
Almost-Linear-Time Algorithms for Markov Chains
and New Spectral Primitives for Directed Graphs

Michael B. Cohen∗
MIT

micohen@mit.edu

Jonathan Kelner∗
MIT

kelner@mit.edu

John Peebles+

MIT
jpeebles@mit.edu

Richard Peng‡
Georgia Tech

rpeng@cc.gatech.edu

Anup B. Rao
Georgia Tech

anup.rao@gatech.edu

Aaron Sidford
Stanford University
sidford@stanford.edu

Adrian Vladu∗
MIT

avladu@mit.edu

Abstract

In this paper we introduce a notion of spectral approximation for directed graphs. While
there are many potential ways one might define approximation for directed graphs, most of
them are too strong to allow sparse approximations in general. In contrast, we prove that for
our notion of approximation, such sparsifiers do exist, and we show how to compute them in
almost linear time.

Using this notion of approximation, we provide a general framework for solving asymmetric
linear systems that is broadly inspired by the work of [Peng-Spielman, STOC‘14]. Applying
this framework in conjunction with our sparsification algorithm, we obtain an almost-linear-
time algorithm for solving directed Laplacian systems associated with Eulerian Graphs. Using
this solver in the recent framework of [Cohen-Kelner-Peebles-Peng-Sidford-Vladu, FOCS‘16], we
obtain almost linear time algorithms for solving a directed Laplacian linear system, computing
the stationary distribution of a Markov chain, computing expected commute times in a directed
graph, and more.

For each of these problems, our algorithms improves the previous best running times of
O((nm3/4 + n2/3m) logO(1)(nκε−1)) to O((m + n2O(

√
logn log logn)) logO(1)(nκε−1)) where n is

the number of vertices in the graph, m is the number of edges, κ is a natural condition number
associated with the problem, and ε is the desired accuracy. We hope these results open the door
for further studies into directed spectral graph theory, and that they will serve as a stepping
stone for designing a new generation of fast algorithms for directed graphs.
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under Grant No. 1122374 and by the National Science Foundation under Grant No. 1065125.
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1 Introduction

In the analysis of Markov chains, there has been a longstanding algorithmic gap between the general
case, corresponding to random walks on directed graphs, and the special case of reversible chains,
for which the corresponding graph can be taken to be undirected. This gap begins with the most
basic computational task—computing the stationary distribution—and persists for many of the
fundamental problems associated with random walks, such as computing hitting and commute
times, escape probabilities, and personalized PageRank vectors. In the undirected case, there are
algorithms for all of these problems that run in linear or nearly-linear time. In the directed case,
however, the best algorithms have historically been much slower. Specifically, the best running times
were given by a recent precursor to the present paper [12], which showed that one could solve these
problems on a graph with n vertices and m edges in time Õ(nm3/4 +n2/3m).1 Prior to that work, it
was unknown whether one could solve any of them faster than the time needed to solve an arbitrary
linear system with the given size and sparsity, i.e. Θ(min(mn, nω)) time, where ω < 2.3729 is the
exponent for matrix multiplication.

This gap has its origins in a broader discrepancy between the state of algorithmic spectral graph
theory in undirected and directed settings. While the undirected case has a richly developed theory
and a powerful collection of algorithmic tools, similar results have remained somewhat elusive for
directed graphs. In particular, the problems mentioned above can be expressed in terms of the linear
algebraic properties of the Laplacian matrix of a graph, and it was shown in [12] how to reduce all
these problems to the solution of a small number of Laplacian linear systems. In the undirected
case, there has been a tremendously successful line of research on how to use the combinatorial
properties of graphs to accelerate the solution of such systems, culminating in algorithms that can
solve them in nearly-linear time [37, 23, 24, 22, 27, 13, 33, 25, 26]. Unfortunately, these solvers
relied heavily on several features that seemed intrinsic to the undirected case and did not appear
to be available for directed graphs, thereby precluding an analogous solver for directed Laplacians.
In particular, the undirected solvers relied on:

Knowledge of the kernel/stationary distribution: Up to a simple rescaling by the vertex de-
grees, vectors in the kernel of a Laplacian correspond to stationary distributions of the correspond-
ing random walk. For undirected graphs, the kernel is spanned by the all-ones vector on each of
the connected components, so it and the space of stationary distributions can be easily computed
in linear time. For directed graphs, however, this is no longer the case, and finding the stationary
distribution does not seem to be any easier than the original problem of solving Laplacian linear
systems. In fact, while stationary distributions of random walks on directed graphs have been
studied for over 100 years [3], and computing them has been extensively investigated in both the-
ory and practice (see e.g. [38, 34]), the Õ(nm3/4 + n2/3m) result in [12] was the first to find them
in less time than is required to find the kernel of a general matrix.

Symmetry and positive semidefiniteness: Undirected Laplacians are symmetric and positive
semidefinite. Essentially every aspect of algorithmic spectral graph theory uses this symmetry
to treat the Laplacian as a quadratic form and relies on its expression as a sum of positive
semidefinite contributions from each of the edges to analyze its properties. This includes the
Laplacians’ connection to the graph’s cut structure, their relationship to electrical circuits and
effective resistances, the notion of graph inequalities and spectral approximation, the combinatorial

1 We use Õ notation to suppress terms that are polylogarithmic in n, the natural condition number of the
problem κ, and the desired accuracy ε. We use the term “nearly linear” to refer to algorithms whose running time
is Õ(m) = m logO(1)(nκε−1) and “almost linear” to refer to algorithms that are linear up to sub-polynomial (but
possibly super-logarithmic) factors, i.e., whose running time is O(m(nκε−1)o(1)).
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construction of preconditioners, and the iterative methods used to solve Laplacian systems. On
the other hand, directed Laplacians are asymmetric matrices, and their naive symmetrizations are
not typically positive semidefinite.

Sparsification One of the most powerful algorithmic tools in the undirected setting is the ability
to construct sparsifiers [6, 36, 5]. These allow one to approximate an arbitrarily dense graph by
a sparse graph that has only a slightly super-linear number of edges. The classical notion of cut
sparsification requires that the value of every cut in the original graph be approximately preserved
in the sparsifier; the more recent notion of spectral sparsification is stronger, and also implies
the former property. For directed graphs, it can be shown that, even for the weaker notion of cut
sparsification, such sparsifiers do not generally exist. One simple example is the complete bipartite
graph. (See Section 1.1.2.) In fact, it was not known how to define any other useful notion of
sparsification for which this would not be the case.

In this paper, we show how to cope with these fundamental differences, and begin to address
the algorithmic gap between general and reversible Markov chains. Our core technical result is the
first almost-linear-time solver for directed Laplacian systems. Using the work from [12], this yields
the first almost-linear-time algorithms for computing a host of fundamental objects and quantities
associated with a random walk on a directed graph, including the stationary distribution, hitting
and commute times, escape probabilities, and personalized PageRank vectors.

More broadly, constructing our solver required the development of directed versions of several
foundational tools and techniques from undirected algorithmic spectral graph theory. Most notably,
and perhaps surprisingly, we show that it is possible to develop a useful notion of spectral approxi-
mation and sparsification of directed graphs, and that sparsifiers under this definition exist and can
be constructed efficiently.

In addition to their direct application to the analysis of Markov chains, we hope that both the
solver itself and the sparsification machinery will prove to be useful tools in the further development
of fast graph algorithms. In the undirected case, sparsifiers have been a core algorithmic tool since
the early 1990s [6, 19, 20, 16, 1], and fast solvers for undirected Laplacian solvers have recently
led to an explosion of algorithms operating in the so-called “Laplacian Paradigm” [39], in both
cases leading to asymptotic improvements for many of the core algorithmic problems for undirected
graphs. Given the success these methods have enjoyed in the case of undirected graphs, we hope
that their directed analogues will spark similar progress in the directed setting.

1.1 Previous Work

In this section, we briefly review some of the previous work related to our results and techniques.
Given the extensive prior research on Markov chains, spectral graph theory, sparsification, solving
general and Laplacian linear systems, and computing PageRank, we do not attempt to give a
comprehensive overview of the literature; instead we simply describe the work that most directly
relates to or motivates this paper.

1.1.1 Directed Laplacian Systems, Stationary Distributions, and PageRanks

The most direct precursor to this work is a recent paper by a subset of the authors [12]. As
mentioned above, it showed that, by exploiting linear algebraic properties of directed Laplacians,
one could obtain faster algorithms for a wide range of problems involving directed random walks.
Prior to this paper, it seemed quite possible that the similarities between directed and undirected
Laplacians were largely syntactic, and that there was no way to use the structure of directed
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Laplacians or random walks to obtain asymptotically faster algorithms. In particular, despite
extensive theoretical and applied work in computer science, mathematics, statistics, and numerical
scientific computing, all algorithms that we are aware of prior to [12] for obtaining high-quality2

solutions for directed Laplacian systems, stationary distributions, or personalized PageRank vectors
either have a polynomial dependence on a condition number or related parameter (such as a random
walk’s mixing time or PageRank’s restart probability), or they apply a general-purpose linear algebra
routine and thus run in at least the Ω(min(mn, nω)) time currently required to solve arbitrary linear
systems.

By showing that this was not the case, [12] provided the first indication that one could actually
use the structure of directed Laplacian systems to accelerate their solution, which provided a strong
motivation to see how much of an improvement was possible. It also created hope that the re-
cently successful research program in building and applying fast algorithms for solving (symmetric)
Laplacian systems [37, 23, 24, 22, 27, 33, 25] could be applied to give more direct improvements to
running times for solving combinatorial optimization problems on directed graphs.

In addition to motivating the search for faster Laplacian solvers, [12] provided a set of reductions
that we will directly apply in this paper. In order to prove its results, [12] showed how to reduce a
range of algorithmic questions about directed walks, such as computing the stationary distribution,
hitting and commute times, escape probabilities, and personalized PageRank vectors, to solving a
small number of linear systems in directed Laplacians.

It turns out that it is easier to work with such systems in the special case where the graph is
Eulerian. One of the main technical tools in [12] is a reduction to this special case. They did this
by giving an iterative method that solved a general Laplacian system by solving a small number
of systems in which the graph is Eulerian. Together, this showed that to solve the aforementioned
problems, it suffices to give a solver for Eulerian graphs, and that this only incurs a factor of Õ(1)
overhead. It then obtained all of its results by constructing an Eulerian solver that runs in time
Õ(m3/4n + mn2/3). In this paper we construct an Eulerian solver that runs in time m1+o(1) and
then just directly apply these reductions to obtain our other results.

However, while [12] opened the door for further algorithmic improvements in analyzing Markov
chains, the arguments in it provided little evidence that the running time could be improved to
anything approaching what was known in the undirected case. Indeed, while the techniques in
it suggested that it might be possible to obtain further improvements, even the most optimistic
interpretations of the structural results in [12] only gave hope for achieving running times of roughly
Õ(m

√
n). This would make it no faster than some of the existing algorithms that use undirected

Laplacian solvers to solve problems on directed graphs, such as the Õ(m10/7) algorithms for unit
cost maximum flow [30, 31] and shortest path with negative edge lengths [14], or the Õ(m

√
n)

type bounds for minimum cost flow [28]. As such, while this would provide better results for the
applications to Markov chains, it would rule out the hope of obtaining improved results for these
directed problems by replacing the undirected solver with a directed one.

Intuitively, the solver in [12] worked by showing how one could use the existence of a fast
undirected solver to solve directed Laplacians. For a directed Eulerian Laplacian L, it showed that
the symmetrized matrix U = (L + L>)/2 is the Laplacian of an undirected graph, and that the
symmetric matrix L>U+L was, in a certain sense, reasonably well approximated by U. Given a
linear system L~x = ~b, one could then form the equivalent system L>U+L~x = L>U+~b and use a fast
undirected Laplacian solver to apply U+. One could then hope that the fact that the matrix on the
left is somewhat well-approximated by U would imply that U+ is a sufficiently good preconditioner

2By high-quality, we mean that the algorithm should be able to find a solution with error ε in time that is sub-
polynomial in 1/ε, i.e. (1/ε)o(1). For PageRank there were some known techniques for achieving better dependence
on n and m at the expense of a polynomial dependence on 1/ε [2, 11, 9, 10].
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for it to yield an improved running time. It turned out that, while this would actually be the case
in exact arithmetic, numerical issues provided a legitimate obstruction. This necessitated a more
involved scheme, which gave a slightly slower running time of Õ(m3/4n + mn2/3), rather than the
roughly Õ(n2/3m) running time that what would have been achieved by exact arithmetic.

