
theoretical and practical applications [2], and they are widely used as key subroutines in other
algorithms (see [3, 27]).

In this paper, we introduce a new framework for approximately solving flow problems in capaci-
tated, undirected graphs and apply it to provide asymptotically faster algorithms for the maximum
s-t flow and maximum concurrent multicommodity flow problems. For graphs with n vertices and
m edges, it allows us to find an ε-approximately maximum s-t flows in time O(m1+o(1)ε−2), im-

proving on the previous best bound of Õ(mn1/3poly(1/ε))[7]. Applying the same framework in
the multicommodity setting solves a maximum concurrent multicommodity flow problem with k

commodities in O(m1+o(1)ε−2k2) time, improving on the existing bound of Õ(m4/3poly(k, ε−1))[10].
We believe that both our general framework and several of the pieces necessary for its present

instantiation are of independent interest, and we hope that they will find other applications. These
include:

• a non-Euclidean generalization of gradient descent, bounds on its performance, and a
way to use this to reduce approximate maximum flow and maximum concurrent flow to
oblivious routing;
• the definition and efficient construction of flow sparsifiers; and
• the construction of a new oblivious routing scheme that can be implemented extremely

efficiently.

We have aimed to make our algorithm fairly modular and have thus occasionally worked in
slightly more generality than is strictly necessary for the problem at hand. This has slightly
increased the length of the exposition, but we believe that it clarifies the high-level structure of the
argument, and it will hopefully facilitate the application of these tools in other settings.

1.1. Related Work. For the first several decades of its study, the fastest algorithms for
the maximum flow problem were essentially all deterministic algorithms based on combinatorial
techniques, such as augmenting paths, blocking flows, preflows, and the push-relabel method. These
culminated in the work of Goldberg and Rao [8], which computes exact maximum flows in time

O(min(n2/3,m1/2) log(n2/m) logU) on graphs with edge weights in {0, . . . , U}. We refer the reader
to [8] for a survey of these results.

More recently, a collection of new techniques based on randomization, spectral graph theory and
numerical linear algebra, graph decompositions and embeddings, and iterative methods for convex
optimization have emerged. These have allowed researchers to provide better provable algorithms
for a wide range of flow and cut problems, particularly when one aims to obtain approximately
optimal solutions on undirected graphs.

Our algorithm draws extensively on the intellectual heritage established by these works. In this
section, we will briefly review some of the previous advances that inform our algorithm. We do not
give a comprehensive review of the literature, but instead aim to provide a high-level view of the

1

main tools that motivated the present work, along with the limitations of these tools that had to
be overcome. For simplicity of exposition, we primarily focus on the maximum s-t flow problem
for the remainder of the introduction.

Sparsification. In [5], Benczur and Karger showed how to efficiently approximate any graph
G with a sparse graph G′ on the same vertex set. To do this, they compute a carefully chosen
probability pe for each e ∈ E, sample each edge e with probability pe, and include e in G′ with
its weight increased by a factor of 1/pe if it is sampled. Using this, they obtain, in nearly linear
time, a graph G′ with O(n log n/ε2) edges such that the total weight of the edges crossing any cut
in G′ is within a multiplicative factor of 1 ± ε of the weight crossing the corresponding cut in G.
In particular, the Max-Flow Min-Cut Theorem implies that the value of the maximum flow on G′

is within a factor of 1± ε of that of G.
This is an extremely effective tool for approximately solving cut problems on a dense graph G,

since one can simply solve the corresponding problem on the sparsified graph G′. However, while
this means that one can approximately compute the value of the maximum s-t flow on G by solving
the problem on G′, it is not known how to use the maximum s-t flow on G′ to obtain an actual
approximately maximum flow on G. Intuitively, this is because the weights of edges included in G′

are larger than they were in G, and the sampling argument does not provide any guidance about
how to route flows over these edges in the original graph G.

Iterative algorithms based on linear systems and electrical flows. In 2010, Christiano
et al.[7] described a new linear algebraic approach to the problem that found ε-approximately

maximum s-t flows in time Õ(mn1/3poly(1/ε)). They treated the edges of G as electrical resistors
and then computed the electrical flow that would result from sending electrical current from s to t
in the corresponding circuit. They showed that these flows can be computed in nearly-linear time
using fast Laplacian linear system solvers [13, 14, 11, 17], which we further discuss below. The
electrical flow obeys the flow conservation constraints, but it could violate the capacity constraints.
They then adjusted the resistances of edges to penalize the edges that were flowing too much
current and repeated the process. Kelner, Miller, and Peng [10] later showed how to use more
general objects that they called quadratically coupled flows to use a similar approach to solve the

maximum concurrent multicommodity flow problem in time Õ(m4/3poly(k, 1/ε)).
Following this, Lee, Rao, and Srivastava [16] proposed another iterative algorithm that uses

electrical flows, but in a way that was substantially different than in [7]. Instead of adjusting the
resistances of the edges in each iteration to correct overflowing edges, they keep the resistances
the same but compute a new electrical flow to reroute the excess current. They explain how to
interpret this as gradient descent in a certain space, from which a standard analysis would give

an algorithm that runs in time Õ(m3/2poly(1/ε)). By replacing the standard gradient descent
step with Nesterov’s accelerated gradient descent method [22] and using a regularizer to make

the penalty function smoother, they obtain an algorithm that runs in time Õ(mn1/3poly(1/ε)) in
unweighted graphs.

In all of these algorithms, the superlinear running times arise from an intrinsic Θ(
√
m) factor

introduced by using electrical flows, which minimize an `2 objective function, to approximate the
maximum congestion, which is an `∞ quantity.

Fast solvers for Laplacian linear systems. In their breakthrough paper [30], Spielman and
Teng showed how to solve Laplacian systems in nearly-linear time. (This was later sped up and
simplified by Koutis, Miller, and Peng [13, 14] and Kelner, Orecchia, Sidford, and Zhu [11].) Their
algorithm worked by showing how to approximate the Laplacian LG of a graph G with the Laplacian
LH of a much simpler graph H such that one could use the ability to solve linear systems in LH
to accelerate the solution of a linear system in LG. They then applied this recursively to solve the
linear systems in LH . In addition to providing the electrical flow primitive used by the algorithms

2

described above, the structure of their recursive sequence of graph simplifications provides the
motivating framework for much of the technical content of our oblivious routing construction.

Oblivious routing. In an oblivious routing scheme, one specifies a linear operator taking any
demand vector to a flow routing these demands over the edges of G. Given a collection of demand
vectors, one can produce a multicommodity flow meeting these demands by routing each demand
vector using this pre-specified operator, independently of the others. The competitive ratio of such
an operator is the worst possible ratio between the congestion incurred by a set of demands in this
scheme and the congestion of the best multicommodity flow routing these demands.

In [25], Räcke showed how to construct an oblivious routing scheme with a competitive ratio
of O(log n). His construction worked by providing a probability distribution over trees Ti such
that G embeds into each Ti with congestion at most 1, and such that the corresponding convex
combination of trees embeds into G with congestion O(log n). In a sense, one can view this as
showing how to approximate G by a probability distribution over trees. Using this, he was able to
show how to obtain polylogarithmic approximations for a variety of cut and flow problems, given
only the ability to solve these problems on trees.

We note that such an oblivious routing scheme clearly yields a logarithmic approximation to
the maximum flow and maximum concurrent multicommodity flow problems. However, Räcke’s
construction took time substantially superlinear time, making it too slow to be useful for computing
approximately maximum flows. Furthermore, it only gives a logarithmic approximation, and it is
not clear how to use this a small number of times to reduce the error to a multiplicative ε.

In a later paper [19], Madry applied a recursive technique similar to the one employed by
Spielman and Teng in their Laplacian solver to accelerate many of the applications of Räcke’s
construction at the cost of a worse approximation ratio. Using this, he obtained almost-linear-time
polylogarithmic approximation algorithms for a wide variety of cut problems.

Unfortunately, his algorithm made extensive use of sparsification, which, for the previously
mentioned reasons, made it unable to solve the corresponding flow problems. This meant that, while
it could use flow-cut duality to find a polylogarithmic approximation of the value of a maximum
flow, it could not construct a corresponding flow or repeatedly apply such a procedure a small
number of times to decrease the error to a multiplicative ε.

In simultaneous, independent work [27], Jonah Sherman used somewhat different techniques to
find another almost-linear-time algorithm for the (single-commodity) maximum flow problem. His
approach is essentially dual to ours: Our algorithm maintains a flow that routes the given demands
throughout its execution and iteratively works to improve its congestion. Our main technical tools
thus consist of efficient methods for finding ways to route flow in the graph while maintaining flow
conservation. Sherman, on the other hand, maintains a flow that does not route the given demands,
along with a bound on the congestion required to route the excess flow at the vertices. He then uses
this to iteratively work towards achieving flow conservation. (In a sense, our algorithm is more in
the spirit of augmenting paths, whereas his is more like preflow-push.) As such, his main technical
tools are efficient methods for producing dual objects that give congestion bounds. Objects meeting
many of his requirements were given in the work of Madry [19] (whereas there were no previous
constructions of flow-based analogues, requiring us to start from scratch); leveraging these allows
him to avoid some of the technical complexity required by our approach. We believe that these
paper nicely complement each other, and we enthusiastically refer the reader to Sherman’s paper.

1.2. Our Approach. In this section, we give a high-level description of how we overcome the
obstacles described in the previous section. For simplicity, we suppose for the remainder of this
introduction that all edges have capacity 1.

The problem is thus to send as many units of flow as possible from s to t without sending
more than one unit over any edge. It will be more convenient for us to work with an equivalent

3

congestion minimization problem, where we try to find the unit s-t flow ~f (i.e., a flow sending one

unit from s to t) that minimizes ‖f‖∞ = maxe |~fe|. If we begin with some initial unit s-t flow ~f0,

the goal will be thus be to find the circulation ~c to add to ~f0 that minimizes ‖~f0 + ~c‖∞.

We give an iterative algorithm to approximately find such a ~c. There are 2O(
√

logn log logn)/ε2

iterations, each of which adds a circulation to the present flow and runs in m ·2O(
√

logn log logn) time.
Constructing this scheme consists of two main parts: an iterative scheme that reduces the problem
to the construction of a projection matrix with certain properties; and the construction of such an
operator.

The iterative scheme: Non-Euclidean gradient descent. The simplest way to improve the flow
would be to just perform gradient descent on the maximum congestion of an edge. There are two
problems with this:

The first problem is that gradient descent depends on having a smoothly varying gradient, but
the infinity norm is very far from smooth. This is easily remedied by a standard technique: we
replace the infinity norm with a smoother “soft max” function. Doing this would lead to an update
that would be a linear projection onto the space of circulations. This could be computed using
an electrical flow, and the resulting algorithm would be very similar to the unaccelerated gradient
descent algorithm in [16].

The more serious problem is the one discussed in the previous section: the difference between
`2 and `∞. Gradient steps choose a direction by optimizing a local approximation of the objective
function over a sphere, whereas the `∞ constraint asks us to optimize over a cube. The difference
between the size of the largest sphere inside a cube and the smallest sphere containing it gives
rise to an inherent O(

√
m) in the number of iterations, unless one can somehow exploit additional

structure in the problem.
To deal with this, we introduce and analyze a non-Euclidean variant of gradient descent that

operates with respect to an arbitrary norm.1 Rather than choosing the direction by optimizing a
local linearization of the objective function over the sphere, it performs an optimization over the
unit ball in the given norm. By taking this norm to be `∞ instead of `2, we are able to obtain a
much smaller bound on the number of iterations, albeit at the expense of having to solve a nonlinear
minimization problem at every step. The number of iterations required by the gradient descent
method depends on how quickly the gradient can change over balls in the norm we are using, which
we express in terms of the Lipschitz constant of the gradient in the chosen norm.

To apply this to our problem, we write flows meeting our demands as ~f0 +~c, as described above.
We then need a parametrization of the space of circulations so that the objective function (after
being smoothed using soft max) has a good bound on its Lipschitz constant. Similarly to what
occurs in [11], this comes down to finding a good linear representation of the space of circulations,
which we show amounts in the present setting to finding a matrix that projects into the space of
circulations while meetings certain norm bounds.

Constructing a projection matrix. This reduces our problem to the construction of such a pro-
jection matrix. A simple calculation shows that any linear oblivious routing scheme A with a good
competitive ratio gives rise to a projection matrix with the desired properties, and thus leads to an
iterative algorithm that converges in a small number of iterations. Each of these iterations performs
a matrix-vector multiplication with both A and AT .

Intuitively, this is letting us replace the electrical flows used in previous algorithms with the
flows given by an oblivious routing scheme. Since the oblivious routing scheme was constructed to

1This idea and analysis seems to be implicit in other work, e.g., [24] However, we could not find a clean statement
like the one we need in the literature, and we have not seen it previously applied in similar settings. We believe that
it will find further applications, so we state it in fairly general terms before specializing to what we need for flow
problems.

4

meet `∞ guarantees, while the electrical flow could only obtain such guarantees by relating `2 to
`∞, it is quite reasonable that we should expect this to lead to a better iterative algorithm.

However, the computation involved in existing oblivious routing schemes is not fast enough to
be used in this setting. Our task thus becomes constructing an oblivious routing scheme that we
can compute and work with very efficiently. We do this with a recursive construction that reduces
oblivious routing in a graph to oblivious routing in various successively simpler graphs.

To this end, we show that if G can be embedded with low congestion into H (existentially), and
H can be embedded with low congestion into G efficiently, one can use an oblivious routing on H to
obtain an oblivious routing on G. The crucial difference between the simplification operations we
perform here and those in previous papers (e.g., in the work of Benczur-Karger [5] and Madry [19])
is that ours are accompanied by such embeddings, which enables us to transfer flows from the
simpler graphs to the more complicated ones.

We construct our routing scheme by recursively composing two types of reductions, each of
which we show how to implement without incurring a large increase in the competitive ratio:

• Vertex elimination This shows how to efficiently reduce oblivious routing on a graph G =

(V,E) to routing on t graphs with roughly Õ(|E|/t) vertices. To do this, we show how to
efficiently embed G into t simpler graphs, each consisting of a tree plus a subgraph supported

on roughly Õ(|E|/t) vertices. This follows easily from a careful reading of Madry’s paper [19].
We then show that routing on such a graph can be reduced to routing on a graph with at most

Õ(|E|/t) vertices by collapsing paths and eliminating leaves.

• Flow sparsification This allows us to efficiently reduce oblivious routing on an arbitrary graph

to oblivious routing on a graph with Õ(|V |) edges, which we call a flow sparsifier.
To construct flow sparsifiers, we use local partitioning to decompose the graph into well-

connected clusters that contain many of the original edges. (These clusters are not quite ex-
panders, but they are contained in graphs with good expansion in a manner that is sufficient for
our purposes.) We then sparsify these clusters using standard techniques and then show that
we can embed the sparse graph back into the original graph using electrical flows. If the graph
was originally dense, this results in a sparser graph, and we can recurse on the result. While
the implementation of these steps is somewhat different, the outline of this construction parallels
Spielman and Teng’s approach to the construction of spectral sparsifiers [30, 32].

Combining these two reductions recursively yields an efficient oblivious routing scheme, and
thus an algorithm for the maximum flow problem.

Finally, we show that the same framework can be applied to the maximum concurrent multi-
commodity flow problem. While the norm and regularization change, the structure of the argument
and the construction of the oblivious routing scheme go through without requiring substantial mod-
ification.

2. Preliminaries

General Notation: We typically use ~x to denote a vector and A to denote a matrix. For

~x ∈ Rn, we let |~x| ∈ Rn denote the vector such that ∀i, |~x|i
def
= |~xi|. For a matrix A ∈ Rn×m, we let

|A| denote the matrix such that ∀i, j we have |A|ij
def
= |Aij |. We let ~1 denote the all ones vector

and ~1i denote the vector that is one at position i and 0 elsewhere. We let I be the identity matrix
and Ia→b ∈ Rb×a denote the matrix such that for all i ≤ min{a, b} we have Iii = 1 and Iij = 0
otherwise.