The way this algorithm works provides a good intuitive explanation for why one would not
expect it to give a solver yielding substantial improvements for combinatorial “Laplacian Paradigm”
algorithms that rely on undirected solvers. At its root, the solver from [12] works by trying to find
the right way to ignore the directed structure and solve the system with an undirected solver; thus
it is on essentially the same footing as the algorithms it would hope to improve. The obstructions it
faces are rooted in the fact that directed Laplacians are fundamentally not very well-approximated
by undirected ones. In essence, the difference between the solver in this paper and the one presented
in [12] is that, instead of figuring out how to properly neglect the directed structure, the solver we
present here intrinsically works with asymmetric (directed) objects, and redevelops the theory from
the ground up to properly capture them.

1.1.2 Directed Graph Sparsification and Approximation

While sparsification of undirected graphs has been extensively studied [6, 36, 16, 35, 4, 5, 42, 29],
there has been very little success extending the notion to directed graphs. In fact, it was not even
clear that there should exist a useful definition under which directed graphs should have sparsifiers
with a subquadratic number of edges, and for many of the natural definitions one would propose,
sparsification is provably impossible.

For instance, a natural first attempt would be to try to generalize the classical notion of cut
sparsification for undirected graphs [18, 6]. Given any weighted undirected graph G, Benczur and
Karger showed that one could construct a new graph H with at most O(n log n/ε2) edges such that
the value of every cut in G is within a multiplicative factor of 1 ± ε of its value in H. While this
definition makes sense for directed graphs as well, there is no analogous existence result. Indeed it
is not hard to construct directed graphs for which any such approximation must have Ω(n2) edges.

For example, consider the directed complete bipartite graph K on the vertex set A∪B with all
edges directed from A to B. For each pair of a ∈ A and b ∈ B, the directed cut

E ({a} ∪B \ {b}, {b} ∪A \ {a}) (1.1)

contains only the edge a → b. (See Figure 1.1.) Removing this edge from the graph would change
the value of this cut from 1 to 0, resulting in an infinite multiplicative error.

Any graph that multiplicatively approximates the cuts in K must have |E(B,A)| = 0, so it
must be supported on a subset of the edges of K, and the above then shows that such a graph must
contain the edge a→ b for every a ∈ A and b ∈ B. It thus follows that any graph that approximately
preserves every cut in K must contain all |A||B| potential edges, so K has no nontrivial sparsifier
under this definition.

It would therefore seem that any attempt at reducing the number of edges in a directed graph
while preserving the combinatorial structure is doomed to fail. However, Eulerian graphs present
a natural setting that circumvents this because cuts in Eulerian graphs have the same amount
of edge weight going in each direction, the bipartite graph counterexamples above are precluded.
This balancedness allows one to incorporate sparsification based tools for flows and routings in this
setting to solve combinatorial flow and cut problems quickly on Eulerian graphs [15].

Most closely related to our notion of sparsification of directed graphs is the work by Chung on
Cheeger’s inequality for directed graphs [8]. This result transforms the graph into an Eulerian graph
G in a way identical to how we obtain Eulerian graphs [12]: by rescaling each edge weight by the
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probability of its source vertex in a stationary distribution. It then relates the convergence rate of
random walks on G to the eigenvalues of the undirected graph obtained by removing directions on
all edges. Specifically if the Eulerian directed Laplaican is L, this symmetrization is

(
L+ L>

)
/2.

a

b

Figure 1.1: An example of the family of
cuts described in Equation (1.1). The only
edge leaving the highlighted set is a → b,
so any sparsifier that omits it will fail to
approximate the corresponding cut.

Since the eigenvalues of the symmetrization of an
Eulerian graph give information about random walks
on the original graph, it might be tempting to define
approximation for Eulerian graphs in terms of whether
their symmetrizations approximate each other in the
conventional positive semidefinite sense. For our pur-
poses, we require (and obtain) a substantially stronger
notion of approximation that preserves much of the
directed structure that would be erased by symmetriz-
ing. The reason why we need a stronger notion of ap-
proximation is that we want graphs that approximate
each other under this notion to be good precondition-
ers of one another. In contrast, if one defines approxi-
mation according to whether the symmetrizations ap-
proximate one another, one would have to say that the
length n undirected cycle and the length n directed
cycle approximate each other, since they are both Eu-
lerian and have the same undirected symmetrization.
However, they are not good preconditioners of one an-
other, and using one as a substitute for the other would
incur very large losses in our applications. Under the
notion of approximation we introduce in this paper,
these graphs differ by a factor of Ω(n2).

1.1.3 Laplacian System Solvers

Our algorithms build heavily on the literature for solv-
ing undirected Laplacians systems. Since undirected Laplacians are special cases of directed Lapla-
cians, any directed solver will yield an undirected solver when given a symmetric input. It is thus
helpful to consider what undirected solver we would like our method to resemble in this case.

There are now a fairly large number of reasonably distinct algorithms for solving such systems,
and we believe that several of them provide a template that could be turned into a working directed
solver. Of these, the one that our solver most closely resembles is the parallel solver by Peng and
Spielman [33], which we will briefly summarize here.

To simplify the notation and avoid having to keep track of degree normalizations, we only
consider regular graphs when giving the intuition behind the algorithm. Suppose that we are given
a d-regular undirected graph G with Laplacian L = dI − A = d(I − A), where A = A/d has
‖A‖ < 1 on ker(L)⊥. For simplicity, in the equations that follow, we restrict our attention to the
space perpendicular to the kernel of L. With this convention, the algorithm of [33] is then motivated
by the series expansion

(I−A)−1 =
∑
i≥0

Ai =
∏
k≥0

(
I + A2k

)
, (1.2)

which is a matrix version of the standard scalar identity 1/(1 − x) = 1 + x + x2 + x3 + · · · =
1(1 + x)(1 + x2)(1 + x4) · · · . If λ is the smallest nonzero eigenvalue of I−A, then truncating this
product at k = Θ(log 1/λ) yields a constant relative error, which can be made arbitrarily small
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by further increasing k. Hence if λ > 1/poly(n), we obtain a small error by multiplying the first
O(log n) terms of the product. This seems to suggest a good algorithm for solving a system L~x = ~b:
simply compute I + A2k for k = 0, . . . , t = O(log n) and then return 1

d(I + A20
) · · · (I + A2t)~b.

Unfortunately, this algorithm (implemented naively) would be too slow. As k grows, Ak quickly
becomes dense, so computing it requires repeatedly squaring dense matrices, which takes time
O(nω). To deal with this, their algorithm instead replaces these matrices with sparse approximations
of them. Peng and Spielman showed that given a graph with n vertices and m edges, one can
compute a sparse approximation of the requisite squared matrix in nearly-linear-time.

Making this idea work requires care, since in general it is not true that the product of two
matrices will be well approximated by the product of their approximations. For positive semidef-
inite matrices, however, there is a variant of this statement that holds if one takes the products
symmetrically: if A and B are PSD and A is a good approximation of B, then for any matrix V,
V>AV is a good approximation of V>BV . This led the authors of [33] to work with a more stable
symmetric version of the series described above, which allowed them to obtain their result.

This turns out to be a reasonably convenient template for our directed solver. In particular,
it has fewer moving parts than many of the other methods, and it does not require constructing
combinatorial objects, like low-stretch spanning trees. Instead it directly relies on sparsification,
which is our main new technical tool for directed graphs.

Unfortunately, we cannot directly apply the methods described above, since the symmetric
product constructions that are used to control the error are no longer available for the (asymmetric)
Laplacians of directed graphs. Moreover, the strong notions of graph approximation and positive
semidefinite inequalities that facilitate the analysis for the undirected solver are unavailable in the
directed setting. As such, we end up having to work with weaker error guarantees, and correct the
extra error they introduce using a more involved iterative method.

1.2 Our Results

In this paper, we show that, in spite of these seemingly fundamental differences between the directed
and undirected settings, we can develop directed analogues of several of the core spectral primitives
that have been deployed to great effect on undirected graphs, and we use them to obtain the first
almost-linear-time algorithms for many of the central problems in the analysis of non-reversible
Markov chains. The main new theoretical tools and algorithmic primitives we introduce are:

• Directed graph approximation: We develop a well-behaved notion of spectral approximation
for directed graphs, despite the fact that the corresponding Laplacians lack the symmetry and
positive semidefiniteness properties that the undirected version crucially relies on. Our definition
specializes to the standard version based on PSD matrix inequalities when applied to undirected
graphs, and it retains many of the useful features of the undirected definition. For example,
our notion of graph approximations roughly preserve the behavior of random walks, behave well
under composition and change of basis, retain certain key aspects of the combinatorial structure,
and provide good preconditioners for iterative methods.

• Directed sparsification: We show that, under our notion of approximation, any strongly-
connected directed graph can be approximated by a sparsifier with only Õ(n/ε2) edges, and we
give an algorithm to compute such a sparsifier in almost-linear time. To our knowledge, this
is the first time that directed sparsifiers with o(n2) edges have been proven to exist, even non-
algorithmically, for any computationally useful definition that retains the directed structure of a
graph.
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• Almost-linear-time solvers for directed Laplacian systems: Given the Laplacian L =
D−ma> of a directed graph with n vertices and m edges, we provide an algorithm that leverages
our sparsifier construction to solve the linear system L~x = ~b in time

T = O
(
m+ n2O(

√
logn log logn)

)
logO(1)

(
nκε−1

)
= O

(
m+ n1+o(1)

)
logO(1)

(
nκε−1

)
, (1.3)

where κ = max(κ(L), κ(D)) is the maximum of the condition numbers of L and D, improving
on the best previous running time of O

(
nm3/4 + n2/3m

)
logO(1)

(
nκε−1

)
. (See Theorem 4.1.)

To do so, we introduce a novel iterative scheme and analysis that allows us to mitigate the
accumulation of errors from multiplying sparse approximations without having access to the
more stable constructions and bounds available for symmetric matrices.

In [12], we provided a suite of reductions that used a solver for directed Laplacians to solve a
variety other problems. Plugging our new solver’s running time into these reductions immediately
gives the following almost-linear-time algorithms:3

• Computing stationary distributions: We can compute a vector within `2 distance ε of the
stationary distribution of a random walk on a strongly connected directed graph in time T .

• Computing Personalized PageRank vectors: We can compute a vector within `2 dis-
tance ε of the Personalized PageRank vector with restart probability β for a directed graph
in time T log2(1/β).

• Simulating random walks: We can compute the escape probabilities, commute times, and
hitting times for a random walk on a directed graph and estimate the mixing time of a lazy
random walk up to a polynomial factor in time T .

• Estimating all-pairs commute times: We can build a data structure of size Õ(nε−2 log n)
in time T /ε2 that, when queried with any two vertices a and b, outputs a 1 ± ε multiplicative
approximation to the expected commute time between a and b.

• Solving row- and column-diagonally dominant linear systems: We can solve linear sys-
tems that are row- or column-diagonally dominant in time T logK, where K denotes the ratio of
the largest and smallest diagonal entries.

This gives the first almost-linear-time algorithm for each of these problems. For all of them, the
best previous running time for obtaining high-quality solutions was what is obtained by replacing
T with O

(
nm3/4 + n2/3m

)
logO(1)

(
nκε−1

)
and was proven in [12].

1.3 Paper Overview

The rest of this paper is organized as follows.

• Section 2 – we cover preliminaries such as notation, facts about directed Laplacians that we use
throughout the paper, and an overview of our approach.
3We use T to denote anything of the form given in equation 1.3, not the time required for one call to the solver.

Some of the reductions call the solver a logarithmic number of times, so precise value of the logO(1)(nκε−1) term varies
among the applications. Also, note that in this paper we give solving running times in terms of the condition number
of symmetric Laplacian whereas in [12] they are often given in terms of the condition number of the corresponding
diagonal matrix. However it is well-known that these differ only by a O(poly(n)) factor and as they are in the
logarithmic terms, this does not affect the running times.
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• Section 3 – we introduce a notion of asymmetric approximation, and prove that we can, in nearly
linear time, produce sparsifiers which are good approximations under this notion.

• Section 4 – we show how to employ the sparsification routines from the previous section in order
to obtain our fast Eulerian Laplacian system solver.

• Appendix A – we prove a matrix concentration result concerning entrywise sampling, which is
the basic building block for the results from Section 3.

• Appendix B – we provide various general linear algebra facts used throughout the paper.

• Appendix C – we show how to obtain the graph decompositions required for sparsifying arbitrary
Eulerian Laplacians using a decomposition of undirected graphs into expanders.

• Appendix D – we provide some details on the full algorithm for computing stationary distributions
and solving directed Laplacians using a Eulerian Laplacian system solver.

• Appendix E – we relate our sparsification results to certain systems considered in [12].