Graphs: Throughout this paper we let G = (V,E, ~µ) denote an undirected capacitated graph
with n = |V | vertices, m = |E| edges, and non-negative capacities ~µ ∈ RE . We let we ≥ 0 denote

the weight of an edge and let re
def
= 1/we denote the resistance of an edge. Here we make no

5

connection between µe and re; we fix their relationship later. While all graphs in this paper are
undirected, we frequently assume an arbitrary orientation of the edges to clarify the meaning of

vectors ~f ∈ RE .
Fundamental Matrices: Let U,W,R ∈ RE×E denote the diagonal matrices associated with

the capacities, the weights, and the resistances respectively. Let B ∈ RE×V denote the graphs
incidence matrix where for all e = (a, b) ∈ E we have BT~1e = ~1a − ~1b. Let L ∈ RV×V denote the

combinatorial graph Laplacian, i.e. L def
= BTR−1B.

Sizes: For all a ∈ V we let da
def
=
∑
{a,b}wa,b denote the (weighted) degree of vertex a and

we let deg(a)
def
= |{e ∈ E | e = {a, b} for some b ∈ V }| denote its (combinatorial) degree. We let

D ∈ RV×V be the diagonal matrix where Da,a = da. Furthermore, for any vertex subset S ⊆ V we

define its volume by vol(S)
def
=
∑

a∈V da .
Cuts: For any vertex subset S ⊆ V we denote the cut induced by S by the edge subset

∂(S)
def
= {e ∈ E | e /∈ S and e /∈ E \ S}

and we denote the cost of F ⊆ E by w(F)
def
=
∑

e∈F we. We denote the conductance of S ⊆ V by

Φ(S)
def
=

w(∂(S))

min{vol(S), vol(V − S)}

and we denote the conductance of a graph by

Φ(G)
def
= min

S⊆V :S/∈{∅,V }
φ(S)

Subgraphs: For a graph G = (V,E) and a vertex subset S ⊆ V let G(S) denote the subgraph
of G consisting of vertex set S and all the edges of E with both endpoints in S, i.e. {(a, b) ∈
E | a, b ∈ S}. When we we consider a term such as vol or Φ and we wish to make the graph such
that this is respect to clear we use subscripts. For example volG(S)(A) denotes the volume of vertex
set A in the subgraph of G induced by S.

Congestion: Thinking of edge vectors, ~f ∈ RE , as flows we let the congestion2 of ~f be given

by cong(~f)
def
= ‖U−1 ~f‖∞. For any collection of flows {~fi} = {~f1, . . . , ~fk} we overload notation and

let their total congestion be given by

cong({~fi})
def
=

∥∥∥∥∥U−1
∑
i

|~fi|

∥∥∥∥∥
∞

Demands and Multicommodity Flow: We call a vector ~χ ∈ RV a demand vector if itis

the case that
∑

a∈V ~χ(a) = 0 and we say ~f ∈ RE meets the demands if BT ~f = ~χ. Given a set of
demands D = {~χ1, . . . , ~χk}, i.e. ∀i ∈ [k],

∑
a∈V ~χi(a) = 0, we denote the optimal low congestion

routing of these demands as follows

opt(D)
def
= min
{~fi}∈RE : {BT ~fi}={~χi}

cong({~fi})

We call a set of flows {~fi} that meet demands {~χi}, i.e. ∀i,BT ~fi = ~χi, a multicommodity flow
meeting the demands.

2Note that here and in the rest of the paper we will focus our analysis with congestion with respect to the norm
‖ · ‖∞ and we will look at oblivious routing strategies that are competitive with respect to this norm. However, many
of the results present are easily generalizable to other norms. These generalizations are outside the scope of this
paper.

6

Operator Norm: Let ‖ · ‖ be a family of norms applicable to Rn for any n. We define this
norms’ induced norm or operator norm on the set of of m× n matrices by

∀A ∈ Rn×m : ‖A‖ def
= max

~x∈Rn

‖A~x‖
‖~x‖

Running Time: For matrix A, we let T (A) denote the maximum amount of time needed to
apply A or AT to a vector.

3. Solving Max-Flow Using a Circulation Projection

3.1. Gradient Descent. In this section, we discuss the gradient descent method for general
norms. Let ‖ · ‖ : Rn → R be an arbitrary norm on Rn and recall that the gradient of f at ~x is
defined to be the vector ∇f(~x) ∈ Rn such that

f(~y) = f(~x) + 〈∇f(~x), ~y − ~x〉+ o(‖~y − ~x‖). (1)

The gradient descent method is a greedy minimization method that updates the current vector,
~x, using the direction which minimizes 〈∇f(~x), ~y − ~x〉. To analyze this method’s performance,
we need a tool to compare the improvement 〈∇f(~x), ~y − ~x〉 with the step size, ‖~y − ~x‖, and the
quantity, ‖∇f(~x)‖. For `2 norm, this can be done by Cauchy Schwarz inequality and in general, we
can define a new norm for ∇f(~x) to make this happens. We call this the dual norm ‖ · ‖∗ defined
as follows

‖~x‖∗ def
= max

~y∈Rn : ‖~y‖≤1

〈
~y, ~x
〉
.

Fact 53 shows that this definition indeed yields that
〈
~y, ~x
〉
≤ ‖~y‖∗‖~x‖. Next, we define the fastest

increasing direction x#, which is an arbitrary point satisfying the following

~x# def
= arg max

~s∈R

〈
~x,~s
〉
− 1

2
‖~s‖2.

In the appendix, we provide some facts about ‖ · ‖∗ and ~x# that we will use in this section. Using
the notations defined, the gradient descent method simply produces a sequence of ~xk such that

~xk+1 := ~xk − tk(5f(~xk))
#

where tk is some chosen step size for iteration k. To determine what these step sizes should be we
need some information about the smoothness of the function, in particular, the magnitude of the
second order term in (1). The natural notion of smoothness for gradient descent is the Lipschitz
constant of the gradient of f , that is the smallest constant L such that

∀~x, ~y ∈ Rn : ‖ 5 f(~x)−5f(~y)‖∗ ≤ L · ‖~x− ~y‖.
In the appendix we provide an equivalent definition and a way to compute L, which is useful later.

Let X∗ ⊆ Rn denote the set of optimal solutions to the unconstrained minimization problem
minx∈Rn f and let f∗ denote the optimal value of this minimization problem, i.e.

∀~x ∈ X∗ : f(~x) = f∗ = min
~y∈Rn

f(y) and ∀~x /∈ X∗ : f(~x) > f∗

We assume that X∗ is non-empty. Now, we are ready to estimate the convergence rate of the
gradient descent method.

Theorem 1 (Gradient Descent). Let f : Rn → R be a convex continuously differentiable func-
tion and let L be the Lipschitz constant of ∇f . For initial point ~x0 ∈ Rn we define a sequence of
~xk by the update rule

~xk+1 := ~xk −
1

L
(5f(~xk))

#

7

For all k ≥ 0, we have

f(~xk)− f∗ ≤
2 · L ·R2

k + 4
where R

def
= max

~x∈Rn:f(~x)≤f(~x0)
min
~x∗∈X∗

‖~x− ~x∗‖.

Proof. 3 By the Lipschitz continuity of the gradient of f and Lemma 54 we have

f(~xk+1) ≤ f(~xk)−
1

2L
(‖ 5 f(~xk)‖∗)2 .

Furthermore, by the convexity of f , we know that

∀~x, ~y ∈ Rn : f(~y) ≥ f(~x) +
〈
5 f(~x), ~y − ~x

〉
.

Using this and the fact that f(~xk) decreases monotonically with k, we get

f(~xk)− f∗ ≤ min
~x∗∈X∗

〈
5 f(~xk), ~xk − ~x∗

〉
≤ min

~x∗∈X∗
‖ 5 f(~xk)‖∗‖~xk − ~x∗‖ ≤ R‖ 5 f(~xk)‖∗.

Therefore, letting φk
def
= f(~xk)− f∗, we have

φk − φk+1 ≥
1

2L
(‖ 5 f(~xk)‖∗)2 ≥

φ2
k

2 · L ·R2
.

Furthermore, since φk ≥ φk+1, we have

1

φk+1
− 1

φk
=
φk − φk+1

φkφk+1
≥ φk − φk+1

φ2
k

≥ 1

2 · L ·R2
.

So, by induction, we have that
1

φk
− 1

φ0
≥ k

2 · L ·R2
.

Now, note that since 5f(~x∗) = 0, we have that

f(~x0) ≤ f(~x∗) +
〈
5 f(~x∗), ~x0 − ~x∗

〉
+
L

2
‖~x0 − ~x∗‖2 ≤ f(~x∗) +

L

2
R2.

So, we have that φ0 ≤ L
2R

2 and putting this all together yields that

1

φk
≥ 1

φ0
+

k

2 · L ·R2
≥ 4

2 · L ·R2
+

k

2 · L ·R2
.

�

3.2. Maximum Flow Formulation . For an arbitrary set of demands ~χ ∈ RV we wish to
solve the following maximum flow problem

max
α∈R,~f∈RE

α subject to BT ~f = α~χ and ‖U−1 ~f‖∞ ≤ 1.

Equivalently, we want to compute a minimum congestion flow

min
~f∈RE : BT ~f=~χ

‖U−1 ~f‖∞.

where we call ‖U−1 ~f‖∞ the congestion of ~f .

Letting ~f0 ∈ RE be some initial feasible flow, i.e. BT ~f0
def
= ~χ, we write the problem equivalently

as
min

~c∈RE : BT~c=0
‖U−1(~f0 + ~c)‖∞

where the output flow is ~f = ~f0 + ~c. Although the gradient descent method is applicable to con-
strained optimization problems and has a similar convergence guarantee, the sub-problem involved

3The structure of this specific proof was modeled after a proof in [24] for a slightly different problem.

8

in each iteration is a constrained optimization problem, which is quite complicated in this case.
Since the domain is a linear subspace, the constraints can be avoided by projecting the variables
onto this subspace.

Formally, we define a circulation projection matrix as follows.

Definition 2. A matrix P̃ ∈ RE×E is a circulation projection matrix if it is a projection
matrix onto the circulation space, i.e. it satisfies the following

• ∀~x ∈ RE we have BT P̃~x = ~0.
• ∀~x ∈ RE with BT~x = ~0 we have P~x = ~x.

Then, the problem becomes

min
~c∈RE

‖U−1(~f0 + P̃~c)‖∞.

Applying gradient descent on this problem is similar to applying projected gradient method on the
original problem. But, instead of using the orthogonal projection that is not suitable for ‖ · ‖∞, we
will pick a better projection matrix.

Applying the change of basis ~x = U−1~c and letting ~α0 = U−1 ~f0 and P = U−1P̃U, we write
the problem equivalently as

min
~x∈RE

‖ ~α0 + P~x‖∞

where the output maximum flow is

~f(~x) = U(~α0 + P~x)/‖U(~α0 + P~x)‖∞.

3.3. An Approximate Maximum Flow Algorithm. Since the gradient descent method
requires the objective function to be differentiable, we introduce a smooth version of ‖ · ‖∞ which
we call smaxt. In next section, we prove that there is a convex differentiable function smaxt such
that 5smaxt is Lipschitz continuous with Lipschitz constant 1

t and such that

∀~x ∈ RE : ‖~x‖∞ − t ln(2m) ≤ smaxt(~x) ≤ ‖~x‖∞ .

Now we consider the following regularized optimization problem

min
~x∈RE

gt(~x) where gt(~x) = smaxt(~α0 + P~x).

For the rest of this section, we consider solving this optimization problem using gradient descent
under ‖ · ‖∞.

First, we bound the Lipschitz constant of the gradient of gt.

Lemma 3. The gradient of gt is Lipschitz continuous with Lipschitz constant L = ‖P‖2∞
t

Proof. By Lemma 54 and the Lipschitz continuity of 5smaxt, we have

smaxt(~y) ≤ smaxt(~x) +
〈
∇smaxt(~x), ~y − ~x

〉
+

1

2t
‖~y − ~x‖∞.

Seting ~x← ~α0 + P~x and ~y ← ~α0 + P~y, we have

gt(~y) ≤ gt(~y) +
〈
∇smaxt(~α0 + P~x),P~y −P~x

〉
+

1

2t
‖P~y −P~x‖2∞

≤ gt(~y) +
〈
PT∇smaxt(~α0 + P~x), ~y − ~x

〉
+

1

2t
‖P‖2∞‖~y − ~x‖2∞

= gt(~y) +
〈
∇gt(~x), ~y − ~x

〉
+

1

2t
‖P‖2∞‖~y − ~x‖2∞.

Hence, the result follows from Lemma 54. �
9

Now, we apply gradient descent to find an approximate max flow as follows.

MaxFlow

Input: any initial feasible flow ~f0 and OPT = min~x ‖U−1 ~f0 + P~x‖∞.

1. Let ~α0 = (I−P) U−1 ~f0 and ~x0 = 0.
2. Let t = εOPT/2 ln(2m) and k = 300‖P‖4∞ ln(2m)/ε2.
3. Let gt = smaxt(~α0 + P~x).
4. For i = 1, · · · , k
5. ~xi+1 = ~xi − t

‖P‖2∞
(5gt(~xi))#. (See Lemma 5)

6. Output U (~α0 + P~xk) /‖ ~α0 + P~xk‖∞.

We remark that the initial flow can be obtained by BFS and the OPT value can be approximted
using binary search. In Section 7, we will give an algorithm with better dependence on ‖P‖.

Theorem 4. Let P̃ be a cycle projection matrix, let P = U−1P̃U, and let ε < 1. MaxFlow
outputs an (1− ε)-approximate maximum flow in time

O

(
‖P‖4∞ ln(m) (T (P) +m)

ε2

)
.

Proof. First, we bound ‖ ~α0‖∞. Let ~x∗ be a minimizer of min~x ‖U−1 ~f0 + P~x‖∞ such that
P~x∗ = ~x∗. Then, we have

‖ ~α0‖∞ = ‖U−1 ~f0 −PU−1 ~f0‖∞
≤ ‖U−1 ~f0 + ~x∗‖∞ + ‖~x∗ + PU−1 ~f0‖∞
= ‖U−1 ~f0 + ~x∗‖∞ + ‖P~x∗ + PU−1 ~f0‖∞
≤ (1 + ‖P‖∞) ‖U−1 ~f0 + ~x∗‖∞
= (1 + ‖P‖∞) OPT.

Second, we bound R in Theorem 1. Note that

gt(~x0) = smaxt(~α0) ≤ ‖ ~α0‖∞ ≤ (1 + ‖P‖∞) OPT.

Hence, the condition gt(~x) ≤ gt(~x0) implies that

‖ ~α0 + P~x‖∞ ≤ (1 + ‖P‖∞) OPT + t ln(2m).

For any ~y ∈ X∗ let ~c = ~x−P~x+~y and note that P~c = P~y and therefore ~c ∈ X∗. Using these facts,
we can bound R as follows

R = max
~x∈RE : gt(~x)≤gt(~x0)

{
min
~x∗∈X∗

‖~x− ~x∗‖∞
}

≤ max
~x∈RE : gt(~x)≤gt(~x0)

‖~x− ~c‖∞

≤ max
~x∈RE : gt(~x)≤gt(~x0)

‖P~x−P~y‖∞

≤ max
~x∈RE : gt(~x)≤gt(~x0)

‖P~x‖∞ + ‖P~y‖∞

≤ 2‖ ~α0‖∞ + ‖ ~α0 + P~x‖∞ + ‖ ~α0 + P~y‖∞
≤ 2‖ ~α0‖∞ + 2‖ ~α0 + P~x‖∞
≤ 4 (1 + ‖P‖∞) OPT + 2t ln(2m).

10

From Lemma 3, we know that the Lipschitz constant of 5gt is ‖P‖2∞/t. Hence, Theorem 1 shows
that

gt(~xk) ≤ min
~x
gt(~x) +

2 · L ·R2

k + 4

≤ OPT +
2 · L ·R2

k + 4
.

So, we have

‖ ~α0 + P~xk‖∞ ≤ gt(~xk) + t ln(2m)

≤ OPT + t ln(2m) +
2‖P‖2∞
t(k + 4)

(4 (1 + ‖P‖∞) OPT + 2t ln(2m))2 .

Using t = εOPT/2 ln(2m) and k = 300‖P‖4∞ ln(2m)/ε2, we have

‖ ~α0 + P~xk‖∞ ≤ (1 + ε)OPT.

Therefore, ~α0 + P~xk is an (1− ε) approximate maximum flow.

Now, we estimate the running time. In each step 5, we are required to compute (5g(~xk))
#.

The gradient

∇g(~x) = PT∇smaxt(~α0 + P~x)

can be computed in O(T (P) + m) using the formula of the gradient of smaxt, applications of P
and PT . Lemma 5 shows that the # operator can be computed in O(m). �

Lemma 5. In ‖ · ‖∞, the # operator is given by the explicit formula(
~x#
)
e

= sign(xe)‖~x‖1 for e ∈ E.

Proof. Recall that

~x# = arg max
~s∈R

〈
~x,~s
〉
− 1

2
‖~s‖2∞.

It is easy to see that for all e ∈ E, ||~x#||∞ =
∣∣(~x#

)
e

∣∣ . In particular, we have(
~x#
)
e

= sign(xe)||~x#||∞.

Fact 52 shows that ||~x#||∞ = ‖~x‖1 and the result follows. �

3.4. Properties of soft max. In this section, we define smaxt and discuss its properties. For-
mally, the regularized convex function can be found by smoothing technique using convex conjugate
[21] [6, Sec 5.4]. For simplicity and completeness, we define it explicitly and prove its properties
directly. Formally, we define

∀~x ∈ RE ,∀t ∈ R+ : smaxt(~x)
def
= t ln

(∑
e∈E exp

(
xe
t

)
+ exp

(
−xe

t

)
2m

)
.

For notational simplicity, for all ~x where this vector is clear from context, we define ~c and ~s as
follows

∀e ∈ E : ~ce
def
= exp

(xe
t

)
+ exp

(
−xe
t

)
and ~se

def
= exp

(xe
t

)
− exp

(
−xe
t

)
,

where the letters are chosen due to the very close resemblance to hyperbolic sine and hyperbolic
cosine.

11

Lemma 6.

∀~x ∈ Rn : 5smaxt(~x) =
1

~1T~c
~s

∀~x ∈ Rn : 52smaxt(~x) =
1

t
(
~1T~c

) [diag(~c)− ~s~sT

~1T~c

]

Proof. For all i ∈ E and ~x ∈ RE , we have

∂

∂xi
smaxt(~x) =

∂

∂xi

(
t ln

(∑
e∈E exp

(
xe
t

)
+ exp

(
−xe

t

)
2m

))

=
exp

(
xi
t

)
− exp

(
−xi

t

)∑
e∈E exp

(
xe
t

)
+ exp

(
−xe

t

) .
For all i, j ∈ E and ~x ∈ RE , we have

∂2

∂xi∂xj
smaxt(~x) =

∂2

∂xi∂xj

(
t ln

(∑
e∈E exp

(
xe
t

)
+ exp

(
−xe

t

)
2m

))

=
∂

∂j

[
exp

(
xi
t

)
− exp

(
−xi

t

)∑
e∈E exp

(
xe
t

)
+ exp

(
−xe

t

)]

=
1

t

(
~1T~c

)
~1i=j (~ci)− ~si~sj(
~1T~c

)2 .

�

Lemma 7. The function smaxt is a convex continuously differentiable function and it has Lip-
schitz continuous gradient with Lipschitz constant 1/t and

‖~x‖∞ − t ln(2m) ≤ smaxt(~x) ≤ ‖~x‖∞

for ~x ∈ RE.

Proof. By the formulation of the Hessian, for all ~x, ~y ∈ RE , we have

~yT
(
52smaxt(~x)

)
~y ≤

∑
i ci~y

2
i

t(~1T~c)
≤
∑

i ci(maxj ~y
2
j)

t(~1T~c)
≤ 1

t
‖y‖2∞.

On the other side, for all ~x, ~y ∈ RE , we have by si ≤ |si| ≤ ci and Cauchy Schwarz shows that

~yT~s~sT~y ≤ (~1T~|s|)(~yT diag(~|s|)~y). ≤ (~1T~c)(~yT diag(~c)~y).

and hence

0 ≤ ~yT
(
52smaxt(~x)

)
~y.

Thus, the first part follows from Lemma 55. For the later part, we have

‖~x‖∞ ≥ t ln

(∑
e∈E exp

(
xe
t

)
+ exp

(
−xe

t

)
2m

)
≥ t ln

exp
(
‖~x‖∞
t

)
2m

 = ‖~x‖∞ − ln(2m).

�
12

4. Oblivious Routing

In the previous sections, we saw how a circulation projection matrix can be used to solve max
flow. In the next few sections, we show how to efficiently construct a circulation projection matrix
to obtain an almost linear time algorithm for solving max flow.

Our proof focuses on the notion of (linear) oblivious routings. Rather than constructing the
circulation projection matrix directly, we show how the efficient construction of an oblivious routing
algorithm with a good competitive ratio immediately allows us to produce a circulation projection
matrix.

In the remainder of this section, we formally define oblivious routings and prove the relation-
ship between oblivious routing and circulation projection matrices (Section 4.1), provide a high
level overview of our recursive approach and state the main theorems we will prove in later sec-
tions (Section 4.2). Finally, we prove the main theorem about our almost-linear-time construction

of circulation projection with norm 2O(
√

log(n) log log(n)) assuming the proofs in the later sections
(Section 4.3).

4.1. From Oblivious Routing to Circulation Projection. Here we provide definitions
and prove basic properties of oblivious routings, that is, fixed mappings from demands to flows
that meet the input demands. While non-linear algorithms could be considered, we restrict our
attention to linear oblivious routing strategies and use the term oblivious routing to refer to the
linear subclass for the remainder of the paper.4

Definition 8 (Oblivious Routing). An oblivious routing on graph G = (V,E) is a linear
operator A ∈ RE×V such that for all demands ~χ ∈ RV , BTA~χ = ~χ. We call A~χ the routing of ~χ
by A.

Oblivious routings get their name due to the fact that, given an oblivious routing strategy A
and a set of demands D = {~χ1, . . . , ~χk}, one can construct a multicommodity flow satisfying all
the demands in D by using A to route each demand individually, obliviously to the existence of
the other demands. We measure the competitive ratio5 of such an oblivious routing strategy to be
the ratio of the worst relative congestion of such a routing to the minimal-congestion routing of
the demands.

Definition 9 (Competitive Ratio). The competitive ratio of oblivious routing A ∈ RE×V ,
denoted ρ(A), is given by

ρ(A)
def
= max
{~χi} : ∀i ~χi⊥~1

cong({A~χi})
opt({~χi})

At times, it will be more convenient to analyze an oblivious routing as a linear algebraic object
rather a combinatorial algorithm; towards this end, we note that the competitive ratio of a linear
oblivious routing strategy can be gleaned from the operator norm of a related matrix (see also [15]
and [9]). Below, we state and prove a generalization of this result to weighted graphs that will be

vital to relating A to P̃.

Lemma 10. For any oblivious routing A, we have ρ(A) = ‖U−1ABTU‖∞
Proof. For a set of demands D, let D∞ be the set of demands that results by taking the routing

of every demand in D by opt(D) and splitting it up into demands on every edge corresponding to
the flow sent by opt(D). Now, clearly opt(D) = opt(D∞) since routing D can be used to route

4Note that the oblivous routing strategies considered in [9] [15] [25] are all linear oblivious routing strategies.
5Again note that here and in the rest of the paper we focus our analysis on competitive ratio with respect to

norm ‖ · ‖∞. However, many of the results present are easily generalizable to other norms. These generalizations are
outside the scope of this paper.

13

D∞ and vice versa, and clearly cong(AD) ≤ cong(AD∞) by the linearity of A (routing D∞ simply
doesn’t reward A routing for cancellations). Therefore,

ρp(A) = max
D

cong({AD})
opt(D)

= max
D∞

cong(AD∞)

opt(D∞)
= max

~x∈RE

‖
∑

e∈E ~xe
∣∣U−1A~χe

∣∣ ‖∞
‖U−1~x‖∞

= max
~x∈RE

‖
∣∣U−1ABT

∣∣ ~x‖∞
‖U−1~x‖∞

= max
~x∈RE

‖
∣∣U−1ABTU

∣∣ ~x‖∞
‖~x‖∞

.

�

To make this lemma easily applicable in a variety of settings, we make use of the following easy
to prove lemma.

Lemma 11 (Operator Norm Bounds). For all A ∈ Rn×m, we have that

‖A‖∞ = ‖ |A| ‖∞ = ‖ |A|~1‖∞ = max
i∈n
‖|A|T~1i‖1

The previous two lemmas make the connection between oblivious routings and circulation pro-
jection matrices clear. Below, we prove it formally.

Lemma 12 (Oblivious Routing to Circulation Projection). For oblivious routing A ∈ RE×V the

matrix P̃
def
= I−ABT is a circulation projection matrix such that ‖UP̃U−1‖∞ ≤ 1 + ρ(A) .

Proof. First, we verify that im(P̃) is contained in cycle space:

∀~x ∈ RE : BT P̃~x = BT~x−ABT~x = ~0.

Next, we check that P̃ is the identity on cycle space

∀~x ∈ RE s.t. BT~x = ~0 : P̃~x = ~x−ABT~x = ~x.

Finally, we bound the `∞-norm of the scaled projection matrix:

‖UP̃U−1‖∞ = ‖I−UABTU−1‖∞ ≤ 1 + ρ(A).

�

4.2. A Recursive Approach by Embeddings. We construct an oblivious routing for a
graph recursively. Given a generic, possibly complicated, graph, we show how to reduce computing
an oblivious routing on this graph to computing an oblivious routing on a simpler graph on the
same vertex set. A crucial concept in these constructions will be the notion of an embedding, which
will allow us to relate the competitive ratios of an oblivious routing algorithms over graphs on the
same vertex sets but different edge sets.

Definition 13 (Embedding). Let G = (V,E, ~µ) and G′ = (V,E′, ~µ′) denote two undirected

capacitated graphs on the same vertex set with incidence matrices B ∈ RE×V and B′ ∈ RE
′×V

respectively. An embedding from G to G′ is a matrix M ∈ RE
′×E such that B′TM = BT .

In other words, an embedding is a map from flows in one graph G to flows in another graph G′

that preserves the demands met by the flow. We can think of an embedding as a way of routing
any flow in graph G into graph G′ that has the same vertex set, but different edges. We will be
particularly interested in embeddings that increase the congestion of the flow by a small amount
going from G to G′.

14

Definition 14 (Embedding Congestion). Let M ∈ RE
′×E be an embedding from G = (V,E, ~µ)

to G′ = (V,E′, ~µ′) and let U ∈ RE×E and U′ ∈ RE
′×E′ denote the capacity matrices of G and G′

respectively. The congestion of embedding M is given by

cong(M)
def
= max

~x∈RE

‖U′−1M~x‖∞
‖U−1~x‖∞

= ‖U′−1|M|U~1‖∞ .

We say G embeds into G′ with congestion α if there exists an embedding M from G to G′ such
that cong(M) ≤ α

Embeddings potentially allow us to reduce computing an oblivious routing in a complicated
graph to computing an oblivious routing in a simpler graph. Specifically, if we can embed a
complicated graph in a simpler graph and we can efficiently embed the simple graph in the original
graph, both with low congestion, then we can just focus on constructing oblivious routings in the
simpler graph. We prove this formally as follows.

Lemma 15 (Embedding Lemma). Let G = (V,E, ~µ) and G′ = (V,E′, ~µ′) denote two undirected

capacitated graphs on the same vertex sets, let M ∈ RE
′×E denote an embedding from G into G′, let

M′ ∈ RE×E
′

denote an embeding from G′ into G, and let A′ ∈ RE
′×V denote an oblivious routing

algorithm on G′. Then A
def
= M′A′ is an oblivious routing algorithm on G and

ρ(A) ≤ cong(M) · cong(M′) · ρ(A′)

Proof. For all ~x ∈ RV we have by definition of embeddings and oblivious routings that

BTA~x = BTM′A′~x = BT~x.

To bound ρ(A), we let U denote the capacity matrix of G and U′ denote the capacity matrix of
G′. Using Lemma 10, we get

ρ(A) = ‖U−1ABTU‖∞ = ‖U−1M′A′BTU‖∞
Using that M is an embedding and therefore B′TM = BT , we get

ρ(A) = ‖U−1M′A′B′
T
MU‖∞ ≤ ‖U−1M′U′‖∞ · ‖U′−1

A′B′
T
U′‖∞ · ‖U′−1

MU‖∞
By the definition of competitive ratio and congestion, we obtain the result. �

Note how in this lemma we only use the embedding from G to G′ to certify the quality of flows
in G′, we do not actually need to apply this embedding in the reduction.

Using this concept, we construct oblivious routings via recursive application of two techniques.
First, in Section 5 we show how to take an arbitrary graph G = (V,E) and approximate it by a

sparse graph G′ = (V,E′) (i.e. one in which |E′| = Õ(|V |)) such that flows in G can be routed in

G′ with low congestion and that there is an Õ(1) embedding from G′ to G that can be applied in

Õ(|E|) time. We call such a construction a flow sparsifiers and prove the following theorem.

Theorem 16 (Edge Sparsification). Let G = (V,E, ~µ) be an undirected capacitated graph with

capacity ratio U ≤ poly(|V |). In Õ(|E|) time we can construct a graph G′ on the same vertex set

with at most Õ(|V |) edges and capacity ratio at most U · poly(|V |). Moreover, given an oblivious

routing A′ on G′, in Õ(|E|) time we can construct an oblivious routing A on G such that

T (A) = Õ(|E|+ T
(
A′
)
) and ρ(A) = Õ(ρ(A′))

Next, in Section 6 we show how to embed a graph into a collection of graphs consisting of trees
plus extra edges. Then, we will show how to embed these graphs into better structured graphs
consisting of trees plus edges so that by simply removing degree 1 and degree 2 vertices we are left
with graphs with fewer vertices. Formally, we prove the following.

15

Theorem 17 (Vertex Elimination). Let G = (V,E, ~µ) be an undirected capacitated graph with

capacity ratio U . For all t > 0 in Õ(t · |E|) time we can compute graphs G1, . . . , Gt each with at

most Õ(|E| log(U)
t) vertices, at most |E| edges, and capacity ratio at most |V | · U. Moreover, given

oblivious routings Ai for each Gi, in Õ(t · |E|) time we can compute an oblivious routing A on G
such that

T (A) = Õ(t · |E|+
t∑
i=1

T (Ai)) and ρ(A) = Õ(max
i
ρ(Ai))

In the next section we show that the careful application of these two ideas along with a powerful
primitive for routing on constant sized graphs suffices to produce an oblivious routing with the
desired properties.

4.3. Efficient Oblivious Routing Construction Proof. First, we provide the lemma that
will serve as the base case of our recursion. In particular, we show that electric routing can be used
to obtain a routing algorithm with constant competitive ratio for constant-size graphs.

Lemma 18 (Base Case). Let G = (V,E, ~µ) be an undirected capacitated graph and let us assign

weights to edges so that W = U2. For L def
= BTWB we have that A

def
= WBL† is an oblivious

routing on G with ρ(A) ≤
√
|E| and T

(
L†
)

= Õ(|E|).