• Appendix F – we provide a general reduction that improves the dependence of our Eulerian solver
on the condition number from exp(

√
log κ) to log κ.

2 Preliminaries

First we give notation in Section 2.1 and then we give basic information about directed Laplacians
in Section 2.2. Much of this is inherited from [12]. With this notation in place we give an overview
of our approach in Section 2.3.

2.1 Notation

Matrices: We use bold to denote matrices and let I,0 ∈ Rn×n denote the identity matrix and zero
matrix respectively. For a matrix A we use nnz(A) to denote the number of non-zero entries in A.
When A ∈ Rn×n we use supp(A) to denote the subset of [n] corresponding to the indices for which
at least one of the corresponding row or column in A is non-zero.

Vectors: We use the vector notation when we wish to highlight that we are representing a vector.
We let 0,1 ∈ Rn denote the all zeros and ones vectors, respectively. We use ~1i ∈ Rn to denote
the i-th basis vector, i.e. (~1i)j = 0 for j 6= i and (~1i)i = 1. Occasionally, when it is obvious from
the context, we apply scalar operations to vectors with the interpretation that they be applied
coordinate-wise. As with matrices, we use supp(~x) to denote the indices of ~x with non-zero entries.

Positive Semidefinite Ordering: For symmetric matrices A,B ∈ Rn×n we use A � B to denote
the condition that x>Ax ≤ x>Bx, for all x. We define �, ≺, and � analogously. We call a symmet-
ric matrix A ∈ Rn×n positive semidefinite (PSD) if A � 0. For vectors x, we let ‖x‖A

def
=
√
x>Ax.

For asymmetric A ∈ Rn×n we let UA
def
= 1

2(A + A>) and note that x>Ax = x>A>x = x>UAx for
all x ∈ Rn.

Operator Norms: For any norm ‖ · ‖ defined on vectors in Rn we define the seminorm it in-
duces on Rn×n by ‖A‖ = maxx 6=0

‖Ax‖
‖x‖ for all A ∈ Rn×n. When we wish to make clear that we

are considering such a ratio we use the → symbol; e.g., ‖A‖H→H = maxx 6=0
‖Ax‖H
‖x‖H , but we may
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also simply write ‖A‖H
def
= ‖A‖H→H in this case. For symmetric positive definite H we have that

‖A‖H→H can be equivalently expressed in terms of ‖ · ‖2 as ‖A‖H→H = ‖H1/2AH−1/2‖2. Also
note that ‖A‖1 is the is the maximum `1 norm of a column of A, and ‖A‖∞ is the maximum `1
norm of a row of A.

Diagonals For x ∈ Rn we let diag(x) ∈ Rn×n denote the diagonal matrix with diag(x)ii = xi and
typically use X

def
= diag(x). For A ∈ Rn×n we let diag(A) ∈ Rn denote the vector corresponding to

the diagonal of A, i.e. diag(A)i = Aii and we let diag(A) denote the diagonal matrix having the
same diagonal as A.

Linear Algebra For a matrix A, we let A+ denote the (Moore-Penrose) pseudoinverse of A.
For a symmetric positive semidefinite matrix B, we let B1/2 denote the square root of B, that is the
unique symmetric positive semidefinite matrix such that B1/2B1/2 = B. Furthermore, we let B+/2

denote the pseudoinverse of the square root of B. We use ker(A) to denote nullspace (kernel) of
A. We use span(x1, x2, ..., xk) to denote the subspace spanned by x1, ..., xk. For a symmetric PSD
matrix A we let λ∗(A) denote the smallest non-zero eigenvalue of A.

Misc: We let [n]
def
= {1, ..., n}. For A ∈ Rn×n, let κ(A)

def
= ‖A‖2·‖A+‖2 denote the condition number

of A. For symmetric PSD matrices A and B with the same kernel, let κ(A,B)
def
= κ(A+/2BA+/2)

denote their relative condition number (e.g. if αB � A � βB then κ(A,B) ≤ β/α). Note that our
use of pseudoinverse rather than inverse in these definitions is non-standard but convenient.

2.2 Directed Laplacians

Here we provide notation regarding directed Laplacians and review basic facts regarding these matri-
ces that were proved in [12]. We begin with some basic definitions and notation regarding Laplacians:

Directed Laplacian: A matrix L ∈ Rn×n is called a directed Laplacian if (1) its off diagonal entries
are non-positive, i.e. Li,j ≤ 0 for all i 6= j, and (2) it satisfies 1>L = 0, i.e. Lii = −

∑
j 6=i Lji for all i.

Associated Graph: To every directed Laplacian L ∈ Rn×n we associate a graph GL = (V,E,w)
with vertices V = [n], and edges (i, j) of weight wij = −Lji, for all i 6= j ∈ [n] with Lji 6= 0.
Occasionally we write L = D − A> to denote that we decompose L into the diagonal matrix D
(where Dii = Lii is the out degree of vertex i in GL) and non-negative matrix A (which is weighted
adjacency matrix of GL, with Aij = wij if (i, j) ∈ E, and Aij = 0 otherwise).

Eulerian Laplacian: A matrix L is called an Eulerian Laplacian if it is a directed Laplacian
with L1 = 0. Note that L is an Eulerian Laplacian if and only if its associated graph is Eulerian.

(Symmetric) Laplacian: A matrix U ∈ Rn×n is called a symmetric or undirected Laplacian
or just a Laplacian if it is symmetric and a directed Laplacian. Note that the graph associ-
ated with an undirected Laplacian is undirected, i.e. for every forward edge there is a back-
ward edge of the same weight. Given a symmetric Laplacian U = D − A, we let its spectral
gap be defined as the smallest nonzero eigenvalue of D−1/2UD−1/2, i.e. λ2(D−1/2UD−1/2) =
minx⊥ker(D−1/2UD−1/2),‖x‖=1 x

>D−1/2UD−1/2x.

Running Times: Our central object is almost always a directed Laplacian L = D−A ∈ Rn×n,
where m = nnz(A), U def

= maxi,j |Aij |/mini,j:Aij 6=0 |Aij |. We use Õ(·) notation to suppress factors
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polylogarithmic in n, m, U , and κ, the natural condition number of the particular problem.

2.3 Overview of Approach

Here we provide an overview of our approach for solving linear systems in directed Laplacians. We
split it into three parts. In the first part, Section 2.3.1, we describe how to reduce the problem to
the special case of solving Eulerian Laplacians with polynomial condition number. In the second
part, Section 2.3.2 we cover the efficient construction of sparsifiers. Finally, and in the third part,
Section 2.3.3, we discuss how to use the sparsifier construction to build an almost-linear-time solver
for polynomially well-conditioned Eulerian Laplacian systems.

2.3.1 Reductions

We begin by applying two reductions. The first is a result from [12], which states that one can solve
row- and column-diagonally dominant linear systems, which include general directed Laplacian
systems, by solving a small number of Laplacian systems in which the graphs are Eulerian:

Theorem 2.1 (Theorem 42 from [12]). Let M be an arbitrary n × n column-diagonally-dominant
or row-diagonally-dominant matrix with diagonal D. Let b ∈ im(M). Then for any 0 < ε ≤ 1, one
can compute, with high probability and in time

O

(
Tsolve log2

(
n · κ(D) · κ(M)

ε

))
a vector x′ satisfying ‖Mx′ − b‖2 ≤ ε‖b‖2.

Furthermore, all the intermediate Eulerian Laplacian solves required to produce the approximate
solution involve only matrices R for which κ(R + R>), κ(diag(R)) ≤ (nκ(D)κ(M)/ε)O(1).

If we were to combine this directly with the algorithm from Section 4, it would give a running
time of Õ

((
m+ n expO

(√
log κ · log log κ

))
log (1/ε)

)
to solve linear systems in a directed Laplacian

L = D −AT , where κ is the condition number of the normalized Laplacian D−1/2LD−1/2. While
κ is typically polynomial in n, it is possible for it to be exponential, so we would like our running
time to depend on it logarithmically, instead of just sub-polynomially. We show how to do this in
Appendix F, where we give an algorithm to solve an arbitrarily ill-conditioned Eulerian Laplacian
systems by solving O(log(nκ)) Eulerian Laplacians whose condition numbers are polynomial in n.
This allows us to restrict our attention for the rest of the paper to the case where κ is polynomial in
n and, when applied to the algorithm from Section 4, gives our final running time of logO(1)(nκε−1)).

2.3.2 Sparsification

Our primary new graph theoretic tool is a directed notion of spectral sparsifiers, along with efficient
techniques for constructing them for an Eulerian graph and its square. As discussed in the intro-
duction, there are seemingly intrinsic problems with many of the notions of directed sparsification
that one would propose based on analogies to the undirected case. In particular, both the cut-based
and spectral notions have seemingly fatal issues that preclude their use in directed graphs. For the
cut-based notion, as shown in Section 1.1.2, good sparsifiers provably don’t exist for some graphs.

If one instead seeks to generalize the undirected definition of spectral sparsifiers, which requires
a sparsifier H of a graph G to obey (1 − ε)~xTLH~x ≤ ~xTLG~x ≤ (1 + ε)~xTLH~x, the problems are
perhaps even more severe. For instance, when G is directed LG is no longer symmetric, so it’s not
clear that it makes sense to use it as a quadratic form ~x>LG~x, and doing so essentially symmetrizes
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it and discards the directed structure, since ~x>LG~x = ~x>L>G~x = ~x>
(
LG+L>G

2

)
~x. In addition, the

resulting quadratic form is not typically PSD, i.e. there often exist ~x for which ~x>LG~x < 0, in
which case G would not approximate itself under the definition given for ε > 0.

One also has to deal with the fact that, unlike in the undirected case, the kernels of directed graph
Laplacians are rather subtle objects: for a strongly-connected graph G, the kernel of LG = D−A>

is given by D−1φ, where φ is the stationary distribution of the random walk on G. This carries
various problematic consequences, including the fact that L and L> typically have different kernels,
and even small changes in the graph can change whether L~x = 0 for a given vector ~x.

Our approach to this is based on the fact that many of these problems do not occur for Eulerian
graphs. In particular, if L is the Laplacian of an Eulerian directed graph G, UL = (L + L>)/2 is
the Laplacian of an undirected graph and thus positive semidefinite, and cuts in the corresponding
undirected graph are the same as those in G. In addition, the kernel of L is spanned by the all-ones
vector and is the same as the kernel of L>. In addition, the following was shown in [12], which says
that the Laplacian of any strongly connected graph can be turned into an Eulerian Laplacian by
applying a diagonal scaling:

Lemma 2.2 (Lemma 1 from [12], abridged). Given a directed Laplacian L = D − A> ∈ Rn×n
whose associated graph is strongly connected, there exists a positive vector ~x ∈ Rn>0 (unique up
to scaling) such that L · diag(~x) is an Eulerian Laplacian. Furthermore, ker(L) = span(~x), and
ker(L>) = span(1).

Moreover, it was shown in [12] that one could find a high-precision approximation to this scaling
efficiently given access to an Eulerian solver.

Intuitively, we define our notion of sparsification and approximation for Eulerian graphs, and we
show that this notion induces a well-behaved definition for other strongly-connected graphs through
the Eulerian scaling. As we do not want to neglect the directed structure, we will think of Laplacians
as linear operators, not quadratic forms, and we study their sizes through various operator norms.

For Laplacians of Eulerian graphs, we use the fact that their symmetrizations are PSD, and
our definition of approximation will demand that the difference between the two operators be small
relative to the corresponding quadratic form. More precisely, we say that an Eulerian Laplacian
LH ε-approximates another Eulerian Laplacian LG if

∥∥U+/2
LG (LH − LG)U

+/2
LG

∥∥
2
≤ ε. We note that

this use of ULG is closely related to the L>GU+
LGLG matrix that appeared in [12]. The difference,

however, is that we are not trying to directly use this matrix as a symmetric stand-in for our
Laplacian; we are working directly with the original (asymmetric) Laplacians and are just using it
to help define a matrix norm.

To construct sparsifiers of Eulerian graphs with respect to this notion, we follow a similar ap-
proach to the one originally used by Spielman and Teng for spectral sparsification, but carefully
tailored to the directed setting. The idea is to first partition our graph into well-connected compo-
nents. Because the cuts in an Eulerian graph match those in its symmetrization, it makes sense to
do this partitioning by simply partitioning the corresponding undirected graph into clusters with
good expansion. We use existing decomposition techniques to argue that one can find such a parti-
tion with a significant fraction of the edges contained in the clusters. We then show a concentration
result for asymmetric matrices that says that appropriately sub-sampling within these clusters pre-
serves the relevant structure reasonably well while only keeping a small number of edges relative to
the cluster size.