Proof. To see that A is an oblivious routing strategy we note that for any demands ~χ ∈ RV

we have BTA = LL† = I. To see bound ρ(A) we note that by Lemma 10 and standard norm
inequalities we have

ρ(A) = max
~x∈RE

‖U−1WBL†BTU~x‖∞
‖~x‖∞

≤ max
~x∈RE

‖UBL†BTU~x‖2
1√
|E|
‖~x‖2

=
√
|E| · ‖UBL†BTU‖2

The result follows from the fact in [29] that Π
def
= UBL†BTU is an orthogonal projection, and

therefore ‖Π‖2 ≤ 1, and the fact in [31, 12, 14, 11] that T
(
L†
)

= Õ(|E|). �

Assuming Theorem 16 and Theorem 17, which we prove in the next two sections, we prove that
low-congestion oblivious routings can be constructed efficiently.

Theorem 19 (Recursive construction). Given an undirected capacitated graph G = (V,E, ~µ)
with capacity ratio U . Assume U = poly(|V |). We can construct an oblivious routing algorithm A
on G in time

O(|E|2O(
√

log |V | log log |V |))

such that

T (A) = |E|2O(
√

log |V | log log |V |) and ρ(A) = 2O(
√

log |V | log log |V |).

Proof. Let c be the constant hidden in the exponent terms, including Õ(·) and poly(·) in

Theorem 16 and Theorem 17. Apply Theorem 16 to construct a sparse graph G(1), then apply

Theorem 17 with t =
⌈
2
√

log |V | log log |V |
⌉

to get t graphs G
(1)
1 , · · ·G(1)

t such that each graphs have

at most O
(

1
t |E| log2c |V | logU

)
vertices and at most U · |V |2c capacity ratio.

Repeat this process on each G
(1)
i , it produces t2 graphs G

(2)
1 , · · · , G(2)

t2
. Keep doing this until all

graphs Gi produced have O(1) vertices. Let k be the highest level we go through in this process.

Since at the k-th level the number of vertices of each graph is at mostO
(

1
tk
|E| log2kc |V | log2k(U |V |2ck)

)
vertices, we have k = O

(√
log |V |

log log |V |

)
.

16

On each graph Gi, we use Theorem 18 to get an oblivious routing algorithm Ai for each Gi
with

T (Ai) = O(1) and ρ(Ai) = O(1).

Then, the Theorem 17 and 16 shows that we have an oblivious routing algorithm A for G with

T (A) = O(tk|E| logck(|V |) log2k(U |V |2ck)) and ρ(A) = O(log2kc |V | logk(U |V |2ck)).

The result follows from k = O
(√

log |V |
log log |V |

)
and t =

⌈
2
√

log |V | log log |V |
⌉
. �

Using Theorem 19, Lemma 12 and Theorem 4, we have the following almost linear time max
flow algorithm on undirected graph.

Theorem 20. Given an undirected capacitated graph G = (V,E, ~µ) with capacity ratio U .
Assume U = poly(|V |). There is an algorithm finds an (1− ε) approximate maximum flow in time

O

 |E|2O(√log |V | log log |V |
)

ε2

 .

5. Flow Sparsifiers

In order to prove Theorem 16, i.e. reduce the problem of efficiently computing a competi-
tive oblivious routing on a dense graph to the same problem on a sparse graph, we introduce a
new algorithmic tool called flow sparsifiers. 6 A flow sparsifier is an efficient cut-sparsification
algorithm that also produces an efficiently-computable low-congestion embedding mapping the
sparsified graph back to the original graph.

Definition 21 (Flow Sparsifier). An algorithm is a (h, ε, α)-flow sparsifier if on input graph
G = (V,E, µ) with capacity ratio U it outputs a graph G′ = (V,E′, µ′) with capacity ratio U ′ ≤
U · poly(|V |) and an embedding M : RE

′ → RE of G′ into G with the following properties:

• Sparsity: G′ is h-sparse, i.e.

|E′| ≤ h
• Cut Approximation: G′ is an ε-cut approximation of G, i.e.

∀S ⊆ V : (1− ε)µ(∂G(S)) ≤ µ′(∂G′(S)) ≤ (1 + ε)µ(∂G(S))

• Flow Approximation: M has congestion at most α, i.e.

cong(M) ≤ α.

• Efficiency: The algorithm runs in Õ(m) time and T (M) is also Õ(m).

Flow sparsifiers allow us to solve a multi-commodity flow problem on a possibly dense graph G
by converting G into a sparse graph G′ and solving the flow problem on G′, while suffering a loss
of a factor of at most α in the congestion when mapping the solution back to G using M.

Theorem 22. Consider a graph G = (V,E, µ) and let G′ = (V,E′, µ′) be given by an (h, ε, α)-
flow sparsifier of G. Then, for any set of k demands D = {~χ1, ~χ2, . . . , ~χk} between vertex pairs of
V, we have:

optG′(D) ≤ O(log k)

1− ε
· optG(D). (2)

6Note that our flow sparsifiers aim to reduce the number of edges, and are different from the flow sparsifiers of
Leighton and Moitra [18], which work in a different setting and reduce the number of vertices.

17

Given the optimum flow {f?i } over G′, we have

congG({Mf?i }) ≤ α · optG′(D) ≤ O(α log k)

1− ε
· optG(D).

Proof. By the flow-cut gap theorem of Aumann and Rabani [4], we have that, for any set of
k demands D on V we have:

optG(D) ≥ O
(

1

log k

)
·max
S⊂V

D(∂(S))

µ(∂G(S))
.

where D(∂(S)) denotes the total amount of demand separated by the cut between S and S̄. As any
cut S ⊆ V in G′ has capacity µ′(∂G′(S)) ≥ (1− ε)µ(∂G(S)), we have:

optG′(D) ≤ max
S⊂V

D(∂(S))

µ′(∂G′(S))
≤ 1

1− ε
·max
S⊂V

D(∂(S))

µ(∂G(S))
≤ O(log k)

1− ε
· optG(D).

The second part of the theorem follows as a consequence of the definition of the congestion of the
embedding M. �

Our flow sparsifiers should be compared with the cut-based decompositions of Räcke [25].
Räcke constructs a probability distribution over trees and gives explicit embeddings from G to this
distribution and backwards, achieving a congestion of O(log n). However, this distribution over tree
can include up to O(m log n) trees and it is not clear how to use it to obtain an almost linear time
algorithm. Flow sparsifiers answer this problem by embedding G into a single graph G′, which is
larger than a tree, but still sparse. Moreover, they provide an explicit efficient embedding of G′ into
G. Interestingly, the embedding from G to G′ is not necessary for our notion of flow sparsifier, and
is replaced by the cut-approximation guarantee. This requirement, together with the application
of the flow-cut gap [4], lets us argue that the optimal congestion of a k-commodity flow problem
can change at most by a factor of O(log k) between G and G′.

5.0.1. Main Theorem on Flow Sparsifiers and Proof of Theorem 16. The main goal of this
section will be to prove the following theorem:

Theorem 23. For any constant ε ∈ (0, 1), there is an (Õ(n), ε, Õ(1))-flow sparsifier.

Assuming Theorem 23, we can now prove Theorem 16, the main theorem necessary for edge
reduction in our construction of low-congestion projections.

Proof of Theorem 16. We apply the flow sparsifier of Theorem 23 to G = (V,E, ~µ) and
obtain output G′ = (V,E′, ~µ′) with embedding M. By the definition of flow sparsifier, we know
that the capacity ratio U ′ of G′ is at most U ·poly(|V |), as required. Moreover, again by Theorem 23,

G′ has at most Õ(|V |) edges. Given an oblivious routing A′ on G′ consider the oblivious routing

A
def
= MA′. By the definition of flow sparsifier, we have that T (M) = Õ(|E|). Hence T (A) =

T (M) + T (A′) = Õ(|E|) + T (A′) .
To complete the proof, we bound the competivite ratio ρ(A). Using the same argument as in

Lemma 10, we can write ρ(A) as

ρ(A) = max
D

congG({AD})
optG(D)

≤ max
D∞

congG(AD∞)

optG(D∞)
,

where D∞ is the set of demands that result by taking the routing of every demand in D by opt(D)
and splitting it up into demands on every edge corresponding to the flow sent by opt(D). Notice
that D∞ has at most |E| demands that are routed between pairs of vertices in V. Then, because
G′ is an ε-cut approximation to G, the flow-cut gap of Aumann and Rabani [4] guarantees that

optG(D∞) ≥ 1

O(log n)
optG′(D∞).

18

As a result, we obtain:

ρ(A) ≤ O(log n) ·max
D∞

congG(AD∞)

optG′(D∞)
= O(log n) ·max

D∞

congG(MA′D∞)

optG′(D∞)

≤ O(log n) · cong(M) ·max
D∞

congG′(A
′D∞)

optG′(D∞)
≤ Õ(ρ(A′)).

�

5.0.2. Techniques. We will construct flow sparsifiers by taking as a starting point the construc-
tion of spectral sparsifiers of Spielman and Teng [32]. Their construction achieves a sparsity of

Õ
(
n
ε2

)
edges, while guaranteeing an ε-spectral approximation. As the spectral approximation im-

plies the cut approximation, the construction in [32] suffices to meet the first two conditions in

Definition 21. Moreover, their algorithm also runs in time Õ(m), meeting the fourth condition.
Hence, to complete the proof of Theorem 23, we will modify the construction of Spielman and
Teng to endow their sparsifier G′ with an embedding M onto G of low congestion that can be
both computed and invoked efficiently. The main tool we use in constructing M is the notion of
electrical-flow routing and the fact that electrical-flow routing schemes achieve a low competitive
ratio on near-expanders and subsets thereof [9, 15].

To exploit this fact and construct a flow sparsifier, we follow Spielman and Teng [32] and
partition the input graph into vertex sets, where each sets induces a near-expanders and most edges
of the graph do not cross set boundaries. We then sparsify these induced subgraphs using standard
sparsification techniques and iterate on the edges not in the subgraphs. As each iteration removes a
constant fraction of the edges, by using standard sparsification techniques, we immediately obtain

the sparsity and cut approximation properties. To obtain the embedding M with cong(M) = Õ(1),
we prove a generalization of results in [9, 15] and show that the electrical-flow routing achieves a
low competitive ratio on near-expanders and subsets thereof.

In the next two subsections, we introduce the necessary concept about electrical-flow routing and
prove that it achieves low competitive ratio over near-expanders (and subsets of near-expanders).

5.1. Subgraph Routing. Given an oblivious routing strategy A, we may be interested only
in routing demands coming from a subset of edge F ⊆ E. In this setting, given a set of demands
D routable in F, we let optF (D) denote the minimal congestion achieved by any routing restricted
to only sending flow on edges in F and we measure the F -competitive ratio of A by

ρF (A)
def
= max

D routable in F

cong(AD)

optF (D)

Note that A may use all the edges in G but ρF (A) compares it only against routings that are
restricted to use only edges in F . As before, we can upper bound the F -competitive ratio ρF (A)
by operator norms.

Lemma 24. Let ~1F ∈ RE denote the indicator vector for set F (i.e. ~1F (e) = 1 if e ∈ F and
~1F (e) = 0) and let IF

def
= diag(~1F). For any F ⊆ E we have

ρF (A) = ‖U−1ABTUIF ‖∞

Proof. We use the same reasoning as in the non-subgraph case. For a set of demandsD = {~χi},
we consider DF

∞, the demands on the edges in F used by optF (D). Then, it is the case that
optF (D) = optF (D∞) and we know that cost of obliviously routing DP is greater than the cost of

19

obliviously routing D. Therefore, we have:

ρF = max
~x∈RE : IE\F ~x=0

‖
∑

e∈E |U−1ABT~1e~xe| ‖∞
‖U−1~x‖∞

= max
~y∈RE : IE\F ~y=0

‖
∑

e∈E |U−1ABTU~1e~ye| ‖∞
‖~y‖∞

= max
~y∈RE

‖
∑

e∈E |U−1ABTUIF~1e~ye| ‖∞
‖~y‖∞

= ‖
∣∣U−1ABTUIF

∣∣ ‖∞ = ‖U−1ABTUIF ‖∞
(Having ye 6= 0 for e ∈ E \ F decreases the ratio.)

�

5.2. Electrical-Flow Routings. In this section, we define the notion of electrical-flow routing
and prove the results necessary to construct flow sparsifiers. Recall that R is the diagonal matrix
of resistances and the Laplacian L is defined as BTR−1B. For the rest of this section, we assume
that resistances are set as R = U−1.

Definition 25. Consider a graph G = (V,E, µ) and set the edge resistances as re = 1
µe

for all

e ∈ E. The oblivious electrical-flow routing strategy is the linear operator AE defined as

AE
def
= R−1BL†,

In words, the electrical-flow routing strategy is the routing scheme that, for each demand ~χ
sends the electrical flow with boundary condition ~χ on the graph G with resistances R = U−1.

For the electrical-flow routing strategy AE , the upper bound on the competitive ratio ρ(AE) in
Lemma 10 can be rephrased in terms of the voltages induced on G by electrically routing an edge
e ∈ E. This interpretation appears in [9, 15].

Lemma 26. Let AE be the electrical-flow routing strategy. For an edge e ∈ E, we let the voltage

vector ~ve ∈ RV be given by ~ve
def
= L†~χe. We then have

ρ(AE) = max
e∈E

∑
(a,b)∈E

|ve(a)− ve(b)|
rab

.

Proof. We have:

ρ(AE) = ‖BL†BTR−1‖∞ = max
e∈E
‖R−1BL†BT~1e‖1 = max

e∈E

∑
(a,b)∈E

|ve(a)− ve(b)|
rab

.

�

The same reasoning can be extended to the subgraph-routing case to obtain the following
lemma.

Lemma 27. For F ⊆ E and R = U−1 we have

ρF (AE) = max
e∈E

∑
(a,b)∈F

|ve(a)− ve(b)|
rab

.

Proof. As before, we have:

ρF (AE) = ‖BL†BTR−1IF ‖∞ (By Lemma 24)

= max
e∈E
‖IFR−1BL†BT~1e‖1 = max

e∈E

∑
(a,b)∈F

|ve(a)− ve(b)|
rab

20

�

5.2.1. Bounding the Congestion. In this section, we prove that we can bound the F -competitive
ratio of the oblivious electrical-routing strategy as long as the edges F that the optimum flow is
allowed to route over are contained within an induced expander G(U) = (U,E(U)) for some U ⊆ V
. Towards this we provide and prove the following lemma. This is a generalization of a similar
lemma proved in [9].

Lemma 28. For weighted graph G = (V,E,w) with integer weights and vertex subset U ⊆ V
the following holds:

ρF (AE) ≤
8 log(vol(G(U)))

Φ(G(U))2

Proof. By Lemma 27, for every edge e ∈ E,
ρF (AE) ≤ ‖IE(U)R

−1BL†~χe‖1

Fix any edge e ∈ E and let v
def
= L†~χe. Recall that with this definition

‖IE(U)R
−1BL†~χe‖1 =

∑
(a,b)∈E(U)

|v(a)− v(b)|
rab

=
∑

(a,b)∈E(U)

wab · |v(a)− v(b)| (3)

We define the following vertex subsets:

∀x ∈ R : S≤x
def
= {a ∈ U | v(a) ≤ x} and S≥x

def
= {a ∈ U | v(a) ≥ x}

Since adding a multiple of the all-ones vector to v does not change the quantity of interest in
Equation 3, we can assume without loss of generality that

volG(U)(S
≥
0) ≥ 1

2
(vol(G(U))) and volG(U)(S

≤
0) ≥ 1

2
(vol(G(U))) .

For any vertex subset S ⊆ U, we denote the flow out of S and the weight out of S by

f(S)
def
=

∑
e=(a,b)∈E(U)

⋂
∂(S)

we|v(a)− v(b)|, and w(S)
def
=

∑
e∈E(U)

⋂
∂(S)

we.

At this point, we define a collections of subsets {Ci ∈ S≥0 }. For an increasing sequence of real

numbers {ci}, we let Ci
def
= S≥ci and we define the sequence {ci} inductively as follows:

c0
def
= 0 , ci

def
= ci−1 + ∆i−1 , and ∆i

def
= 2

f(Ci)

w(Ci)
.

In words, the ci+1 equals the sum of ci and an increase ∆i which depends on how much the cut
δ(Ci) ∩ E(U) was congested by the electrical flow.

Now, li
def
= w(∂E(U)(Ci−1) − ∂E(U)(Ci)), i.e. the weight of the edges in E(U) cut by Ci−1 but

not by Ci. We get

vol(Ci+1) ≤ vol(Ci)− li

≤ vol(Ci)−
w(Ci)

2
(By choice of li and ∆i)

≤ vol(Ci)−
1

2
vol(Ci)Φ(G(U)) (Definition of conductance)

Applying this inductively and using our assumption on vol(S≥0) we have that

vol(Ci) ≤
(

1− 1

2
Φ(G(U))

)i
vol(C0) ≤ 1

2

(
1− 1

2
Φ(G(U))

)i
vol(G(U))

21

Since φ(G(U)) ∈ (0, 1), for i+ 1 = 2 log(vol(G(U)))
Φ(G(U)) we have that vol(Si) ≤ 1

2 . Since vol(Si) decreases

monotonically with i, if we let r be the smallest value such that Cr+1 = ∅, we must have

r ≤ 2 · log(vol(G(U)))

Φ(G(U))

Since v corresponds to a unit flow, we know that f(Ci) ≤ 1 for all i. Moreover, by the definition of
conductance we know that w(Ci) ≥ Φ(G(U)) · vol(Ci). Therefore,

∆i ≤
2

Φ(G(U)) · vol(Ci)
.

We can now bound the contribution of C≥0 to the volume of the linear embedding v. In the following,

for a vertex a ∈ V, we let d(a)
def
=
∑

e={a,b}∈E(U)we be the degree of a in E(U).

∑
a∈C≥0

d(a)v(a) =
r∑
i=0

 ∑
a∈Ci−Ci+1

d(a)v(a)

≤

r∑
i=0

 ∑
a∈Ci−Ci+1

d(a)

 i∑
j=0

∆j

 (By definition of Ci)

≤
r∑
i=0

(vol(Ci)− vol(Ci+1)) ·

 i∑
j=0

∆j

=

r∑
i=0

vol(Ci)∆i ≤
2r

Φ(G(U))
(Rearrangement and fact that vol(Cr+1) = 0)

By repeating the same argument on S≤0 , we get that
∑

a∈S≤0
d(a)v(a) ≤ 2r

Φ(G(U)) . Putting this all

together yields

‖IE(U)R
−1BL†~χe‖ =

∑
(a,b)∈G(U)

wab · |v(a)− v(b)| ≤
∑

a∈G(U)

d(a)v(a) ≤ 4r

Φ(G(U))

�

From this lemma and Lemma 27, the following is immediate:

Lemma 29. Let F ⊆ E be contained within some vertex induced subgraph G(U), then for
R = U−1 we have

ρF (R−1BL†) ≤ ρE(U)(R−1BL†) ≤ 8 log(vol(G(U)))

Φ(G(U))2

5.3. Construction and Analysis of Flow Sparsifiers. In the remainder of this section
we show how to produce an efficient O(logc)-flow sparsifier for some fixed constant c, proving
Theorem 23. In this version of the paper, we make no attempt to optimize the value of c. For the
rest of this section, we again assume that we choose the resistance of an edge to be the the inverse
of its capacity, i.e. U = W = R−1.

As discussed before, our approach follows closely that of Spielman and Teng [32] to the con-
struction of spectral sparsifiers. The first step of this line of attack is to reduce the problem to the
unweighted case.

22

Lemma 30. Given an (h, ε, α)-flow-sparsifier algorithm for unweighted graphs, it is possible to
construct an (h·logU, ε, α)-flow-sparsifier algorithm for weighted graphs G = (V,E, µ) with capacity
ratio U obeying

U =
maxe∈E µe
mine∈E µe

= poly(|V |).

Proof. We write each edge in binary so that G =
∑logU

i=0 2iGi for some unweighted graphs
{Gi = (V,Ei}i∈[logU]}, where |Ei| ≤ m for all i. We now apply the unweighted flow-sparsifier to

each Gi in turn to obtain graphs {G′i}. We let G′
def
=
∑logU

i=0 2iG′i be the weighted flow-sparsified
graph. By the assumption on the unweighted flow-sparsifier, each G′i is h-sparse, so that G′ must
have at most h · logU edges. Similarly, G′ is an ε-cut approximation of G, as each G′i is an ε-cut
approximation of the corresponding Gi. Letting Mi be the embedding of G′i into Gi, we can consider

the embedding M =
∑logU

i=0 2iMi of G′ into G. As each Mi has congestion bounded by α, it must
be the case that M also has congestion bounded by α. The time to run the weighted flow sparsifier
and to invoke M is now Õ(m) · logU = Õ(m) by our assumption on U. �

The next step is to construct a routine which flow-sparsifies a constant fraction of the edges of
E. This routine will then be applied iteratively to produce the final flow-sparsifier.

Lemma 31. On input an unweighted graph G = (V,E), there is an algorithm that runs in

Õ(m) and computes a partition of E into (F, F̄), an edge set F ′ ⊆ F with weight vector ~wF ′ ∈
RE , support(wF ′) = F ′, and an embedding H : RF

′ → RE with the following properties:

(1) F contains most of the volume of G, i.e.

|F | ≥ |E|
2

;

(2) F ′ contains only Õ(n) edges, i.e. |F ′| ≤ Õ(n).
(3) The weights wF ′ are bounded

∀e ∈ F ′ , 1

poly(n)
≤ wF ′(e) ≤ n.

(4) The graph H ′ = (V, F ′, wF ′) is an ε-cut approximation to H = (V, F), i.e. for all S ⊆ V :

(1− ε)|∂H(S)| ≤ wF ′(∂H′(S)) ≤ (1 + ε)|∂H(S)|.
(5) The embedding H from H = (V, F ′, wF ′) to G has bounded congestion

cong(H) = Õ(1).

and can be applied in time Õ(m).

Given Lemma 30 and Lemma 31, it is straightforward to complete the proof of Theorem 23.

Proof. Using Lemma 30, we reduce the objective of Theorem 23 to running a (Õ(n), ε, Õ(1))-
flow sparsifier on logU unweighted graphs, where we use the fact that U ≤ poly(n). To construct
this unweighted flow sparsifier, we apply Lemma 31 iteratively as follows. Starting with the instance
unweighted graph G1 = (V,E1), we run the algorithm of Lemma 31 on the current graph Gt =

(V,Et) to produce the sets Ft and F ′t , the weight vector wF ′t and the embedding Ht : RF
′
t → RE .

To proceed to the next iteration, we then define Et+1
def
= Et \ Ft and move on to Gt+1.

By Lemma 31, at every iteration t, |Ft| ≥ 1
2 · |Et|, so that |Et+1| ≤ 1

2 · |Et|. This shows that
there can be at most T ≤ log(|E1|) = O(log n) iterations.

After the last iteration T, we have effectively partitioned E1 into disjoint subsets {Ft}t∈[T],
where each Ft is well-approximated but the weighted edgeset F ′t . We then output the weighted

23

graph G′ = (V,E′
def
= ∩Tt=1F

′
t , w

′ def=
∑T

t=1wF ′t), which is the sum of the disjoint weighted edges sets

{F ′t}t∈[T]. We also output the embedding M : RE
′ → RE from G′ to G, defined as the direct sum

M =
T⊕
t=1

Ht.

In words, M maps an edge e′ ∈ E′ by finding t for which e′ ∈ F ′t and applying the corresponding
Ht.

We are now ready to prove that this algorithm with outputG′ and M is an efficient (Õ(n), ε, Õ(n))-
flow sparsifier. To bound the capacity ratio U ′ of G′, we notice that

U ′ ≤ max
t

maxe∈F ′t wF ′t (e)

mine∈F ′t wF ′t (e)
≤ poly(n),

where we used the fact that the sets F ′t are disjoint and the guarantee on the range of wF ′t .

Next, we bound the sparsity of G′. By Lemma 31, F ′t contains at most Õ(n) edges. As a result,
we get the required bound

|E′| =
T∑
t=1

|F ′t | ≤ Õ(Tn) = Õ(n).

For the cut approximation, we consider any S ⊆ V. By the cut guarantee of Lemma 31, we have
that, for all t ∈ [T],

(1− ε)|∂G(S) ∩ Ft| ≤ wF ′t (∂G(S) ∩ F ′t) ≤ (1 + ε)|∂G(S) ∩ Ft|.

Summing over all t, as E′ =
⋃̇
F ′t and E =

⋃̇
Ft, we obtain the required approximation

(1− ε)|∂G(S)| ≤ w′(∂G′(S)) ≤ (1 + ε)|∂G(S)|.

The congestion of M can be bounded as follows

cong(M) ≤
T∑
t=1

cong(Ht) = Õ(T) = Õ(1).

To conclude the proof, we address the efficiency of the flow sparsifier. The algorithm applies the

routine of Lemma 31 for T = Õ(1) times and hence runs in time Õ(m), as required. Invoking the

embedding M requires invoking each of the T embeddings Ht. This takes time Õ(Tm) = Õ(m).
�

5.3.1. Flow Sparsification of Unweighted Graphs: Proof of Lemma 31. In this subsection, we
prove Lemma 31. Our starting point is the following decomposition statement, which shows that
we can form a partition of an unweighted graph where most edges do not cross the boundaries and
the subgraphs induced within each set of this partition are near-expanders. The following lemma
is implicit in Spielman and Teng’s local clustering approach to spectral sparsification [32].

Lemma 32 (Decomposition Lemma). For an unweighted graph G = (V,E), in Õ(m)-time we
can produce a partition V1, . . . , Vk of V and a collection of sets S1, . . . , Sk ⊆ V with the following
properties:

• For all i, Si is contained in Vi.
• For all i, there exists a set Ti with Si ⊆ Ti ⊆ Vi, such that

Φ(G(Ti)) ≥ Ω

(
1

log2 n

)
.

24

• At least half of the edges are found within the sets {Si}, i.e.

k∑
i=1

|E(Si)| =
k∑
i=1

|{e = {a, b} : a ∈ Si, b ∈ Si}| ≥
1

2
|E|.

To design an algorithm satisfying the requirements of Lemma 31, we start by appling the
Decomposition Lemma to our unweighted input graph G = (V,E) to obtain the partition {Vi}i∈[k]

and the sets {Si}i∈[k]. We let Gi
def
= (Si, E(Si)). To reduce the number of edges, while preseving

cuts, we apply a spectral sparsification algorithm to each Gi. Concretely, by applying the spectral
sparsification by effective resistances of Spielman and Srivastava [29] to each Gi, we obtain weighted

graphs G′i = (Si, E
′
i ⊆ E(Si), w

′
i) in time

∑k
i=1 Õ(|E(Si)|) ≤ Õ(|E|) with |E′i| ≤ Õ(|Si|) and the

property that cuts are preserved7 for all i:

∀S ⊆ Si , (1− ε) · |∂Gi(S)| ≤ w′i(∂G′i(S)) ≤ (1 + ε) · |∂Gi(S)|.

Moreover, the spectral sparsification of [29] constructs the weights {w′i(e)}e∈E′i such that

∀e ∈ E′i ,
1

poly(n)
≤ 1

poly(|Si|)
≤ w′i(e) ≤ |Si| ≤ n.

To complete the description of the algorithm, we output the partition (F, F̄) of E, where

F
def
=

k⋃
i=1

E(Si).

We also output the set of weighted sparsified edges F ′.

F ′
def
=

k⋃
i=1

E′i.

The weight wF ′(e) of edge e ∈ F ′ is given by finding i such that e ∈ E′i and setting wF ′(e) = w′i(e).
We now depart from Spielman and Teng’s construction by endowing our F ′ with an embedding

onto G. The embedding H : RF
′ → RE of the graph H = (V, F ′, wF ′) to G is constructed by using

the oblivious electrical-flow routing of E(Si) into G(Vi). More specifically, as the sets {Vi} partition
V, the embedding H can be expressed as the following direct sum over the orthogonal subspaces
{RE(Vi)×E′i}.

H
def
=

(
k⊕
i=1

BE(Vi)L
†
G(Vi)

BT
E(Vi)

I(E(Vi),E′i)

)
,

where I(E(Vi),E′i)
is the identity mapping of the edges E′i ⊆ E(Vi) of F ′ over Vi to the edges E(Vi)

of Vi in G. Notice that there is no dependence on the resistances over G as G is unweighted.
This complete the description of the algorithm. We are now ready to give the proof of Lemma 31.

Proof of Lemma 31. The algorithm described above performs a decomposition of the input

graph G = (V,E) in time Õ(m) by the Decomposition Lemma. By the result of Spielman and

Srivastava [29], each Gi is sparsified in time Õ(|E(Si)|). Hence, the sparsification step requires

time Õ(m) as well. This shows that the algorithm runs in Õ(m)-time, as required.

By the Decomposition Lemma, we know that |F | =
∑k

i=1 |E(Si)| ≥ |E|
2 , which satisfies the

requirement of the Lemma. Moreover, by the spectral sparsification result, we know that |F ′| =

7The spectral sparsification result actually yields the stronger spectral approximation guarantee, but for our
purposes the cut guarantee suffices.

25

∑k
i=1 |E′i| ≤

∑k
i=1 Õ(|Si|) ≤ Õ(n), as required. We also saw that by construction the weights wF ′

are bounded:

∀e ∈ F ′ , 1

poly(n)
≤ wF ′(e) ≤ n.

To obtain the cut-approximation guarantee, we use the fact that for every i, by spectral spar-
sification,

∀S ⊆ Si , (1− ε) · |∂Gi(S)| ≤ w′i(∂G′i(S)) ≤ (1 + ε) · |∂Gi(S)|.
We have H ′ = (V, F ′, wF ′) and H = (V, F). Consider now T ⊆ V and apply the previous bound to
T ∩ Si for all i. Because F ′ ⊆ F = ∪ki=1E(Si), we have that summing over the k bounds yields

∀T ⊆ V , (1− ε)|∂H(T)| ≤ wF ′(∂H′(T)) ≤ (1 + ε)|∂H(T)|,

which is the desired cut-approximaton guarantee.
Finally, we are left to prove that the embedding H from H ′ = (V, F ′, wF ′) to G = (V,E) has

low congestion and can be applied efficiently. By definition of congestion,

cong(H) = max
~x∈RF ′

‖H~x‖∞
‖U−1

F ′ ~x‖∞
= ‖|H|UF ′

~1F ′‖∞ =

∥∥∥∥∥
∣∣∣∣∣
k⊕
i=1

BE(Vi)L
†
G(Vi)

BT
E(Vi)

I(E(Vi),E′i)

∣∣∣∣∣UF ′
~1F ′

∥∥∥∥∥
∞

.

Decomposing RE into the subspaces {RE(Vi)} and RF
′

into the subspaces {RE′i} we have:

cong(H) ≤ max
i∈[k]

∥∥∥∣∣∣BE(Vi)L
†
G(Vi)

BT
E(Vi)

I(E(Vi),E′i)

∣∣∣UE′i
~1E′i

∥∥∥
∞
.

For each i ∈ [k], consider now the set of demands Di over Vi, Di
def
= {~χe}e∈E′i , given by the edges

of E′i with their capacities w′i. That is, ~χe ∈ RVi is the demand corresponding to edge e ∈ E′i with

weight w′i(e). Consider also the electrical routing AE ,i = BE(Vi)L
†
G(Vi)

over G(Vi). Then:

cong(H) ≤ max
i∈[k]

cong(AE ,iDi)

Notice that, by construction, Di is routable in G′i = (Si, E
′
i, w
′
i) and optG′i(Di) = 1. But, by our

use of spectral sparsifiers in the construction, G′i is an ε-cut approximation of Gi. Hence, by the
flow-cut gap of Aumann and Rabani [4], we have:

optGi
(Di) ≤ O(log(|Di|)) · optG′i(Di) ≤ Õ(1).