In the undirected case, one would just repeat this procedure until the graph is sparse. Where
our procedure differs, however, is that we keep track of the directed structure along the way, and
“patch” the subsampled object to keep it from diverging from what it should be. In particular,
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the sampling procedure, when applied to an Eulerian graph will produce a non-Eulerian graph.
However, we add additional edges to fix this after every sampling step and use our concentration
bounds to show that the patches we add are sufficiently small to not decrease the quality of our
approximation.

Carefully, analyzing this procedure allows us to produce a sparsifier in nearly linear time. How-
ever, in order to use our sparsification routine to produce a solver, we also need to sparsify the
Laplacian of the square of a graph. To do this, we could just explicitly form the square and then
sparsify it. However, we would like to perform this procedure in time that is nearly-linear in the
number of edges of the original graph, whereas explicitly forming the square would cause the run-
ning time to grow with the number of edges of the square, which could be substantially larger. To
prevent this, we instead show how to work with an implicit representation of the square that we
can manipulate more efficiently, similar to [33].

2.3.3 Linear System Solving

In Section 4, we describe our algorithm for solving Eulerian Laplacian systems of equations. It
begins with a similar template to the Peng-Spielman solver [33] described in Section 1.1.3, but with
modifications to accommodate our non-symmetric setting. Given a linear system in an Eulerian
Laplacian L = D−A>, we write L = D1/2 (I−A) D1/2, where A = D−1/2A>D−1/2. This reduces
the problem to solving linear systems in L = I −A where we can show that ‖A‖2 = 1. We then
apply the expansion in Equation (1.2), but with some slight modifications:

• We find it convenient to build up the product expansion in Equation (1.2) recursively. We do so
using the identity

(I−A)+ = (I−A2)+(I + A), (2.1)

which can be thought of as a matrix analogue of the rational function identity
1

1− z
=

1 + z

1− z2
.

Applying this identity repeatedly gives

(I−A)+ = (I−A2)+(I+A) = (I−A4)+(I+A2)(I+A) = (I−A8)+(I+A4)(I+A2)(I+A) = . . . .

After k applications of the identity, this yields the first k terms of the product expansion in (1.2)
times (I−A2k)+, which converges to the identity as k gets large if ‖A‖2 < 1. Some advantages of
this compared to the infinite product expansion are that it gives an exact expression rather than
an asymptotic result, which will be more convenient to work with when analyzing the growth of
errors, and that the pseudoinverses in the expression gives a correct answer when ‖A‖ = 1, which
decreases the extent to which we need to explicitly handle the kernel of L as a special case.

• If z 6= 1 is a complex number with |z| = 1, 1/(1−z) exists but the series 1/(1−z) = 1+z+z2+. . .
does not converge, and our matrix expansion will exhibit similar behavior. Graph theoretically,
this case corresponds periodic behavior in the random walk, and we deal with it, as usual, by
adding self-loops and working with a lazy random walk. Algebraically, we work with a convex
combination with the identity,

A(α) = αI + (1− α)A,
and we note that I−A(α) = (1−α)(I−A). We then replace the identity in Equation (2.1) with
the modified identity

(I−A)+ = (1− α)
(
I−A(α)

)+
= (1− α)

(
I−A(α)2

)+ (
I + A(α)

)
, (2.2)
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which leads to better convergence behavior. This step insures that each application of the identity
causes a change that is more gradual than squaring. Moreover, our analysis takes advantage of
the fact that taking a linear combination with the identity makes it easier to relate I−A(α)

j+1 to

I −A(α)
j . While it may not be necessary to do at every step, it is used to simplify the current

analysis. Note, that this algebraic simplification through ‘lazy’ random walks is also present in
other works involving squaring [7, 17].

Similarly to the approach in [33], our strategy is to repeatedly apply (2.2), but to replace (A(α))2

with a sparsifier in each step to allow us to decrease the computational costs. More precisely, we
show how to efficiently construct a sequence of matrices A0,A1, . . . ,Ad and associated matrices
A(α)
i = αI + (1− α)Ai such that each matrix in the sequence has Õ(n/ε2) nonzero entries, I−A0

is an ε-approximation of I−A, and I−Ai is an ε-approximation of I− (A(α)
i−1)2 for each i ≥ 1 (note

that we set A0 by sparsifying the original Laplacian). We call this a square-sparsification chain. In
Section 4.2, we show how to compute all of the matrices in such a chain in time Õ(nnz(L) +nε−2d),
which we note is within logarithmic factors of the total number of nonzero entries.

The length of the chain is then dictated by the condition number κ = κ(UI−A), the con-
dition number of the symmetric Laplacian associated with the input Eulerian Laplacian. Note
that κ = O(poly(nU)) where U def

= maxi,j |Aij |/mini,j:Aij 6=0 |Aij | and may be smaller. If we set
d = Ω(log κ), we show that I−A(α)

d well-conditioned. We can thus stop our recursion at this point
and (approximately) apply (I −A(α)

d )+ using a small number of iterations of a standard iterative
method, Richardson iteration.

Expanding the recurrence in (2.2) gives

(I−Ai)
+ ≈ (1− α)j−i

(
I−A(α)

j

)+ (
I + A(α)

j−1

)(
I + A(α)

j−2

)
· · ·
(
I + A(α)

i

)
. (2.3)

If we have already computed the matrices in the chain, we can apply the right-hand side to a vector
~b by performing (j − i) matrix-vector multiplications and solving a linear system in I−A(α)

j . It is

useful to think of this as an approximate reduction from applying (I−Ai)
+ to applying (I−A(α)

j )+.
The matrices in (2.3) have at most Õ(n/ε2) nonzero entries, so the total time for the matrix vector
multiplications is then at most Õ

(
(j − i)nε−2

)
.

Because of the errors introduced by the sparsification steps, the right-hand side of (2.3) is
only an approximation of (I−Ai)

+, so applying it directly to ~b only yields a (typically somewhat
crude) approximation to solution to (I −Ai)~x = ~b. To obtain a better solution, we instead use
it as a preconditioner inside an iterative method for the linear system. This allows us to obtain
an arbitrarily good solution to the system, and the quality of the approximation in (2.3) then
determines the number of iterations required.

This suggests that we quantify the error in our approximations using a notion that directly
bounds the convergence rate of such a preconditioned iterative method. We do so with the notion
of an ε-approximate pseudoinverse (defined with respect to some PSD matrix U), which we introduce
in Section 4.1. Roughly speaking, solving a linear system with an appropriate iterative method using
such a matrix as a preconditioner will guarantee the U-norm of the error to decrease by a factor of
ε in each iteration. We note that this is only useful for ε < 1. For technical reasons, we measure
the quality of approximate pseudoinverses with respect to different U matrices at different stages
of the algorithm and translate between them. For simplicity, we just refer to an “ε-approximate
pseudoinverse” in this overview, but in our algorithm we set the value of ε in our sparsification
routines and apply iterative methods, again Richardson iterations, to appropriately pay for the
costs of translating between norms.
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To analyze the errors introduced by sparsification, we therefore need to:

1. Relate our notion of graph approximation to approximate pseudoinverses, and

2. Bound the rate at which the quality of the approximate pseudoinverse we produce decreases
as we increase the number of terms in (2.3). We use (2.3) recursively, so it is also be useful
to bound how this is affected if we use an approximate pseudoinverse instead of the exact
operator

(
I−A(α)

j

)+.
For the former, we show in Theorem 4.11 that our notion of an ε-sparsifier leads to an O(ε)-

approximate pseudoinverse. For the latter, we show in Lemma 4.13 that using a square-sparsifier
chain of length d with some given ε, and using an ε′-approximate pseudoinverse of

(
I −A(α)

j

)
in

place of
(
I−A(α)

j

)+, produces an (ε+ ε′) · 2O(d)-approximate pseudoinverse for I−A(α)
j .

The exponential dependence of the error on length of the chain is a key difference between
our analysis and the undirected case, and it is what prevents us from having a simpler and more
efficient algorithm. If the dependence on the chain length were polynomial, applying (2.3) with
i = 0 and j = d would provide an ε · polylog(n)-approximate pseudoinverse. We could thus set
ε = 1/polylog(κ) in our sparsifier chain and get an O(1)-approximate pseudoinverse in Õ(n) time.
An iterative method could then call this log(1/δ) times to obtain a solution with error δ. However,
because of the exponential dependence on the chain length, we would only get an ε · poly(κ)-
approximate pseudoinverse. We would thus need to set ε = 1/poly(κ) to get a value less than 1,
which would lead to “sparsifiers” with Ω̃(n · poly(κ)) edges. In the typical case where κ = poly(n),
simply writing these down would exceed the desired almost-linear time bound.

To prevent this, we do not wait until the end to apply an iterative method to reduce the error.
Instead, we break our sparsification and squaring steps into dd/∆e blocks of size ∆ � d, each of
which we will wrap in several steps of Richardson iteration (which we review in Section 4.1), in
order to keep the error under control.

Our algorithm first computes (once, not recursively) a square-sparsifier chain of length d =
O(log κ) in which the sparsifiers are εspar-approximations. It then recursively combines two types
of steps that are suggested by the discussion above:

• High error
(
I − A(α)

i

)+ from low error
(
I − A(α)

i+∆

)+: Given a routine to apply an εlo-
approximate pseudoinverse of I − A(α)

i+∆ in time Ti+∆,εlo , we can use the expansion in (2.3) to
apply an εhi-approximate pseudoinverse of I−A(α)

i in time Ti,εhi
= Ti+∆,εlo + Õ(∆nε−2

spar), where
εhi = (εspar + εlo)2O(∆).

• Low error
(
I −A(α)

i

)+ from high error
(
I −A(α)

i

)+: By running Richardson iteration for
O(log εlo/ log εhi) steps, we can turn an εhi-approximate pseudoinverse of I − A(α)

i into a εlo-
approximate pseudoinverse. This applies the former once in each iteration, so it takes time

Ti,εlo = O

(
log εlo
log εhi

)
Ti,εhi

= O

(
log εlo
log εhi

)(
Ti+∆,εlo + Õ

(
∆nε−2

spar

))
. (2.4)

If we set εhi to be a constant (say, 1/10), we get εspar+εlo = 2−Ω(∆), so we set εspar = εlo = 2−Θ(∆),
and (2.4) simplifies to

Ti,εlo = O(∆)
(
Ti+∆,εlo + Õ

(
∆n2Θ(∆)

))
= O (∆) Ti+∆,εlo + Õ

(
n2Θ(∆)

)
.
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For the base case of our recurrence, I − A(α)
d is well-conditioned, so we can approximately ap-

ply its pseudoinverse using a standard iterative method in time Td,εlo = Õ(nnz(A(α)
d ) log ε−1

lo ) =

Õ(nε−2
spar log ε−1

lo ) = Õ
(
n2Θ(∆)

)
. This can be folded into the additive Õ

(
n2Θ(∆)

)
term in the recur-

rence, so it does not significantly affect the time bound.
To estimate the solution to the recurrence, we note that depth of the recursion is dd/∆e, and at

each stage we multiply by O(∆). We can think of this as producing a recursion tree with O(∆)dd/∆e

nodes, and we add Õ
(
n2Θ(∆)

)
at each, so we get that

T0,εlo = O(∆)dd/∆eÕ
(
n2O(∆)

)
= nO(∆)O(d/∆)2O(∆) = n2O(∆+ d log ∆

∆ ).

Setting ∆ =
√
d log d =

√
log κ log log κ approximately balances the two terms in the exponent.

Plugging this in and adding the Õ(m) for the overhead from the non-recursive parts of the algorithm
gives our running time bound of Õ(m) + n2O(

√
log κ log log κ).

3 Sparsification of Directed Laplacians

In this section, we define what it means for one strongly connected directed graph to approximate
another, and we use this to define directed sparsifiers. We show that such sparsifiers exist for
any directed graph and give efficient algorithms to construct them. For our almost linear time
directed Laplacian system solver (Section 4), we only need to be able to sparsify Eulerian graphs.
However, we have included the more general case of non-Eulerian graphs because we believe it is of
independent interest and may be useful in other settings.

As discussed in Section 2.3.2, we define our notion of graph approximation by first giving a
notion of approximation for matrices and then applying it to (possibly rescaled versions of) directed
graph Laplacians. This notion will be qualitatively better-behaved for Laplacians of Eulerian graphs
than for general directed Laplacians. As such, our definition will make use of the existence of a
scaling that makes any strongly connected graph Eulerian.