When we route Di oblivious in G(Vi), we can consider the E(Si)-competitive ratio ρE(Si)(AE ,i) of

the electrical routing AE ,i = BE(Vi)L
†
G(Vi)

, as Di is routable in E(Si), because E′i ⊆ E(Si). We have

cong(H) ≤ max
i∈[k]

ρ
E(Si)
G(Vi)

(AE ,i) · opt
E(Si)
G(Vi)

(Di) = max
i∈[k]

ρ
E(Si)
G(Vi)

(AE ,i) · optGi
(Di),

Finally, putting these bounds together, we have:

cong(H) ≤ max
i∈[k]

ρ
E(Si)
G(Vi)

(AE ,i) · optGi
(Di) ≤ Õ(1) ·max

i∈[k]
ρ
E(Si)
G(Vi)

(AE ,i).

But, by the Decomposition Lemma, there exists Ti with Si ⊆ Ti ⊆ Vi such that

Φ(G(Ti)) ≥ Ω

(
1

log2 n

)
.

Then, by Lemma 29, we have that:

ρ
E(Si)
G(Vi)

(AE ,i) ≤ O
(

log vol(G(Ti))

Φ(G(Ti))2

)
≤ Õ(1).

26

This concludes the proof that cong(H) ≤ Õ(1). To complete the proof of the Lemma, we just

notice that H can be invoked in time Õ(m). A call of H involves solving k-electrical-problems, one

for each G(Vi). This can be done in time
∑k

i=1 Õ(|E(Vi)|) ≤ Õ(m), using any of the nearly-linear
Laplacian system solvers available, such as [11]. �

6. Removing Vertices in Oblivious Routing Construction

In this section we show how to reduce computing an efficient oblivious routing on a graph

G = (V,E) to computing an oblivious routing for t graphs with Õ(|V |t) vertices and at most |E|
edges. Formally we show

Theorem 33 (Node Reduction (Restatement)). Let G = (V,E, ~µ) be an undirected capacitated

graph with capacity ratio U . For all t > 0 in Õ(t · |E|) time we can compute graphs G1, . . . , Gt
each with at most Õ(|E| log(U)

t) vertices, at most |E| edges, and capacity ratio at most |V | · U , such

that given oblivious routings Ai for each Gi, in Õ(t · |E|) time we can compute an oblivious routing
A ∈ RE×V on G such that

T (A) = Õ

(
t · |E|+

t∑
i=1

T (Ai)

)
and ρ(A) = Õ

(
max
i
ρ(Ai)

)
We break this proof into several parts. First we show how to embed G into a collection of t

graphs consisting of trees minus some edges which we call patrial tree embeddings (Section 6.1).
Then we show how to embed a partial tree embedding in an “almost j-tree” [19], that is a graph
consisting of a tree and a subgraph on at most j vertices, for j = 2t (Section 6.2). Finally, we show
how to reduce oblivious routing on an almost j-tree to oblivious routing on a graph with at most
O(j) vertices by removing degree-1 and degree-2 vertices (Section 6.3). Finally, in Section 6.4 we
put this all together to prove Theorem 17.

We remark that much of the ideas in the section were either highly influenced from [19] or are
direct restatements of theorems from [19] adapted to our setting. We encourage the reader to look
over that paper for further details regarding the techniques used in this section.

6.1. From Graphs to Partial Tree Embeddings. To prove Theorem 17, we make heavy
use of spanning trees and various properties of them. In particular, we use the facts that for every
pair of vertices there is a unique tree path connecting them, that every edge in the tree induces a
cut in the graph, and that we can embed a graph in a tree by simply routing ever edge over its tree
path and that the congestion of this embedding will be determined by the load the edges place on
tree edges. We define these quantities formally below.

Definition 34 (Tree Path). For undirected graph G = (V,E), spanning tree T , and all a, b ∈ V
we let Pa,b ⊆ E denote the unique path from a to b using only edges in T and we let ~pa,b ∈ RE

denote the vector representation of this path corresponding to the unique vector sending one one
unit from a to b that is nonzero only on T (i.e. BT ~pa,b = ~χa,b and ∀e ∈ E \ T we have ~pa,b(e) = 0)

Definition 35 (Tree Cuts). For undirected G = (V,E) and spanning tree T ⊆ E the edges cut
by e, ∂T (F), and the edges cut by F , ∂T (e), are given by

∂T (e)
def
= {e′ ∈ E | e′ ∈ Pe} and ∂T (F)

def
= ∪e∈F∂(e)

Definition 36 (Tree Load). For undirected capacitated G = (V,E, ~µ) and spanning tree T ⊆ E
the load on edge e ∈ E by T , congT (e) is given by loadT (e) =

∑
e′∈E|e∈Pe′

~µe′

While these properties do highlight the fact that we could just embed our graph into a collection
of trees to simplify the structure of our graph, this approach suffers from a high computational cost

27

[25]. Instead we show that we can embed parts of the graph onto collections of trees at a lower
computational cost but higher complexity. In particular we will consider what we call partial tree
embeddings.

Definition 37 (Partial Tree Embedding 8). For undirected capacititated graph G = (V,E, ~µ),
spanning tree T and spanning tree subset F ⊆ T we define the partial tree embedding graph
H = H(G,T, F) = (V,E′, ~µ′) to a be a graph on the same vertex set where E′ = T ∪ ∂T (F) and

∀e ∈ E′ : ~µ′(e) =

{
loadT (e) if e ∈ T \ F .
~µ(e) otherwise

Furthermore, we let MH ∈ RE
′×E denote the embedding from G to H(G,T, F) where edges not cut

by F are routed over the tree and other edges are mapped to themselves.

∀e ∈ E : MH(e) =

{
~pe e /∈ ∂T (F)
~1e otherwise

and we let M′
H ∈ RE×E

′
denote the embeding from H to G that simply maps edges in H to their

corresponding edges in G, i.e. ∀e ∈ E′, M′
H(e) = ~1e.

Note that by definition cong(MH) ≤ 1, i.e. a graph embeds into its partial tree embedding
with no congestion. However, to get embedding guarantees in the other direction more work is
required. For this purpose we use a lemma from Madry [19] saying that we can construct a convex
combination or a distribution of partial tree embeddings we can get such a guarantee.

Lemma 38 (Probabilistic Partial Tree Embedding 9). For any undirected capacitated graph

G = (V,E, ~µ) and any t > 0 in Õ(t ·m) time we can find a collection of partial tree embeddings
H1 = H(G,T1, F1), . . . ,Ht = H(G,Tt, Ft) and coefficients λi ≥ 0 with

∑
i λi = 1 such that ∀i ∈ [t]

we have |Fi| = Õ(m logU
t) and such that

∑
i λiM

′
Hi

embeds G′ =
∑

i λiGi into G with congestion

Õ(1).

Using this lemma, we can prove that we can reduce constructing an oblivious routing for a
graph to constructing oblivious routings on several partial tree embeddings.

Lemma 39. Let the Hi be graphs produced by Lemma 38 and for all i let Ai be an oblivious
routing algorithm for Hi. It follows that A =

∑
i λiM

′
Hi

Ai is an oblivious routing on G with

ρ(A) ≤ Õ(maxi ρ(Ai) log n) and T (A) = O(
∑

i T (Ai))

Proof. The proof is similar to the proof of Lemma 15. For all i let Ui denote the capacity
matrix of graph Gi. Then using Lemma 10 we get

ρ(A) = ‖U−1ABTU‖∞ =

∥∥∥∥∥
t∑
i=1

λiU
−1M′

Hi
AiB

TU

∥∥∥∥∥
∞

Using that MHi is an embedding and therefore BT
Hi

MHi = BT we get

ρ(A) =

∥∥∥∥∥
t∑
i=1

λiU
−1M′

Hi
AiB

T
Hi

MHiU

∥∥∥∥∥
∞

≤ max
j,k

∥∥∥∥∥
t∑
i=1

λiU
−1M′

iUi

∥∥∥∥∥
∞

· ρ(Aj) · cong(MHk
)

Since
∑

i λiM
′
Hi

is an embedding of congestion of at most Õ(1) and cong(MHk
) ≤ 1 we have the

desired result. �

8This is a restatement of the H(T, F) graphs in [19].
9This in an adaptation of Corollary 5.6 in [19]

28

6.2. From Partial Tree Embeddings To Almost-j-trees. Here we show how to reduce
constructing an oblivious routing for a partial tree embedding to constructing an oblivious routing
for what Madry [19] calls an “almost j-tree,” the union of a tree plus a subgraph on at most j
vertices. First we define such objects and then we prove the reduction.

Definition 40 (Almost j-tree). We call a graph G = (V,E) an almost j-tree if there is a
spanning tree T ⊆ E such that the endpoints of E \ T include at most j vertices.

Lemma 41. For undirected capacitated G = (V,E, ~µ) and partial tree embedding H = H(G,T, F)

in Õ(|E|) time we can construct an almost 2 · |F |-tree G′ = (V,E′, ~µ′) with |E′| ≤ |E| and an em-
bedding M′ from G′ to H such that H is embeddable into G′ with congestion 2, cong(M′) = 2, and

T (M′) = Õ(|E|).

Proof. For every e = (a, b) ∈ E, we let v1(e) ∈ V denote the first vertex on tree path P(a,b)

incident to F and we let v2(e) ∈ V denote the last vertex incident to F on tree path P(a,b). Note

that for every e = (a, b) ∈ T we have that (v1(e), v2(e)) = e.
We define G′ = (V,E′, ~µ′) to simply be the graph that consists of all these (v1(e), v2(e)) pairs

E′ = {(a, b) | ∃e ∈ E such that (a, b) = (v1(e), v2(e))}

and we define the weights to simply be the sums

∀e′ ∈ E′ : ~µ′(e′)
def
=

∑
e∈E | e=(v1(e′),v2(e′))

~µ(e)

Now to embed H in G′ we define M by

∀e = (a, b) ∈ E : M~1e = ~pa,v1(e) + ~1(v1(e),v2(e)) + ~pv2(e),b

and to embed G′ in H we define M′ by

∀e′ ∈ E : M′~1e′ =
∑

e=(a,b)∈E | e′=(v1(e),v2(e))

~µ(e)

~µ′(e′)

[
~pv1(e),a + ~1(a,b) + ~pb,v2(e)

]
In other words we route edges in H along the tree until we encounter nodes in F and then we
route them along added edges and we simply route the other way for the reverse embedding. By
construction clearly the congestion of the embedding in either direction is 2.

To bound the running time, we note that by having every edge e in H maintain its v1(e) and
v2(e) information, having every edge e′ in E′ maintain the set {e ∈ E|e′ = (v1(e), v2(e))} in a list,
and using link cut trees [28] or the static tree structure in [11] to update information along tree
paths we can obtain the desired value of T (M′). �

6.3. From Almost-J Trees to Less Vertices. Here we show that by “greedy elimination”
[31] [12] [14], i.e. removing all degree 1 and degree 2 vertices in O(m) time we can reduce oblivious
routing in almost-j-trees to oblivious routing in graphs with O(j) vertices while only losing O(1)
in the competitive ratio. Again, we remark that the lemmas in this section are derived heavily
from [19] but repeated for completeness and to prove additional properties that we will need for
our purposes.

We start by showing that an almost-j-tree with no degree 1 or degree 2 vertices has at most
O(j) vertices.

Lemma 42. For any almost j-tree G = (V,E) with no degree 1 or degree 2 vertices, we have
|V | ≤ 3j − 2.

29

Proof. Since G is an almost j-tree, there is some J ⊆ V with |J | ≤ j such that the removal
of all edges with both endpoints in J creates a forest. Now, since K = V − J is incident only to
forest edges clearly the sum of the degrees of the vertices in K is at most 2(|V | − 1) (otherwise
there would be a cycle). However, since the minimum degree in G is 3, clearly this sum is at least
3(|V | − j). Combining yields that 3|V | − 3j ≤ 2|V | − 2. �

Next, we show how to remove degree one vertices efficiently.

Lemma 43 (Removing Degree One Vertices). Let G = (V,E, ~µ) be an unweighted capacitated
graph, let a ∈ V be a degree 1 vertex, let e = (a, b) ∈ E be the single edge incident to a, and let
G′ = (V ′, E′, ~µ′) be the graph that results from simply removing e and a, i.e. V ′ = V \ {a} and
E′ = E \ {e}. Given a ∈ V and an oblivious routing algorithm A′ in G′ in O(1) time we can
construct an oblivious routing algorithm A in G such that

T (A) = O(T
(
A′
)

+ 1) , and ρ(A) = ρ(A′)

Proof. For any demand vector ~χ, the only way to route demand at a in G is over e. Therefore,

if B~f = ~χ then ~f(e) = ~χ. Therefore, to get an oblivious routing algorithm on G, we can simply
send demand at a over edge e, modify the demand at b accordingly, and then run the oblivious
routing algorithm on G′ on the remaining vertices. The routing algorithm we get is the following

A
def
= IE′→EA′(I + ~1b~1

T
a) + ~1e~1

T
a

Since all routing algorithms send this flow on e we get that ρ(A) = ρ(A′) and since the above
operators not counting A have only O(1) entries that are not the identity we can clearly implement
the operations in the desired running time. �

Using the above lemma we show how to remove all degree 1 and 2 vertices in O(m) time while
only increasing the congestion by O(1).

Lemma 44 (Greedy Elimination). Let G = (V,E, ~µ) be an unweighted capacitated graph and let
G′ = (V ′, E′, ~µ′) be the graph the results from iteratively removing vertices of degree 1 and replacing
degree 2 vertices with an edge connecting its neighbors of the minimum capacity of its adjacent
edges. We can construct G′ in O(m) time and given an oblivious routing algorithm A′ in G′ in
O(1) time we can construct an oblivious routing algorithm A in G such that 10

T (A) = O(T
(
A′
)

+ |E|) , and ρ(A) ≤ 4 · ρ(A′)

Proof. First we repeatedly apply Lemma 43 repeatedly to in reduce to the case that there are
no degree 1 vertices. By simply array of the degrees of every vertex and a list of degree 1 vertices
this can be done in O(m) time. We denote the result of these operations by graph K.

Next, we repeatedly find degree two vertices that have not been explored and explore this
vertices neighbors to get a path of vertices, a1, a2, . . . , ak ∈ V for k > 3 such that each vertex
a2, . . . , ak−1 is of degree two. We then compute j = arg mini∈[k−1] ~µ(ai, ai+1), remove edge (aj , aj+1)

and add an edge (a1, ak) of capacity ~µ(aj , aj+1). We denote the result of doing this for all degree
two vertices by K ′ and note that again by careful implementation this can be performed in O(m)
time.

Note that clearly K is embeddable in K ′ with congestion 2 just by routing every edge over
itself except the removed edges which we route by the path plus the added edges. Furthermore,
K ′ is embeddable in K with congestion 2 again by routing every edge on itself except for the edges
which we added which we route back over the paths they came from. Furthermore, we note that
clearly this embedding and the transpose of this operator is computable in O(m) time.

10Note that the constant of 4 below is improved to 3 in [19].

30

Finally, by again repeatedly applying Lemma 43 to K ′ until there are no degree 1 vertices we
get a graph G′ that has no degree one or degree two vertices (since nothing decreased the degree
of vertices with degree more than two). Furthermore, by Lemma 43 and by Lemma 15 we see that
we can compose these operators to compute A with the desired properties. �

6.4. Putting It All Together. Here we put together the previous components to prove the
main theorem of this section.

Node Reduction Theorem 17. Using Lemma 38 we can construct G′ =
∑t

i=1 λiGi and
embeddings M1, . . . ,Mt from Gi to G. Next we can apply Lemma 41 to each Gi to get almost-j-
trees G′1, . . . , G

′
t and embeddings M′

1, . . . ,M
′
t from G′i to Gi. Furthermore, using Lemma 44 we can

construction graphs G′′1, . . . , G
′′
t with the desired properties (the congestion ratio property follows

from the fact that we only add capacities during these reductions)
Now given oblivious routing algorithms A′′1, . . . ,A

′′
t on the G′′i and again by Lemma 44 we

could get oblivious routing algorithms A′1, . . . ,A
′
t on the G′i with constant times more congestion.