Our notion of approximation for asymmetric matrices is defined as follows:

Definition 3.1 (Asymmetric Matrix Approximation). A (possibly asymmetric) matrix Ã is said
to be an ε-approximation of A if:

1. UA is a symmetric PSD matrix, with ker(UA) ⊆ ker(Ã−A) ∩ ker((Ã−A)>), and

2. ‖U+/2
A (Ã−A)U

+/2
A ‖2 ≤ ε.

When these properties hold for some constant ε ∈ (0, 1) we simply say Ã approximates A.

In Section 3.1 we provide an equivalent definition and several facts which justify this choice of
matrix approximation. In particular, we prove the following facts regarding Definition 3.1

• it generalizes spectral approximation (ie., small relative condition number) of symmetric matrices,
and behaves predictably under perturbations;

• it implies the symmetrizations UA and U
Ã

of A and Ã, spectrally approximate each other;

• its behavior under composition is natural.

Furthermore, in Appendix E we show that our notion of approximation also yields approximations
of the symmetric systems solved in [12], known as harmonic symmetrizations.

We extend this notion of approximation from asymmetric matrices to directed graphs as follows:
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Definition 3.2 (Directed Graph Approximation). Let L, L̃ ∈ Rn×n be the Laplacians of strongly-
connected directed graphs G and G̃ respectively, and let X = diag(~x) and X̃ = diag(~̃x) be the
diagonal matrices for which LX and L̃X̃ are Eulerian Laplacians that are guaranteed to exist by
Lemma 2.2, normalized to have Tr(X) = Tr(X̃) = n.

We say that G̃ is an ε-approximation of G if:

1. (1− ε)X ≤ X̃ ≤ (1 + ε)X, and

2. L̃X̃ is an ε-approximation of LX.

If X̃ = X, we say that G̃ is a strict ε-approximation of G.

In words, we say that a graph approximates another graph if their Eulerian scalings are within
small multiplicative factors of one another and the resulting Eulerian graphs obey our definition of
asymmetric matrix approximation. We call the approximation “strict” if their Eulerian scalings are
not just within small multiplicative factors of one another but are actually identical.

Our main use of this notion is to define sparsifiers, which are approximations that have a small
number of nonzero entries.

Definition 3.3. (Graph Sparsifier) Let L, L̃ ∈ Rn×n be the Laplacians of strongly-connected di-
rected graphs G and G̃, respectively. We say that G̃ is a (strict) ε-sparsifier of G if:

1. G̃ is a (strict) ε-approximation of G, and

2. nnz(L̃) ≤ Õ(nε−2), where n is the number of vertices in G.

We note that, if we show that strict sparsifiers exist for Eulerian graphs, this will imply that
they exist for general strongly connected graphs as well. One can simply apply the graph’s Eulerian
scaling, find a sparsifier for the resulting Eulerian graph, and then “unscale” the graph by applying
the inverse of the Eulerian scaling. The results of this paper allow us to compute an Eulerian scaling
for any graph in almost-linear time. Thus, the almost linear time sparsification procedure we will
give for Eulerian graphs will imply an almost linear time sparsification procedure for all graphs.4

As such, we will focus on the Eulerian case. In this case, graph approximation will be the same as
matrix sparsification, and it will often be convenient to refer directly to the Laplacian, instead of
to the graph. Moreover, we will seek to exactly preserve the fact that the graph is Eulerian, so we
will exclusively consider strict approximations. We thus define:5

Definition 3.4 (Eulerian Sparsifier). L̃ ∈ Rn×n is an ε-sparsifier of an Eulerian Laplacian L if

1. L̃ is a strict ε-approximation of L

2. nnz(L̃) ≤ Õ(nε−2).

In the remainder of the section, we show how to produce such sparsifiers of Eulerian Laplacians.
I.E., given an Eulerian Laplacian, we will obtain an Eulerian Laplacian that approximates the
original and has a small number of nonzero entries.

4One has to exercise some care with the numerics here, since we will only be able to compute a finite precision
estimate of the Eulerian scaling of a graph. So, if we apply this scaling and then want to sparsify, the graph we want
to sparsify will not be perfectly Eulerian. However, it is straightforward to show that—as long as the approximate
Eulerian scaling being used is fairly precise—one can “patch” the rescaled graph to become Eulerian while only
incurring a very small loss in the approximation quality.

5We could ask for sparsifiers under other notions of approximation, such as the weaker conditions required to
obtain a preconditioner (see Section 4.1); as our algorithms always give this notion we use this terminology.
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Moreover, we show how to construct these sparsifiers in nearly linear time. Specifically, we
give an algorithm that produces an ε-sparsifier of an Eulerian Laplacian L with high probability
in Õ(nnz(L)/ε2) time. Even without any additional work, this result alone immediately implies
some improvement in the runtime for solving arbitrary directed Laplacian systems. Specifically, one
can write down the harmonic symmetrization of the original matrix, the harmonic symmetrization
of the sparsify, and solve the original harmonic symmeterization preconditioned by the harmonic
symmetrization of the sparsifier. We prove in Appendix E that the these Harmonic symmetrizations
have small relative condition number, so the runtime of this solver will be dominated by the time
it takes to solve systems in the sparsified matrix plust the time to apply the unsparsified matrix
to a vector. Using the solver in [12], this comes out to an Õ(m + n7/4) time algorithm for solving
directed Laplacian systems.

In order to construct a better, almost linear time solver, we’ll also need to be able to sparsify
a normalized version of the Laplacian of the square of graph. Specifically, we also show how to
sparsify any matrix of the form D − A>D−1A>, where we are given the adjacency matrix A of
some Eulerian graph G and the degrees D of G. Note that if G is regular and has all (weighted)
degrees equal to one, this formula simplifies to I − (A>)2. Thus, it corresponds to the Laplacian
of the square of the graph in this special case, and to a normalized version of it in general. Our
algorithm for sparsifying matrices of this form takes outputs a strict ε-sparsifier in Õ(nnz(L)ε−2)
time. Combining these results, and using our properties regarding asymmetric approximations, we
show that we can use this ε-approximation to efficiently obtain an ε-sparsifier of D −A>D−1A>.
Applying a closely related routine recursively we obtain a faster, almost linear time algorithm for
solving Eulerian Laplacian systems in Section 4.

The remainder of this section is structured as follows. First, in Section 3.1, we provide various
facts regarding our notion of asymmetric approximation. Then, in Section 3.2, we provide one of our
main technical tools: an algorithm for crudely sparsifying an arbitrary (not necessarily Eulerian)
directed Laplacian by randomly sampling its adjacency matrix. On its own, this algorithm achieves
relatively weak guarantees. In Section 3.3 we then combine this tool with known decomposition
results for undirected graphs to sparsify any Eulerian Laplacian. In Section 3.4, we build on this to
sparsify the normalized square of any Eulerian Laplacian.

3.1 Approximation Facts

Here we provide various basic facts regarding the notion of approximation for asymmetric matrices
given in Definition 3.4. These facts both motivate and justify our choice of definition and are used
extensively throughout this section.

First we provide the following lemma, giving alternative definitions of approximation in terms
of a quantity reminiscent of Rayleigh quotients.

Lemma 3.5 (Equivalent Approximation Definitions). Let A ∈ Rn×n be such that UA PSD. A
matrix Ã ∈ Rn×n is an ε-approximation of A if and only if

max
~x,~y 6=0

~x>(Ã−A)~y√
~x>UA~x · ~y>UA~y

≤ ε or equivalently max
~x,~y 6=0

~x>(Ã−A)~y

~x>UA~x+ ~y>UA~y
≤ ε

2
,

under the convention that 0/0 = 0.

Proof. This lemma follows from a more general result, Lemma B.2, which we prove in Appendix C,
and by noting that if ker(UA) is not a subset of both Ã−A and its transpose then the maximization
problems are infinite in value.
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This lemma will allow us to show that our notion of ε-approximation does coincide with the
standard notion in the case of symmetric matrices, and is therefore a stronger notion. More generally,
we prove that ε-approximation of asymmetric matrices implies that their symmetrizations are ε-
approximations in the traditional spectral (small relative condition number) sense.

Lemma 3.6. Suppose Ã is an ε-approximation of A. Then

(1− ε)UA � U
Ã
� (1 + ε)UA .

Proof. Suppose Ã is an ε-approximation of A, and let ~x ∈ Rn with ~x 6= 0 be arbitrary. Applying
Lemma 3.5 twice with ~y = ±~x we have∣∣∣~x>(Ã−A)~x

∣∣∣
~x>UA~x

≤ ‖U+/2
A (Ã−A)U

+/2
A ‖2 ≤ ε .

The desired result follows from the fact that ~z>A~z = ~z>UA~z and ~z>Ã~z = ~z>U
Ã
~z for all z.

Next we use Lemma 3.5 to show that just as in the symmetric case, asymmetric approximation
is preserved when taking symmetric products.

Lemma 3.7. If Ã ∈ Rn×n is an ε-approximation of A ∈ Rn×n and M ∈ Rn×n satisfies ker(M>) ⊆
ker(UA) then M>ÃM is an ε-approximation of M>AM.

Proof. Define B
def
= M>AM and B̃

def
= M>ÃM. We first wish to show ker(UB) ⊆ ker(B̃ − B) ∩

ker((B̃−B)>). Suppose we have any x ∈ ker(UB). Then,

Mx ∈ ker(M>UA) = ker(UA) ⊆ ker(Ã−A)∩ker((Ã−A)>) ⊆ ker(M>(Ã−A))∩ker(M>(Ã−A)>)

which implies the portion of the definition of approximation concerning kernels.
Then we have, using the convention that 0/0 = 0 and by applying Lemma B.2 and Lemma 3.5,

that

‖U+/2
B (B̃−B)U

+/2
B ‖2 = max

~x,~y 6=0

~x>(B̃−B)~y√
~x>UB~x · ~y>UB~y

v = max
~x,~y 6=0

~x>M>(Ã−A)M~y√
~x>M>UAM~x · ~y>M>UAM~y

≤ max
~x,~y 6=0

~x>(Ã−A)~y√
~x>UA~x · ~y>UA~y

= ‖U+/2
A (Ã−A)U

+/2
A ‖2 ≤ ε.

Finally, we provide a transitivity result for strong-approximation.

Lemma 3.8 (Approximation Transitivity). If C is an ε-approximation of B and B is an ε-
approximation of A then C is an ε(2 + ε)-approximation of A.

Proof. Note that by triangle inequality

‖U+/2
A (C−A)U

+/2
A ‖2 ≤ ‖U+/2

A (C−B)U
+/2
A ‖2 + ‖U+/2

A (B−A)U
+/2
A ‖2 .

Now, UB � (1 + ε)UA by Lemma 3.6 and therefore U+
A � (1 + ε)U+

B. Applying Lemma B.3 yields

‖U+/2
A (C−B)U

+/2
A ‖2 ≤ (1 + ε) · ‖U+/2

B (C−B)U
+/2
B ‖2 .

The result follows as ‖U+/2
A (B−A)U

+/2
A ‖2 ≤ ε and ‖U+/2

B (C−B)U
+/2
B ‖2 ≤ ε by assumption.
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3.2 Sampling a Directed Laplacian

Here we show how to compute a crude, sparse approximation to an arbitrary directed Laplacian
by randomly sampling its entries. We provide both a general bound on the effect of such sampling
for a directed Laplacian as well as a more specific result in the case where the directed Laplacian
can be related to the symmetric Laplacian of an expander. The latter result (Lemma 3.13) and
the terminology relevant to it, is all we use from this subsection in order to obtain and analyze our
sparsification algorithms.

The main tool for our analysis is Theorem 3.9, a general bound on concentration when sampling
the entries of an asymmetric matrix. Its proof follows directly from standard matrix concentration
inequalities, so we defer its proof to Appendix A.

Theorem 3.9. Let A ∈ Rd1×d2
≥0 be a matrix where no row or column is all zeros. Let ε, p ∈ (0, 1),

s = d1 + d2, ~r = A1, ~c = A>1, and D be a distribution over Rd1×d2 such that X ∼ D takes value

X =

(
Aij

pij

)
~1i~1
>
j with probability pij =

Aij

s

[
1

~ri
+

1

~cj

]
for all Aij 6= 0 .

If A1, ..,Ak are sampled independently from D for k ≥ 128 · s
ε2

log s
p , R = diag(~r), and C = diag(~c)

then the average Ã
def
= 1

k

∑
i∈[k] Ai, satisfies

Pr
[
‖R−1/2

(
Ã−A

)
C−1/2‖2 ≥ ε

]
≤ p ,

Pr
[
‖R−1(Ã−A)1‖∞ ≥ ε

]
≤ p , and

Pr
[
‖C−1(Ã−A)>1‖∞ ≥ ε

]
≤ p .

Theorem 3.9 shows that by sampling the entries of a rectangular matrix we can compute a new
matrix such that spectral norm of the differences is bounded and the row sums and column sums
are approximately preserved. In the next lemma we should how we can use this procedure to obtain
a matrix with the same bound on the difference in spectral norm, but the row and column norms
preserved exactly. In short, we show how to add a matrix to the result of Theorem 3.9 preserving
its properties while fixing the row norms, we call this procedure patching.

Lemma 3.10 (Sparsifying Non-negative Matrices). Let A ∈ Rn×n≥0 be a matrix with non-negative
entries and having no all zeros row or column. Let ε, p ∈ (0, 1). In O(nnz(A) +nε−2 log(n/p)) time
we can compute a matrix Ã ∈ Rn×n≥0 with non-negative entries such that for R

def
= diag(A1) and

C
def
= diag(A>1) we have

1. nnz(Ã) = O(nε−2 log(n/p)),6

2. the row and column sums of A and Ã are the same, i.e. A1 = Ã1 and A>1 = Ã>1.

3. for i ∈ [n], if Aii = 0 then Ãii = 0, and

4. with probability at least 1− p, ‖R−1/2(A− Ã)C−1/2‖2 ≤ ε.
6Note that it is possible to remove the dependence in p from the sparsifier simply by increasing the running time

by a constant factor and making it an expected running time. This can be achieved by using the power method to
approximately compute the value of ‖R−1/2(A− Ã)C−1/2‖2 and resampling when this is large.
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Proof. We prove this using Theorem 3.9. Let ε′ = ε/4. By sampling as in Theorem 3.9 we can
compute Â ∈ Rn×n such that nnz(Â) = O(nε−2 log(n/p)), ‖R−1/2(A− Â)C−1/2‖2 ≤ ε′,

‖R−1(Â−A)1‖∞ ≤ ε′ and ‖C−1(Â−A)>1‖∞ ≤ ε′ .

Note that the latter two conditions imply that entrywise the row sums and column sums of A are
approximately the same as Â. Formally, it implies that entrywise the following inequalities hold

(1− ε′)A1 ≤ Â1 ≤ (1 + ε′)A1 and (1− ε′)A>1 ≤ Â>1 ≤ (1 + ε′)A>1 . (3.1)

Therefore (1 + ε′)−1 · Â has row and column sums that are less than or equal to those of A.
Next, we compute a matrix to make the row and column sums the same as in A. Formally, we

let E ∈ Rn×n≥0 be a matrix with nnz(E) = O(n) such that

((1 + ε′)−1Â + E)1 = A1, and ((1 + ε′)−1Â + E)> = A>1

and the `1 norm of the entries of E is at most nε.
We can compute such a matrix E in O(nnz(Â)) time by greedily adding in values to Â to make

one of the row or column sums as large as that of A, while maintaining the invariant that no row
or column sum is larger than it is in A. Note that if Aii = 0 for all i ∈ [n], then Âii = 0 for all
i ∈ [n], and it can be ensured that Eii = 0 for all i ∈ [n].

Finally, we output Ã = (1 + ε′)−1Â + E. By construction nnz(Ã) = O(nε−2 log(n/p)) and A
and Ã have the same row and column sums, i.e. Ã1 = A1, Ã>1 = A>1. All that remains, is
to show that the last property holds, ie., that Ã is still a good approximation of A. The previous
conditions, together with (3.1) imply that

‖R−1E‖∞ = ‖R−1E1‖∞ = ‖R−1(A− (1 + ε′)−1Â)1‖∞ ≤
(

1− 1− ε′

1 + ε′

)
≤ 2ε′ .

and similarly,

‖C−1E‖1 = ‖E>C−1
1‖∞ = ‖(A− (1 + ε′)−1Â)>C−1

1‖∞ ≤
(

1− 1− ε′

1 + ε′

)
≤ 2ε′ .

Applying Lemma B.4 then yields:

‖R−1/2(A− Ã)C−1/2‖2

≤ ‖R−1/2(A− Â)C−1/2‖2 +

(
1− 1

1 + ε′

)
‖R−1/2ÂC−1/2‖2 + ‖R−1/2EC−1/2‖2

≤ ε′ + ε′

1 + ε′
+ 2ε′ ≤ 4ε′ = ε .

This lemma immediately implies the following fact on providing sparse approximations to di-
rected (not necessarily Eulerian) Laplacians.

Corollary 3.11 (Crude Sparsification of Directed Laplacian). Let L = D − A> ∈ Rn×n be a
directed Laplacian associated with a (not necessarily Eulerian) graph G that has edges incident to at
most v vertices and let ε, p ∈ (0, 1). The routine SparsifySubgraph(L, p, ε) computes a directed
Laplacian L̃ = D− Ã> in time O(nnz(L) + vε−2 log(v/p)) such that

21



1. L̃ is sparse, i.e. nnz(L̃) = O(vε−2 log(v/p)),

2. the in and out degrees of the graphs associated with L and L̃ are the same, i.e. A1 = Ã1 and
A>1 = Ã>1,

3. ‖D−1/2
in (L − L̃)D

−1/2
out ‖2 ≤ ε with probability at least 1 − p where Din = diag(A>1) and

Dout = diag(A1) are the diagonal matrices associated with the in and out degrees of G.

Proof. This follows by applying the sampling result from Lemma 3.10 to A, after removing the
rows and columns corresponding to isolated vertices. The guarantees still hold on the larger matrix
after inserting the zero rows and columns back. We can then substitute the corresponding directed
Laplacians matrices into the formulas, since the diagonal terms will cancel (note that this follows
again from Lemma 3.10, since the sparsified Laplacian has the same out degrees as the original
one).

Using this, we prove the main result of this section, how to sparsify a subgraph that is con-
tained in an expander, or more formally a particular undirected graph with large spectral gap. For
notational convenience, we first formally define the type of graph symmetrization we consider for
these subgraph arguments. Using this notation we then provide the main result of this subsection,
Lemma 3.13. Pseudocode of this routine is in Figure 3.1.

Definition 3.12 (Graph Symmetrization). For a directed Laplacian, L = D − A>, its graph
symmetrization SL is the symmetric Laplacian given by SL

def
= diag(UA1) −UA. Equivalently, if

we considering the graph associated with L and replace every directed edge with an undirected edge
of half the weight, then SL is the symmetric Laplacian associated with this undirected graph.

Lemma 3.13 (Subgraph Sparsification). Let L be a directed Laplacian and U be an undirected
Laplacian with spectral gap at least α, support size v, and diag(SL) � diag(U). For δ ≤ αε/2 the
routine SparsifySubgraph(L, p, δ) in time O(nnz(L) + vδ−2 log(v/p)) computes a Laplacian L̃
with the same in and out degrees as L, nnz(L̃) = O(vδ−2 log(v/p))), and ‖U+/2(L− L̃)U+/2‖2 ≤ ε
with probability at least 1− p.

Proof. Without loss of generality let L = Dout − A>. Furthermore, let D = diag(U), Din =
diag(A1), and Dout = diag(A>1). By Corollary 3.11, we can compute a directed Laplacian
L̃ = Dout − Ã with in and out degrees being the same as those of L, nnz(L̃) = O(vδ−2 log(v/p)),
and with probability at least 1− p

‖D−1/2
in (L − L̃)D

−1/2
out ‖2 = ‖D−1/2

in (A− Ã)D
−1/2
out ‖2 ≤ δ .

If this happens, then since L and L̃ have the same in and out degrees and diag(SL) � diag(U) we
have that U has larger support than L and L̃, and therefore ker(U) ⊆ ker(L− L̃)∩ ker((L− L̃)>).
Consequently, by Lemma 3.5 we have

‖U+/2(L − L̃)U+/2‖2 = max
~x,~y 6=0

~x>(L − L̃)~y√
~x>U~x · ~y>U~y

.

Now, clearly, there is a maximizing ~x, ~y ⊥ 1. Consequently ~x′ = ~x − ~x>d
‖~d1‖

1 and ~y′ = ~y − ~y> ~d

‖~d1‖
1 are

nonzero and satisfy (~x′)>~d = 0 and (~y′)>~d = 0. The spectral gap of U being at least α implies

U � α

(
D− 1

‖~d‖1
~d~d>

)
,
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L̃ = SparsifySubgraph(L, p, ε)
Input: A directed Laplacian L = D−A> ∈ Rn×n and parameters p, ε ∈ (0, 1).

1. Implicitly restrict to the coordinates in supp(A).

2. Compute ~r = A>1, ~c = A1, and let s = nnz(~r) + nnz(~c) denote the total number of rows
and column which are non-zero.

3. Let D be a distribution over Rn×n such that X ∼ D takes value

X =

(
A>ij
pij

)
~1i~1
>
j with probability pij =

A>ij
s

[
1

~ri
+

1

~cj

]
for all A>ij 6= 0 .

4. Independently sample A(1), . . . ,A(k) from D where k = 128 · nε−2 log(n/p) and compute
Â = 1

k

∑k
`=1 A(`).

5. Compute patching matrix E ∈ Rn×≥0 by greedily setting O(n) entries in order to make the
row and columns sums of (1 + ε/4)−1Â + E equal to those in A>.

6. Let Ã← (1 + ε/4)−1Â + E.

7. Implicitly extend Ã back to the full support.

8. Return L̃ = diag(Ã>1)− Ã.

Figure 3.1: Pseudocode of the subgraph sparsification routine

which then gives

‖U+/2(L − L̃)U+/2‖2 =
(~x′)>(L − L̃)~y′√

(~x′)>U~x′ · (~y′)>U~y′
≤ 1

α
· (~x′)>(L − L̃)~y′√

(~x′)>D~x′ · (~y′)>D~y′
.

Since Din � 2 ·D and Dout � 2 ·D, applying Lemma 3.5 again yields

‖U+/2(L − L̃)U+/2‖2 ≤
2

α
· (~x′)>(L − L̃)~y′√

(~x′)>Din~x′ · (~y′)>Dout~y′
≤ 2

α
· ‖D−1/2

in (A− Ã)D
−1/2
out ‖2 ≤

2

α
δ

and the result follows by our restriction on δ.

3.3 Sparsifying an Eulerian Laplacian

Here we show how to produce an ε-sparsifier of an Eulerian Laplacian in nearly linear time. We
achieve this by applying our result on sparsifying subgraphs (Lemma 3.13) proved in Section 3.2
on a decomposition of the Eulerian graph into well-connected pieces on an associated undirected
graph.

The decomposition we use is essentially identical to the expander decomposition used in Spielman
and Teng’s work on graph sparsification [36]. Interestingly, the quality of our decomposition is
measured only in terms of properties of the symmetrized graph, rather than of the original directed
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graph. Ultimately, only the sampling probabilities that we use on the decomposition take into
account edge direction.7

Below we formally define the type of decomposition we need, and provide a theorem about
computing such decompositions. Finding these decompositions has been done in prior works [37,
21, 33, 32], and we defer the discussion of it to Appendix C.

Definition 3.14. An (s, α, β)-decomposition of a directed Laplacian L is a decomposition of L into
directed Laplacians L(1), ...,L(k) ∈ Rn×n, i.e. L =

∑
i∈k L(i), such that

∑
i∈[k]

∣∣supp(L(i))
∣∣ ≤ s and

such that there exists undirected Laplacians U(1), ...,U(k) such that:

1. diag(SL(i)) � diag(U(i)), for all i ∈ [k],

2. U(i) has spectral gap at least α, for all i ∈ [k], and

3.
∑

i∈[k] U
(i) � βUL.

We call the U(1), ...,U(k) with these properties an (α, β) undirected cover of L(1), ...,L(k).

Theorem 3.15. Given a directed Laplacian, L ∈ Rn×n, the routine FindDecomposition(L)
returns an (Õ(n), 1/α, β)-decomposition, with α, β = Õ(1), in Õ(nnz(L)) time.

We produce our sparsifiers by computing the decomposition using Theorem 3.15 and then ap-
plying Lemma 3.13 repeatedly to obtain the sparsifier. Pseudocode of this algorithm is given in
Figure 3.2. and the analysis of this algorithm is given in the following theorem.

L̃ = SparsifyEulerian(L, p, ε)
Input: L an n× n directed Laplacian, parameters p, ε ∈ (0, 1).

1. ((L(1), . . . ,L(k)), α, β)← FindDecomposition(L).

2. For i = 1, . . . , k

(a) L̃(i) ← SparsifySubgraph(L(i), p/n2, ε/(2αβ)).

3. Return L̃ =
∑k

i=1 L̃(i).