Finally, by the guarantees of Lemma 15 we have that A
def
=
∑t

i=1 λMiM
′
iA
′
i is an oblivious routing

algorithm that satisfies the requirements. �

7. Nonlinear Projection and Maximum Concurrent Flow

7.1. Gradient Descent Method for Nonlinear Projection Problem. In this section,
we strengthen and generalize the MaxFlow algorithm to a more general setting. We believe this
algorithm may be of independent interest as it includes maximum concurrent flow problem, the
compressive sensing problem, etc. For some norms, e.g. ‖ · ‖1 as typically of interest compressive
sensing, the Nesterov algorithm [21] can be used to replace gradient descent. However, this kind
of accelerated method is not known in the general norm settings as good proxy function may not
exist at all. Even worse, in the non-smooth regime, the minimization problem on the ‖ · ‖p space
with p > 2 is difficult under some oracle assumption [20]. For these reasons we focus here on the
gradient descent method which is always applicable.

Given a norm ‖ · ‖, we wish to solve the what we call the non-linear projection problem

min
~x∈L
‖~x− ~y‖

where ~y is an given point and L is a linear subspace. We assume the following:

Assumption 45.

(1) There are a family of convex differentiable functions ft such that for all ~x ∈ L, we have

‖~x‖ ≤ ft(~x) ≤ ‖~x‖+Kt

and the Lipschitz constant of ∇ft is 1
t .

(2) There is a projection matrix P onto the subspace L.

In other words we assume that there is a family of regularized objective functions ft and a
projection matrix P, which we can think of as an approximation algorithm of this projection
problem.

Now, let ~x∗ be a minimizer of min~x∈L ‖~x− ~y‖. Since ~x∗ ∈ L, we have P~x∗ = ~x∗ and hence

‖P~y − ~y‖ ≤ ‖~y − ~x∗‖+ ‖~x∗ −P~y‖
≤ ‖~y − ~x∗‖+ ‖P~x∗ −P~y‖
≤ (1 + ‖P‖) min

~x∈L
‖~x− ~y‖. (4)

31

Therefore, the approximation ratio of P is 1 + ‖P‖ and we see that our problem is to show that we
can solve nonlinear projection using a decent linear projection matrix. Our algorithm for solving
this problem is below.

NonlinearProjection

Input: a point ~y and OPT = min~x∈L ‖~x− ~y‖.
1. Let ~y0 = (I−P) ~y and ~x0 = 0.

2. For j = 0, · · · , until 2−j‖P‖ ≤ 1
2

3. If 2−j‖P‖ > 1, then let tj = 2−(j+2)‖P‖OPT
K and kj = 3200‖P‖2K.

4. If 2−j‖P‖ ≤ 1, then let tj = εOPT
2K and kj = 800‖P‖2K

ε2
.

5. Let gj(~x) = ftj (P~x− ~yj) and ~x0 = 0.
6. For i = 0, · · · , kj − 1

7. ~xi+1 = ~xi − t
‖P‖2 (5gj(~xi))#.

8. Let ~yj+1 = ~yj −P~xkj .
9. Output ~y − ~ylast.

Note that this algorithm and its proof are quite similar to Theorem 4 but modified to scale
parameters over an outer loop. By changing the parameter t we can decrease the dependence of
the initial error.11

Theorem 46. Assume the conditions in Assumption 45 are satisfied. Let T be the time needed
to compute Px and PTx and x#. Then, NonlinearProjection outputs a vector ~x with ‖~x‖ ≤
(1 + ε) min~x∈L ‖~x− ~y‖ and the algorithm takes time

O

(
‖P‖2K (T +m)

(
1

ε2
+ log ‖P‖

))
.

Proof. We prove by induction on j that when 2−(j−1)‖P‖ ≥ 1 we have ‖~yj‖ ≤
(
1 + 2−j‖P‖

)
OPT.

For the base case (j = 0), (46) shows that ‖~y0‖ ≤ (1 + ‖P‖) OPT.
For the inductive case we assume that the assertion holds for some j. We start by bounding

the corresponding R in Theorem 1 for gj , which we denote Rj . Note that

gj(~x0) = ftj (−~yj) ≤ ‖~yj‖+Ktj ≤
(
1 + 2−j‖P‖

)
OPT +Ktj .

Hence, the condition that gj(~x) ≤ gj(~x0) implies that

‖P~x− ~yj‖ ≤
(
1 + 2−j‖P‖

)
OPT +Ktj .

Take any ~y ∈ X∗, let ~c = ~x − P~x + ~y, and note that P~c = P~y and therefore ~c ∈ X∗. Using these
facts, we can bound Rj as follows

Rj = max
~x∈RE : gj(~x)≤gj(~x0)

{
min
~x∗∈X∗

‖~x− ~x∗‖
}

≤ max
~x∈RE : gj(~x)≤gj(~x0)

‖~x− ~c‖

≤ max
~x∈RE : gj(~x)≤gj(~x0)

‖P~x−P~y‖

≤ max
~x∈RE : gj(~x)≤gj(~x0)

‖P~x‖+ ‖P~y‖

≤ 2‖~y0‖+ ‖P~x− ~yj‖+ ‖P~y − ~yj‖
≤ 2‖~y0‖+ 2‖P~x− ~yj‖
≤ 4

(
1 + 2−j‖P‖

)
OPT + 2Ktj .

11This is an idea that has been applied previously to solve linear programming problems [23].

32

Similar to Lemma 3, the Lipschitz constant Lj of gj is ‖P‖2/tj . Hence, Theorem 1 shows that

gj(~xkj) ≤ min
~x
gj(~x) +

2 · Lj ·R2
j

kj + 4

≤ min
~x
‖P~x− ~yj‖+

2 · Lj ·R2
j

kj + 4
+Ktj

So, we have

‖P~xkj − ~yj‖ ≤ ftj (P ~xkj − ~yj)

≤ OPT +Ktj +
2‖P‖2

tj(kj + 4)

(
4
(
1 + 2−j‖P‖

)
OPT + 2Ktj

)2
.

When 2−j‖P‖ > 1, we have

tj =
2−(j+2)‖P‖OPT

K
and kj = 3200‖P‖2K

and hence
‖ ~yj+1‖ = ‖P~xkj − ~yj‖ ≤

(
1 + 2−j−1‖P‖

)
OPT.

When 2−j‖P‖ ≤ 1, we have

tj =
εOPT

2K
and kj =

800‖P‖2K
ε2

and hence
‖ ~yj+1‖ = ‖P~xkj − ~yj‖ ≤ (1 + ε) OPT.

Since ~ylast is ~y plus some vectors in L, ~y − ~ylast ∈ L and ‖~y − ~ylast − ~y‖ = ‖~ylast‖ ≤ (1 + ε) OPT.
�

7.2. Maximum Concurrent Flow. For an arbitrary set of demands ~χi ∈ RV with
∑

v∈V ~χi(v) =
0 for i = 1, · · · , k, we wish to solve the following maximum concurrent flow problem

max
α∈R,~f∈RE

α subject to BT ~fi = α~χi and ‖U−1
k∑
i=1

|~fi|‖∞ ≤ 1.

Similar to Section 3.2, it is equivalent to the problem

min
~c∈RE×[k]

‖
k∑
i=1

|~αi + (Q~x)i| ‖∞

where Q is a projection matrix onto the subspace {BTU~xi = 0}, the output maximum concurrent
flow is

~fi(~x) = U(~αi + (Q~x)i)/‖
k∑
i=1

|~αi + (Q~x)i| ‖∞ ,

and U~αi is any flow such that BTU~αi = ~χi. In order to apply NonlinearProjection, we need to
find a regularized norm and a good projection matrix. Let us define the norm

‖~x‖1;∞ = max
e∈E

k∑
i=1

|xi(e)|.

The problem is simply ‖~α + Q~x‖1;∞ where Q is a projection matrix from RE×[k] to RE×[k] onto
some subspace. Since each copy RE is same, there is no reason that there is coupling in Q between
different copies of RE . In the next lemma, we formalize this by the fact that any good projection

33

matrixP onto the subspace {BTU~x = 0} ⊂ RE extends to a good projection Q onto the subspace

{BTU~xi = 0} ⊂ RE×[k]. Therefore, we can simply extends the good circulation projection P by
formula (Q~x)i = P~xi. Thus, the only last piece needed is a regularized ‖ · ‖1;∞. However, it turns
out that smoothing via conjugate does not work well in this case because the dual space of ‖ · ‖1;∞
involves with ‖·‖∞, which is unfavorable for this kind of smoothing procedure. It can be shown that

there is no such good regularized ‖ · ‖1;∞. Therefore, we could not do O(m1+o(1)k/ε2) using this

approach, however, O(m1+o(1)k2/ε2) is possible by using a bad regularized ‖ · ‖1;∞. We believe the
dependence of k can be improved to 3/2 using this approach by suitable using Nesterov algorithm
because the ‖ · ‖1 space caused by the multicommodity is a favorable geometry for accelerated
methods.

Lemma 47. Let smaxL1t(~x) = smaxt

(∑k
i=1

√
(xi(e))

2 + t2
)

. It is a convex continuously dif-

ferentiable function. The Lipschitz constant of ∇smaxL1t is 2
t and

‖~x‖1;∞ − t ln(2m) ≤ smaxL1t(~x) ≤ ‖~x‖1;∞ + kt.

Proof. 1) It is clear that smaxL1t is smooth.
2) smaxL1t is convex.

Since smaxt is increasing for positive values and
√
x2 + t2 is convex, for any ~x, ~y ∈ RE×[k] and

0 ≤ t ≤ 1, we have

smaxL1t(t~x+ (1− t)~y) = smaxt

(
k∑
i=1

√
((txi + (1− t)yi)(e))2 + t2

)

≤ smaxt

(
k∑
i=1

(
t

√
(xi(e))

2 + t2 + (1− t)
√

(yi(e))
2 + t2

))
≤ tsmaxL1t(~x) + (1− t)smaxL1t(~y).

3) The Lipschitz constant of ∇smaxL1t is 2
t .

Note that smaxt (not its gradient) has Lipschitz constant 1 because for any ~x, ~y ∈ RE ,

|smaxt(~x)− smaxt(~y)|

=

∣∣∣∣∣∣t ln

∑e∈E

(
exp(−x(e)

t) + exp(x(e)
t)
)

2m

− t ln

∑e∈E

(
exp(−y(e)

t) + exp(y(e)
t)
)

2m

∣∣∣∣∣∣
= t

∣∣∣∣∣∣ln
∑e∈E

(
exp(−x(e)

t) + exp(x(e)
t)
)

∑
e∈E

(
exp(−y(e)

t) + exp(y(e)
t)
)
∣∣∣∣∣∣

≤ t

∣∣∣∣ln(max
e∈E

exp(
|x− y|(e)

t
)

)∣∣∣∣
= ‖~x− ~y‖∞.

Also, by the definition of derivative, for any ~x, ~y ∈ Rn and t ∈ R, we have

smaxt(~x+ t~y)− smaxt(~x) = t
〈
∇smaxt(~x), ~y

〉
+ o(t).

and it implies
∣∣〈∇smaxt(~x), ~y

〉∣∣ ≤ ‖~y‖∞ for arbitrary ~y and hence

‖∇smaxt(~x)‖1 ≤ 1. (5)
34

For notational simplicity, let s1 = smaxL1t, s2 = smaxt and s3(x) =
√
x2 + t2. Thus, we have

s1(~x) = s2

(
k∑
i=1

s3(xi(e))

)
.

Now, we want to prove

‖∇s1(~x)−∇s1(~y)‖∞;1 ≤
2

t
‖~x− ~y‖1;∞.

Note that

∂s1(~x)

∂xi(e)
=
∂s2

∂e

∑
j

s3(xj(e))

 ds3

dx
(xi(e)) .

Hence, we have

‖∇s1(x)−∇s1(y)‖∞;1 =
∑
e

max
i

∣∣∣∣∣∣∂s2

∂e

∑
j

s3(xj(e))

 ds3

dx
(xi(e))−

∂s2

∂e

∑
j

s3(yj(e))

 ds3

dx
(yi(e))

∣∣∣∣∣∣
≤

∑
e

max
i

∣∣∣∣∣∣∂s2

∂e

∑
j

s3(xj(e))

 ds3

dx
(xi(e))−

∂s2

∂e

∑
j

s3(xj(e))

 ds3

dx
(yi(e))

∣∣∣∣∣∣
+
∑
e

max
i

∣∣∣∣∣∣∂s2

∂e

∑
j

s3(xj(e))

 ds3

dx
(yi(e))−

∂s2

∂e

∑
j

s3(yj(e))

 ds3

dx
(yi(e))

∣∣∣∣∣∣
=

∑
e

∣∣∣∣∣∣∂s2

∂e

∑
j

s3(xj(e))

∣∣∣∣∣∣max
i

∣∣∣∣ds3

dx
(xi(e))−

ds3

dx
(yi(e))

∣∣∣∣
+
∑
e

max
i

ds3

dx
(yi(e))

∣∣∣∣∣∣∂s2

∂e

∑
j

s3(xj(e))

− ∂s2

∂e

∑
j

s3(yj(e))

∣∣∣∣∣∣ .
Since s3 has 1

t -Lipschitz gradient, we have∣∣∣∣ds3

dx
(x)− ds3

dx
(y)

∣∣∣∣ ≤ 1

t
|x− y|.

By (5), we have ∑
e

∣∣∣∣∂s2

∂e
(x(e))

∣∣∣∣ ≤ 1.

Hence, we have ∑
e

max
i

∣∣∣∣ds3

dx
(xi(e))−

ds3

dx
(yi(e))

∣∣∣∣
∣∣∣∣∣∂s2

∂e

(∑
i

s3(xi(e))

)∣∣∣∣∣
≤ 1

t
max
i,e
|xi(e)− yi(e)|

∑
e

∣∣∣∣∣∂s3

∂e

(∑
i

s3(xi(e))

)∣∣∣∣∣
=

1

t
‖~x− ~y‖1;∞.

Since s3 is 1-Lipschitz, we have ∣∣∣∣ds3

dx

∣∣∣∣ ≤ 1.

35

Since s2 has 1
t -Lipschitz gradient in ‖ · ‖∞, we have∑

e

∣∣∣∣∂s2

∂e
(x)− ∂s2

∂e
(y)

∣∣∣∣ ≤ 1

t
‖~x− ~y‖∞.

Hence, we have

∑
e

max
i

ds3

dx
(yi(e))

∣∣∣∣∣∣∂s2

∂e

∑
j

s3(xj(e))

− ∂s2

∂e

∑
j

s3(yj(e))

∣∣∣∣∣∣
≤

∑
e

∣∣∣∣∣∣∂s2

∂e

∑
j

s3(xj(e))

− ∂s2

∂e

∑
j

s3(yj(e))

∣∣∣∣∣∣
≤ 1

t
‖
∑
i

s3(xi(e))−
∑

s3(yi(e))‖∞

≤ 1

t
‖
∑
i

|xi(e)− yi(e)| ‖

=
1

t
‖~x− ~y‖1;∞

Therefore, we have

‖∇s1(~x)−∇s1(~y)‖∞;1 ≤
2

t
‖~x− ~y‖1;∞.

4) Using the fact that

‖x(e)‖ ≤
k∑
i=1

√
(xi(e))

2 + t2 ≤ ‖x(e)‖1 + kt

and smax is 1-Lipschitz, we have

‖~x‖1;∞ − t ln(2m) ≤ smaxL1t(~x) ≤ ‖~x‖1;∞ + kt.

�

The last thing needed is to check is that the # operator is easy to compute.

Lemma 48. In ‖ · ‖1;∞, the # operator is given by an explicit formula(
~x#
)
i
(e) =

{
||~x||∞;1sign(xi(e)) if i is the smallest index such that minj |xj(e)| = xi(e)

0 otherwises
.