Figure 3.2: Pseudocode of the Eulerian graph sparsification routine

Theorem 3.16. For Eulerian Laplacian L ∈ Rn×n and ε, p ∈ (0, 1) with probability at least 1 − p
the routine SparsifyEulerian(L, p, ε) computes in Õ(nnz(L) + nε−2 log(1/p)) time an Eulerian
Laplacian L̃ ∈ Rn×n such that

1. L̃ is an ε-sparsifier of L,

2. the in and out degrees of the graphs associated with L and L̃ are identical.
7Even this can possibly be overcome by choosing different sampling probabilities. It is the patching of the graph,

i.e. adding edges to preserve degree imbalance, where we truly use the directed structure of the graph.
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Proof. Using the FindDecomposition routine (Theorem 3.15) we compute Laplacians L(1), ...,L(k) ∈
Rn×n that are a (s, α, β) partition of L with (α, β) undirected cover U(1), ...,U(k) for s = Õ(n),
α = 1/Õ(1), and β = Õ(1).

We then apply the SparsifySubgraph routine (Lemma 3.13) to each L(i) to compute L̃(i)

in O(nnz(L) + sε−2β−2α−2 log(n/p)) time such that each L̃(i) has the same in and out degree as
L(i) and ‖

(
U(i)

)+1/2
(L(i) − L̃(i))

(
U(i)

)+/2 ‖2 ≤ ε/β. The running time follows from the fact that∑
i∈[k]

∣∣supp(L(i))
∣∣ ≤ s and thats happens with probability at least 1 − p by union bounding over

the success probability of each call to SparsifySubgraph.
Finally, considering L̃ =

∑
i∈[k] L̃(i), Lemma 3.5 yields that for all ~x, ~y 6= 0 it is the case that

~x>(L − L̃)~y =
∑
i∈[k]

~x>(L(i) − L̃(i))~y ≤
∑
i∈[k]

ε

2β

[
~x>U(i)~x+ ~y>U(i)~y

]
≤ εβ

2β

[
~x>UL~x+ ~y>UL~y

]
The result follows from Lemma 3.5 applied above and the the bounds on s,α, and β. Note that the
fact that in and out degrees are preserved is guaranteed by the fact that for each component in the
decomposition the degrees are preserved, according to Lemma 3.13.

3.4 Sparsifying a Squared Eulerian Laplacian

Here we build upon Section 3.3 and show how to sparsify certain implicitly represented Eulerian
Laplacians. In particular, given an Eulerian Laplacian L = D−A> associated with a strongly con-
nected graph we show how to compute a sparsifier for the Eulerian LaplacianM = D−A>D−1A>

in nearly-linear time with respect to L, i.e. without explicitly constructingM. Note that running
time we achieve may be sublinear in size of the matrix we are sparsifying, i.eM.

Our approach is a natural directed extension of the approach taken by Peng and Spielman [33]
for solving the same problem in the case when L is symmetric. Broadly speaking, we decompose
M into a directed Laplacian for each vertex. Each of these directed Laplacians may be dense
but we show that they have a compact representation that allows us to efficiently implement a
sampling scheme analogous to SparsifySubgraph for each of these Laplacians such that adding
these approximation yields an Eulerian approximation to M that has nnz(L) non-zero entries.
Applying SparsifyEulerian from Section 3.3 to the result then yields our desired sparsifier.

Formally, we consider the slightly more general setting where we have a square matrix with
non-negative entries, A ∈ Rn×n≥0 , that has the same same row and column sums, i.e. A1 = A>1.
We show how to compute a sparsifier ofM = D−AD−1A for D = diag(A1) in time nearly linear
in nnz(A). This setting is more general as we allow entries on the diagonal of the squared matrix.
We consider this case as it simplifies our analysis in Section 4.

As discussed, we first decompose M into a directed Laplacian for each vertex. For i ∈ [n] we let

L(i) = diag(Ai,:)−
1

Di,i
A:,iA>i,:

where Ai,:,A:,i ∈ Rn are the vectors corresponding to the row and column i of A respectively. In
Theorem 3.19 we show thatM and each L(i) are directed Laplacians such thatM =

∑
i∈[n] L(i).

Note that whileM may be dense and forming each of the L(i) explicitly maybe expensive, we
have a compact representation of each L(i) in terms of a single row and column of A. Moreover, if
we look at the total support of L(i) then since each row and column only appears once we see that
the total support is just O(nnz(A)). Furthermore, we show that due to the low rank structure of the
graph symmetrization, SL(i) , of each L(i) has spectral gap of at least a constant (See Lemma 3.17).
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Consequently, if we apply SparsifySubgraph to each L(i) and sum the results, the analysis in
Section 3.3 would imply that this matrix would be an approximation toM with O(nnz(A)) non-zero
entries.

The only difficulty in following this approach is to show that we can apply SparsifySubgraph
to each L(i) efficiently. We show that we can perform this operation in time proportional to the
number of non-zeros in each row and column of A, rather than the naive O(nnz(L(i))) running
time which could be much larger. To do this, as in Peng and Spielman [33], we exploit the simple
product structure of L(i). Since A has the same row and column sums this means that ‖A:,i‖1 =
‖Ai,:‖1 = Di,i. Consequently, each L(i) is of the form N = diag(~y)− 1

‖~y‖1~x~y
> for some ~x, ~y ∈ Rn≥0

with ‖~x‖1 = ‖~y‖1 that depend on i. Since, the off-diagonals and their row and column sums have
simple closed form expressions we can show that with O(nnz(~x) + nnz(~y)) preprocessing time, we
can sample from the distribution required to apply SparsifySubgraph on this matrix in O(1)
time. Consequently, we can implement the approach in our desired running time.

In the remainder of this section we provide pseudocode for these routines and prove their cor-
rectness. First, in Figure 3.3 we provide SparsifyProduct the pseudocode for sparsifying ma-
trices of the form N given above. In Lemma 3.17 we prove that the graph symmetrizations, SN,
of these matrices have spectral gap of at least 1 and using this fact in Lemma 3.18 we prove that
SparsifyProduct does provide sparse approximations to these matrices. In Figure 3.4 we provide
SparsifySquare the pseudocode for producing sparsifiers ofM by invoking SparsifyProduct on
each L(i) and then invoking SparsifyEulerian on the result. Finally, we conclude the section with
Theorem 3.19 which proves the correctness and analyzes the running time of SparsifyProduct.

Lemma 3.17. For ~x, ~y ∈ Rn≥0 with r = ‖~x‖1 = ‖~y‖1 > 0 and Y = diag(~y), the matrix L =

Y − 1
r~x~y

> is a directed Laplacian and the spectral gap of its symmetrization SL is at least 1.

Proof. Note that Lij = −1
rxiyj ≤ 0 for i 6= j and 1

>L = 1
>Y − 1

r1
>~x~y> = ~y> − ~y> = 0>.

Consequently, L is a directed Laplacian. All that remains is to lower bound the spectral gap of SL.
Letting X = diag(~x), we see that the graph symmetrization SL of L is the undirected Laplacian

SL =
1

2

(
X + Y − 1

r

(
~x~y> + ~y~x>

))
.

Furthermore, the diagonal entries of SL, denoted ~d = diag(SL), are given by

~di = [SL]ii =
1

2
(~xi + ~yi)−

1

r
~xi~yi ≤

1

2
(~xi + ~yi) .

Now recall that the spectral gap of SL is defined to be the smallest nonzero eigenvalue of the
normalized Laplacian D−1/2SLD

−1/2, where D = diag(~d). Since di ≤ 1
2 (~xi + ~yi), we have

D−1/2SLD
−1/2 �

(
1

2
(X + Y)

)−1/2

SL

(
1

2
(X + Y)

)−1/2

= 2 (X + Y)−1/2 SL (X + Y)−1/2 =: M.

This implies that the eigenvalues of D−1/2SLD
−1/2 dominate those of M. The multiplicity of zero

as an eigenvalue is the same for the two matrices, so it thus suffices to show that the smallest
nonzero eigenvalue of M is at least 1. Plugging the definition of SL in our expression for M gives

M = 2 (X + Y)−1/2 SL (X + Y)−1/2

= (X + Y)−1/2

(
X + Y − 1

r

(
~x~y> + ~y~x>

))
(X + Y)−1/2 = I−N,
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L̃ = SparsifyProduct(~x, ~y, p, ε)
Input: nonnegative vectors ~x and ~y with r = ‖~x‖1 = ‖~y‖1 that implicitly represent

the Laplacian diag(~y)− 1
r~x~y

> and parameters p, ε ∈ (0, 1).

1. Let s = nnz(~x) + nnz(~y) be the total number of non-zero entries in ~x and ~y.

2. If nnz(~x) ≤ 1 or nnz(~y) ≤ 1 return diag(~y)− 1
r~x~y

>.

3. Let D be a distribution over Rn×n such that X ∼ D takes value

X =

(
~xi~yj
r · pij

)
~1i~1
>
j with probability pij =

1

s

[
~xi

r − ~xj
+

~yj
r − ~yi

]
for i 6= j and ~xi~yj 6= 0 .

4. Independently sample A(1), . . . ,A(k) from D where k = 128 · sε−2 log(s/p). Implement
sampling i, j ∈ [n] with probability pij as follows. First set i or j with probability propor-
tional to r− ~yi for i with ~yi 6= 0 and r− ~xj for j with ~xj 6= 0. If i is chosen pick j 6= i with
probability proportional ~yj . If j is chosen pick i 6= j with probability proportional to ~xi.

5. Compute Â = 1
k

∑k
`=1 A(`).

6. Compute patching matrix E ∈ Rn×≥0 by greedily setting O(s) entries in order to make the
row and columns sums of (1 + ε/4)−1Ã + E equal to those in 1

r~x~y
>.

7. Let Ã← (1 + ε/4)−1Â + E.

8. Return L̃ = diag(Ã>1)− Ã.

Figure 3.3: Pseudocode for sparsifying a single product graph

Ã = SparsifySquare(A, p, ε)
Input: A ∈ Rn×n≥0 with A1 = A>1 that implicitly represents the Laplacian

M = D−AD−1A for D = diag(A1) and parameters p, ε ∈ (0, 1).

1. For all i = 1, . . . , n,

(a) Let Ai,:,A:,i ∈ Rn denote row and column i of A respectively.

(b) L̃(i) ← SparsifyProduct(A:,i,Ai,:, p/2n, ε/6)

2. Let M̂ =
∑n

i=1 L̃(i).

3. M̃ ← SparsifyEulerian(M̂, p/2, ε/3).

4. Return D− M̃

Figure 3.4: Pseudocode for producing an ε-sparsifier ofM = D−A>D−1A>,
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where N = 1
r (X + Y)−1/2 (~x~y> + ~y~x>

)
(X + Y)−1/2. The matrix N has rank 2, so I −N has at

most 2 eigenvalues that are not equal to 1. Furthermore, we know that M has a nontrivial kernel,
so at least one of these eigenvalues is 0. Let λ be the one remaining eigenvalue. Since tr(M) equals
the sum of these eigenvalues, we have tr(M) = (n− 2) · 1 + 0 + λ = n− 2 + λ, so

λ = tr(M)− n+ 2 = tr(I)− tr(N)− n+ 2 = 2− tr(N).

The inequality 2ab
a+b ≤

a+b
2 between the harmonic and arithmetic means then gives

tr(N) =
∑
i∈[n]

Nii =
1

r

∑
i∈[n]

2~xi~yi
~xi + ~yi

≤ 1

r

∑
i∈[n]

~xi + ~yi
2

= 1,

so λ = 2− tr(N) ≥ 1. The nonzero eigenvalues of M are thus all at least 1, as desired.

Lemma 3.18 (Product Sparsification). Let ~x, ~y ∈ Rn≥0 be non-negative vectors with ‖~x‖1 = ‖~y‖1 = r
and let ε, p ∈ (0, 1). Furthermore, let s denote the total number of non-zero entries in ~x and ~y, i.e.
s = nnz(~x) + nnz(~y) and let L def

= diag(~y)− 1
r~x~y

>. The routine SparsifyProduct(~x, ~y, p, ε/2) in
time O(sε−2 log(s/p)) computes with probability at least 1 − p a Laplacian L̃ with the same in and
out degrees as L, nnz(L̃) = O(sε−2 log(s/p))), and ‖S+/2

L (L − L̃)S
+/2
L ‖2 ≤ ε.

Proof. Note that if nnz(~x) ≤ 1 or nnz(~y) ≤ 1. Then clearly 1
r~x~y

> has at most s non-zero entries and
L has O(s) non-zero entries. Furthermore, we can clearly compute L in O(s) time and therefore the
result follows. In the remainder of the proof we therefore assume that nnz(~x) ≥ 2 and nnz(~y) ≥ 2.