Proof. It can be proved by direct computation.
�

Now, all the conditions in the Assumption 45 are satisfied. Therefore, Theorem 46 and Theorem
19 gives us the following theorem:

Theorem 49. Given an undirected capacitated graph G = (V,E, ~µ) with capacity ratio U .
Assume U = poly(|V |). There is an algorithm finds an (1− ε) approximate Maximum Concurrent
Flow in time

O

(
k2

ε2
|E|2O

(√
log |V | log log |V |

))
.

36

Proof. Let A be the oblivious routing algorithm given by Theorem 19. And we have ρ(A) ≤

2
O
(√

log |V | log log |V |
)
. Let us define the scaled circulation projection matrix P = I −UABTU−1.

Lemma 12 shows that ‖P‖∞ ≤ 1 + 2
O
(√

log |V | log log |V |
)
.

Let the multi-commodity circulation projection matrix Q : RE×[k] → RE×[k] defined by (Q~x)i =
P~xi. Note that the definition of ‖Q‖1;∞ is similar to ρ(Q). By similar proof as Lemma 10, we

have ‖Q‖1;∞ = ‖P‖∞. Hence, we have ‖Q‖1;∞ ≤ 1 + 2
O
(√

log |V | log log |V |
)
. Also, since P is a

projection matrix on the subspace {~x ∈ RE : BTU~x = 0}, Q is a projection matrix on the subspace

{~x ∈ RE×[k] : BTU~xi = 0}.
By Lemma 47, the function smaxL1t(~x) is a convex continuously differentiable function such

that the Lipschitz constant of ∇smaxL1t is 2
t and

‖~x‖1;∞ − t ln(2m) ≤ smaxL1t(~x) ≤ ‖~x‖1;∞ + kt.

Given an arbitrary set of demands ~χi ∈ RV , we find a vector ~y such that

BTU~y = −~χi.

Then, we use the NonlinearProjection to solve

min
BTU~x=0

‖~x− ~y‖1;∞

using a family of functions smaxL1t(~x)+ t ln(2n) and the projection matrix Q. Since each iteration
involves calculation of gradients and # operator, it takes O(mk) each iteration. And it takes

Õ
(
‖Q‖21;∞K/ε

2
)

iterations in total where K = k + ln(2m). In total, it NonlinearProjection

outputs a (1 + ε) approximate minimizer ~x in time

O

(
k2

ε2
|E|2O

(√
log |V | log log |V |

))
.

And it gives a (1− ε) approximate maximum concurrent flow ~fi by a direct formula.
�

8. Acknowledgements

We thank Jonah Sherman for agreeing to coordinate submissions and we thank Satish Rao,
Jonah Sherman, Daniel Spielman, Shang-Hua Teng. This work was partially supported by NSF
awards 0843915 and 1111109, NSF Graduate Research Fellowship (grant no. 1122374) and Hong
Kong RGC grant 2150701.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows. Elsevier North-Holland, Inc., New York, NY, USA,
1989.

[2] Ravindra K. Ahuja, Thomas L. Magnanti, James B. Orlin, and M. R. Reddy. Applications of network optimiza-
tion. In Network Models, volume 7 of Handbooks in Operations Research and Management Science, pages 1–75.
North-Holland, 1995.

[3] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: A meta-algorithm and
applications. Available at http://www.cs.princeton.edu/˜arora/pubs/MWsurvey.pdf.

[4] Y. Aumann and Y. Rabani. An o(log k) approximate min-cut max-flow theorem and approximation algorithm.
SIAM Journal on Computing, 27(1):291–301, 1998.

[5] András A. Benczúr and David R. Karger. Approximating s-t minimum cuts in Õ(n2) time. In STOC’96: Pro-
ceedings of the 28th Annual ACM Symposium on Theory of Computing, pages 47–55, New York, NY, USA, 1996.
ACM.

[6] Dimitri P Bertsekas. Nonlinear programming. 1999.

37

[7] Paul Christiano, Jonathan A. Kelner, Aleksander Madry, Daniel A. Spielman, and Shang-Hua Teng. Electrical
flows, laplacian systems, and faster approximation of maximum flow in undirected graphs. In STOC ’11, pages
273–282, 2011.

[8] Andrew V. Goldberg and Satish Rao. Beyond the flow decomposition barrier. J. ACM, 45(5):783–797, 1998.
[9] Jonathan A. Kelner and Petar Maymounkov. Electric routing and concurrent flow cutting. CoRR, abs/0909.2859,

2009.
[10] Jonathan A. Kelner, Gary L. Miller, and Richard Peng. Faster approximate multicommodity flow using quadrat-

ically coupled flows. In Proceedings of the 44th symposium on Theory of Computing, STOC ’12, pages 1–18, New
York, NY, USA, 2012. ACM.

[11] Jonathan A. Kelner, Lorenzo Orecchia, Aaron Sidford, and Zeyuan Allen Zhu. A simple, combinatorial algorithm
for solving sdd systems in nearly-linear time. CoRR, abs/1301.6628, 2013.

[12] Ioannis Koutis, Gary L. Miller, and Richard Peng. Approaching optimality for solving sdd linear systems. In
Proceedings of the 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, FOCS ’10, pages
235–244, Washington, DC, USA, 2010. IEEE Computer Society.

[13] Ioannis Koutis, Gary L. Miller, and Richard Peng. Approaching optimality for solving SDD systems. In Proceed-
ings of the 51st Annual Symposium on Foundations of Computer Science, 2010.

[14] Ioannis Koutis, Gary L. Miller, and Richard Peng. A nearly-m log n time solver for sdd linear systems. In
Proceedings of the 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS ’11, pages
590–598, Washington, DC, USA, 2011. IEEE Computer Society.

[15] Gregory Lawler and Hariharan Narayanan. Mixing times and lp bounds for oblivious routing. In WORKSHOP
ON ANALYTIC ALGORITHMICS AND COMBINATORICS, (ANALCO 09) 4, 2009.

[16] Yin Tat Lee, Satish Rao, and Nikhil Srivastava. A New Approach to Computing Maximum Flows using Electrical
Flows. Proceedings of the 45th symposium on Theory of Computing - STOC ’13, 2013.

[17] Yin Tat Lee and Aaron Sidford. Efficient accelerated coordinate descent methods and faster algorithms for
solving linear systems. In Proceedings of the 2013 IEEE 54st Annual Symposium on Foundations of Computer
Science, FOCS ’13. IEEE Computer Society, 2013.

[18] F. Thomson Leighton and Ankur Moitra. Extensions and limits to vertex sparsification. In Proceedings of the
42nd ACM symposium on Theory of computing, STOC ’10, pages 47–56, New York, NY, USA, 2010. ACM.

[19] Aleksander Madry. Fast approximation algorithms for cut-based problems in undirected graphs. In Proceedings
of the 51st Annual Symposium on Foundations of Computer Science, 2010.

[20] Arkadiui Semenovich Nemirovsky and David Borisovich Yudin. Problem complexity and method efficiency in
optimization. 1983.

[21] Yu Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming, 103(1):127–152, 2005.
[22] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer, 2003.
[23] Yurii Nesterov. Rounding of convex sets and efficient gradient methods for linear programming problems. Avail-

able at SSRN 965658, 2004.
[24] Yurii Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. Core discussion

papers, 2:2010, 2010.
[25] Harald Räcke. Optimal hierarchical decompositions for congestion minimization in networks. In Proceedings of

the 40th annual ACM symposium on Theory of computing, STOC ’08, pages 255–264, New York, NY, USA,
2008. ACM.

[26] Alexander Schrijver. Combinatorial Optimization, Volume A. Number 24 in Algorithms and Combinatorics.
Springer, 2003.

[27] Jonah Sherman. Nearly maximum flows in nearly linear time. In Proceedings of the 54th Annual Symposium on
Foundations of Computer Science, 2013.

[28] Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. In Proceedings of the thirteenth
annual ACM symposium on Theory of computing, STOC ’81, pages 114–122, New York, NY, USA, 1981. ACM.

[29] Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. In Proceedings of the
40th annual ACM symposium on Theory of computing, STOC ’08, pages 563–568, New York, NY, USA, 2008.
ACM.

[30] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning, graph sparsifica-
tion, and solving linear systems. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing,
pages 81–90, New York, NY, USA, 2004. ACM.

[31] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for preconditioning and solving sym-
metric, diagonally dominant linear systems. CoRR, abs/cs/0607105, 2006.

[32] Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification of graphs. CoRR, abs/0808.4134, 2008.

38

Appendix A. Some Facts about Norm and Functions with Lipschitz Gradient

In this section, we present some basic fact used in this paper about norm and dual norm.
Also, we presented some lemmas about convex functions with Lipschitz gradient. See [6, 22] for
comprehensive discussion.

A.1. Norms.

Fact 50.

~x = 0 ⇔ ~x# = 0.

Proof. If ~x = 0 then ∀~s 6= 0 we have
〈
~x,~s
〉
− 1

2‖~s‖
2 < 0 but

〈
~x, ~x

〉
− 1

2‖~x‖
2 = 0. So we have

~x# = 0. If ~x 6= 0 then let ~s =

〈
~x,~x
〉

‖~x‖2 ~x with this choice we have
〈
~x,~s
〉
− 1

2‖~s‖
2 = 1

2

〈
~x,~x
〉2

‖~x‖2 > 0.

However, for ~s = 0 we have that
〈
~x,~s
〉
− 1

2‖~s‖
2 = 0 therefore we have ~x# 6= 0. �

Fact 51.

∀~x ∈ Rn :
〈
x, x#

〉
= ‖x#‖2.

Proof. If ~x = 0 then ~x# = 0 by Claim 50 and we have the result. Otherwise, again by claim
50 we know that ~x# 6= 0 and therefore by the definition of ~x# we have

1 = arg max
c∈R

〈
x, c · x#

〉
− 1

2
‖c · x#‖2 = arg max

c∈R
c ·
〈
x, x#

〉
− c2

2
‖x#‖2

Setting the derivative of with respect to c to 0 we get that 1 = c =

〈
~x,~x#

〉
‖~x#‖2 . �

Fact 52.

∀~x ∈ Rn : ‖~x‖∗ = ‖~x#‖.

Proof. Note that if ~x = 0 then the claim follows from Claim (50) otherwise we have

‖~x‖∗ = max
‖y‖≤1

〈
x, y
〉

= max
‖y‖=1

〈
x, y
〉
≤ max

y∈Rn

〈
x, y
〉

‖y‖

From this it is clear that ‖~x‖∗ ≥ ‖~x#‖. To see the other direction consider a ~y that maximizes the

above and let ~z =

〈
~x,~y
〉

‖~y‖2 ~y 〈
~x, ~z
〉
− 1

2
‖~z‖2 ≤

〈
~x, ~x#

〉
− 1

2
‖~x#‖2

and therefore

‖~x‖∗2 − 1

2
‖~x‖∗2 ≤ 1

2
‖~x#‖2

�

Fact 53. [Cauchy Schwarz]

∀~x, ~y ∈ Rn :
〈
~y, ~x
〉
≤ ‖~y‖∗‖~x‖.

Proof. By the definition of dual norm, for all ‖~x‖ = 1, we have
〈
~y, ~x
〉
≤ ‖~y‖∗. Hence, it follows

by linearity of both side. �
39

A.2. Functions with Lipschitz Gradient.

Lemma 54. Let f be a continuously differentiable convex function. Then, the following are
equivalence:

∀~x, ~y ∈ Rn : ‖ 5 f(~x)−5f(~y)‖∗ ≤ L · ‖~x− ~y‖
and

∀~x, ~y ∈ Rn : f(~x) ≤ f(~y) +
〈
5 f(~y), ~x− ~y

〉
+
L

2
‖~x− ~y‖2.

For any such f and any ~x ∈ Rn , we have

f

(
~x− 1

L
∇f(~x)#

)
≤ f(~x)− 1

2L
‖ 5 f(~x)‖∗2.

Proof. From the first condition, we have

f(~y) = f(~x) +

∫ 1

0

d

dt
f(~x+ t(~y − ~x))dt

= f(~x) +

∫ 1

0

〈
∇f(~x+ t(~y − ~x)), ~y − ~x

〉
dt

= f(~x) +
〈
∇f(~x), ~y − ~x

〉
+

∫ 1

0

〈
∇f(~x+ t(~y − ~x))−∇f(~x), ~y − ~x

〉
dt

≤ f(~x) +
〈
∇f(~x), ~y − ~x

〉
+

∫ 1

0
‖∇f(~x+ t(~y − ~x))−∇f(~x)‖∗‖~y − ~x‖dt

≤ f(x) +
〈
∇f(~x), ~y − ~x

〉
+

∫ 1

0
Lt‖~y − ~x‖2dt

= f(x) +
〈
∇f(~x), ~y − ~x

〉
+
L

2
‖~y − ~x‖2.

Given the second condition. For any ~x ∈ Rn. let φ~x(~y) = f(~y)−
〈
∇f(~x), ~y

〉
. From the convexity of

f , for any ~y ∈ Rn

f(~y)− f(~x) ≥
〈
∇f(~x), ~y − ~x

〉
.

Hence, ~x is a minimizer of φ~x. Hence, we have

φ~x(~x) ≤ φ~x(~y − 1

L
∇φ~x(~y)#)

≤ φ~x(~y)−
〈
∇φ~x(~y),

1

L
∇φ~x(~y)#〉+

L

2
‖ 1

L
∇φ~x(~y)#‖2 (First part of this lemma)

= φ~x(~y)− 1

2L
‖∇φ~x(~y)#‖2

= φ~x(~y)− 1

2L
(‖∇φ~x(~y)‖∗)2 .

Hence,

f(~y) ≥ f(~x) +
〈
∇f(~x), ~y − ~x

〉
+

1

2L
(‖∇f(~y)−∇f(~x)‖∗)2 .

Adding up this inequality with ~x and ~y interchanged, we have

1

L
(‖∇f(~y)−∇f(~x)‖∗)2 ≤

〈
∇f(~y)−∇f(~x), ~y − ~x

〉
≤ ‖5 f(~y)−5f(~x)‖∗‖~y − ~x‖.

The last inequality follows from similar proof in above for φ~x. �
40

The next lemma relate the Hessian of function with the Lipschitz parameter L and this lemma
gives us a easy way to compute L.

Lemma 55. Let f be a twice differentiable function such that for any ~x, ~y ∈ Rn

0 ≤ ~yT
(
∇2f(~x)

)
~y ≤ L||~y||2.

Then, f is convex and the gradient of f is Lipschitz continuous with Lipschitz parameter L.

Proof. Similarly to Lemma 54, we have

f(~y) = f(~x) +
〈
∇f(~x), ~y − ~x

〉
+

∫ 1

0

〈
∇f(~x+ t(~y − ~x))−∇f(~x), ~y − ~x

〉
dt

= f(~x) +
〈
∇f(~x), ~y − ~x

〉
+

∫ 1

0
t(~y − ~x)T∇2f(~x+ θt(~y − ~x))(~y − ~x)dt

where the 0 ≤ θt ≤ t comes from mean value theorem. By the assumption, we have

f(~x) +
〈
∇f(~x), ~y − ~x

〉
≤ f(~y)

≤ f(~x) +
〈
∇f(~x), ~y − ~x

〉
+

∫ 1

0
tL‖~y − ~x‖2dt

≤ f(~x) +
〈
∇f(~x), ~y − ~x

〉
+
L

2
‖~y − ~x‖2.

And the conclusion follows from Lemma 54. �

41

	1. Introduction
	2. Preliminaries
	3. Solving Max-Flow Using a Circulation Projection
	4. Oblivious Routing
	5. Flow Sparsifiers
	6. Removing Vertices in Oblivious Routing Construction
	7. Nonlinear Projection and Maximum Concurrent Flow
	8. Acknowledgements
	References
	Appendix A. Some Facts about Norm and Functions with Lipschitz Gradient