First, we show that L̃ is precisely the output of an execution of SparsifySubgraph(L, p, ε/2).
Let X = diag(~x), Y = diag(~y), A>

def
= 1

r [~x~y> −XY], and D = Y − 1
rXY. Clearly, L = D−A>.

Furthermore, we see that A> is non-negative with a zero-diagonal diag(A>) = 0 and therefore D
is diagonal and this is the standard decomposition of L.

Now as in SparsifySubgraph(L, p, ε) let ~r = A>1 = ~x − 1
rXY1 and ~c = A1 = ~y − 1

rXY1.
Furthermore, since nnz(~x) ≥ 2 and nnz(~y) ≥ 2 we see that a row or column of 1

r~x~y
> is non-

zero if and only if the corresponding row and column in A> is non-zero and thus s is the same
in SparsifySubgraph(L, p, ε) and SparsifyProduct(~x, ~y, p, ε). Now, for all i 6= j with A>ij =
~xi~yj 6= 0 we have

A>ij
s

[
1

~ri
+

1

~cj

]
=
~xi~yj
r · s

[
1

xi − 1
r~xi~yi

+
1

yj − 1
r~xj~yj

]
=

1

s

[
~xi

r − ~xj
+

~yj
r − ~yi

]
.

Consequently, we see that L̃ is precisely the output of an execution of SparsifySubgraph(L, p, ε/2).
Furthermore, since SL has spectral gap at least 1 by Lemma 3.17 we have by Lemma 3.13 which
analyzed SparsifySubgraph that L̃ has the desired properties.

All the remains is to bound the running time of SparsifyProduct(~x, ~y, p, ε/2). Note that
computing s takes O(s) time and computing all the r − ~yi and r − ~xj can be done in O(s) time.
Consequently, with O(s) preprocessing we can build a table so that each sample from D takes O(1)
time and computing Â takes O(s + k) = O(sε−2 log(s/p) time. Furthermore, since computing the
patching E also takes O(s+ k) time we have that the total running time is as desired.

Theorem 3.19 (Sparsifying Squares). Let A ∈ Rn×n≥0 have the same row and column sums,
i.e. A1 = A>1, and let ε, p ∈ (0, 1). Let D = diag(A1), L = D − A, and M = D −
AD−1A. Both L and M are Eulerian Laplacians and in Õ(nnz(L)ε−2 log(n/p)) time the routine
SparsifySquare(L, p, ε) computes Ã such that with probability at least 1−p the matrix M̃ = D−Ã
is an ε-sparsifier ofM.
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Proof. Clearly, both A and AD−1A are entrywise non-negative and therefore the off diagonals of L
andM are non-positive. Furthermore, since clearly A1 = A>1 = AD−1A1 = [AD−1A]>1 = D1

we have that L1 = L>1 =M1 =M>1 = 0 and both L andM are Eulerian Laplacians.
Next, for all i ∈ [n] let si = nnz(A:,i) + nnz(Ai,:) and

L(i) = diag(Ai,:)−
1

Di,i
A:,iA>i,: .

Note that since A1 = A>1 and A is entrywise non-negative we have that Di,i = ‖Ai,:‖1 = ‖A:,i‖1.
Consequently, by Lemma 3.18 and union bound with probability at least 1− 1

2p it is the case that each
L̃(i) is a directed Laplacian with the same in and out degrees as L(i), nnz(L̃(i)) = O(siε

−2 log(sn/p)),
and ∥∥∥S+/2

L(i) (L(i) − L̃(i))S
+/2

L(i)

∥∥∥
2
≤ ε/3 . (3.2)

Furthermore, since clearly
∑

i si = 2nnz(A) we have that

nnz(M̂) ≤
∑
i∈[n]

nnz(L̃(i)) ≤
∑
i∈[n]

siε
−2 log(nsi/p) ≤ O(nnz(A)ε−2 log(n/p))

and therefore the total running time for computing M̂ is O(nnz(L)ε−2 log(n/p). Using Theorem 3.16
to reason about the effect of SparsifyEulerian then completes our running time analysis and
union bounding yields that M̃ has the desired degrees and sparsity. Consequently, Ã also has the
desired sparsity and since the degrees of the graph associated with M are at most the degrees of
the graph associated with L we see that Ã ∈ Rn×n≥0 .

All that remains is to verify that M̃ is an ε-approximation ofM. By Lemma 3.5, (3.2) implies
that for all ~x, ~y 6= 0 it is the case that

~x>(M̂ −M)~y =

n∑
i=1

~x>(L̃(i) − L(i))~y ≤
n∑
i=1

ε

3

[
~x>SL(i)~x+ ~y>SL(i)~y

]
=
ε

3

[
~x>UM~x+ ~y>UM~y

]
where in the last identity we used that

∑n
i=1 SL(i) = UM from the fact that

∑
i∈[n] L(i) = M.

Applying Lemma 3.5 again on the above bound, we obtain that M̂ is an ε/3 approximation ofM.
Since, Theorem 3.16 implies that M̃ is an ε/3-approximation of M̂, invoking the transitivity bound,
Lemma 3.8, yields that M̃ is an (ε/3)(2 + ε/3) ≤ ε-approximation ofM as desired.

4 Solving Directed Laplacian Systems

In this section, we show how to solve directed Laplacian systems in almost-linear time. Our main
result is as follows:

Theorem 4.1. Let M be an arbitrary n×n column-diagonally-dominant or row-diagonally-dominant
matrix with diagonal D and m non-zero entries. Let κ(D) be the ratio between the maximum and
minimum diagonal entries of D. Then for any ~b ∈ im(M) and 0 < ε ≤ 1, one can compute, with
high probability and in time

Õ

((
m+ n2O(

√
logn log logn)

)
log3

(
κ(D) · κ(M)

ε

))
a vector ~x′ satisfying ‖M~x′ −~b‖2 ≤ ε‖~b‖2.
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Note that column-diagonally-dominant matrices include Laplacians of directed graphs. This
bound follows from combining the reduction to solving linear systems in Eulerian Laplacians stated
in Theorem 42 of [12] with our main solver result. The condition number of the undirected Laplacians
that arise can be bounded by O(κ(D) · κ(M)) by the preceding Theorem 41 in [12]. This condition
number becomes a logarithmic overhead by the condition number reductions in Appendix F, which
allows us to focus on solving poly(n) conditioned Eulerian systems.

The result that we will focus on in this section is an algorithm that given an Eulerian Laplacian
L = D − A> ∈ Rn×n with m non-zero entries computes an ε-approximate solution to L~x =
~b in time Õ((m + n exp(O(

√
log κ log log κ))) log(1/ε)) where κ = κ(UD−1/2LD−1/2). Note that

exp(O(
√

log(κ) log log κ)) is a term that is κo(1), i.e. it grows less than O(κε) for any constant ε > 0,
whereas iterative methods for solving such systems typically have a dependence of κ1/2 or higher in
their running time. An overview of the main components of this algorithm is in Section 2.3.3.

4.1 Preconditioned Richardson Iteration and Approximate Pseudoinverse

The key iterative method that we use to build our solver is the preconditioned Richardson iteration.
It can be thought of as a general-purpose tool that boosts the quality of a linear system solver
by iteratively applying the solver on the residual.8 In this section we describe the preconditioned
Richardson iteration, and based on it, we derive a measure of quality of a linear system solver in
terms of how well it functions as an approximate pseudoinverse for the matrix involved in the system
we want to solve. In Section 4.4 we analyze our solver chain in terms of this notion.

The Richardson iteration refers to perhaps one of the simplest methods for solving a linear
system M~x = ~b: start with ~x0 = 0, then repeatedly move in the direction of the residual, i.e.
~xk+1 := ~xk + η(~b −M~x), for some step size η. The preconditioned Richardson iteration refers to
applying the same method, with the aid of a matrix Z whose purpose is to improve the quality
of the iterations by producing better approximations to the matrix inverse applied to the residual:
~xk+1 = ~xk + ηZ(~b−M~x). Note that whenever Z = M+, preconditioned Richardson adds in every
step an η fraction of the true solution to our current iterate; therefore, in that case, we obtain the
exact solution in one iteration by setting η = 1. Intuitively, the quality of the preconditioner Z
dictates the size of the steps we are allowed to take, and therefore how long it takes to get close to
optimum. This motivates the notion of approximation we introduce in this section.

The preconditioned Richardson iteration is very well studied and fundamental to numerical
methods (see e.g. Section 13.2.1 of [34]). However, we are not aware of an operator-based analysis
involving asymmetric matrices in the different matrix norms required in our algorithm. Therefore,
we provide the algorithm (see Figure 4.1) and its short analysis in Lemma 4.2 below.

Lemma 4.2 (Preconditioned Richardson). Let ~b ∈ Rn and M,Z,U ∈ Rn×n such that U is sym-
metric positive semidefinite, ker(U) ⊆ ker(M) = ker(M>) = ker(Z) = ker(Z>), and b ∈ im(M).
Then N ≥ 0 iterations of preconditioned Richardson with step size η > 0, results in a vector
~xN = PreconRichardson(M,Z,~b, η,N) such that∥∥∥~xN −M+~b

∥∥∥
U
≤
∥∥Iim(M) − ηZM

∥∥N
U→U

∥∥∥M+~b
∥∥∥
U
.

Furthermore, preconditioned Richardson implements a linear operator, in the sense that ~xN = ZN~b,
for some matrix ZN only depending on Z, M, η and N .

8One should note that being able to boost a solver using preconditioned Richardson relies on the fact that the
solver is a linear operator, which is precisely the case in our algorithm.
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~x = PreconRichardson(M,Z,~b, η,N)
Input: n× n matrix M,

preconditioning linear operator Z (in the unpreconditioned case, Z = I),
right hand side vector ~b ∈ im(M), step size η, iteration count N .

1. Initialize ~x0 ← 0.

2. For k = 0, . . . , N − 1

(a) ~xk+1 ← ~xk + ηZ
(
~b−M~xk

)
.

3. Return ~xN .

Figure 4.1: Pseudocode for the (preconditioned) Richardson Iteration

Proof. Let ~x∗ def
= M+~b. The iteration on Line 2a, together with the fact that ~b lives inside the image

of M, implies

~xk+1 − ~x∗ = ((Iim(M) − ηZM)~xk + ηZ~b)− ~x∗ =
(
(Iim(M) − ηZM)~xk + ηZM~x∗

)
− ~x∗

= (Iim(M) − ηZM)(~xk − ~x∗) ,

and therefore,

‖~xk+1 − ~x∗‖U =
∥∥(Iim(M) − ηZM)(~xk − ~x∗)

∥∥
U
≤
∥∥Iim(M) − ηZM

∥∥
U→U

‖~xk − ~x∗‖U .

By induction, this shows that

‖~xN − ~x∗‖U ≤
∥∥Iim(M) − ηZM

∥∥N
U→U

‖~x0 − ~x∗‖U =
∥∥Iim(M) − ηZM

∥∥N
U→U

‖~x∗‖U .

Now, by writing the iteration as ~xk+1 = (Iim(M) − ηZM)~xk + ηZ~b, and expanding, we see by
induction that ~xN =

∑N
k=1(Iim(M) − ηZM)k−1ηZ~b, and therefore

ZN = η
N∑
k=1

(Iim(M) − ηZM)k−1Z .

Lemma 4.2 shows that if ηZM is sufficiently close to the identity, then preconditioned Richardson
converges quickly when solving a linear system. This highlights a precise way to quantify how good
a matrix is as a preconditioner for the Richardson iteration.

Definition 4.3 (Approximate Pseudoinverse). Matrix Z is an ε-approximate pseudoinverse of ma-
trix M with respect to a symmetric positive semidefinite matrix U, if ker(U) ⊆ ker(M) = ker(M>) =
ker(Z) = ker(Z>), and ∥∥Iim(M) − ZM

∥∥
U→U

≤ ε. 9

9Note that the ordering of Z and M is crucial: this definition is not equivalent to ‖Iim(M) −MZ‖U→U being
small.

31



With this definition and Lemma 4.2, we see that our problem of solving a linear system can
be reduced to producing an approximate pseudoinverse that we can apply efficiently. This is the
approach we take in the rest of the paper. In the remainder of this section we give two tools
towards producing such pseudoinverses. We show how to use preconditioned Richardson to improve
the quality of an approximate pseudoinverse (Lemma 4.4), and how to produce one for a matrix
whose symmetrization is well conditioned (Lemma 4.5).

Lemma 4.4 (Pseudoinverse Improvement). If Z is an ε-approximate pseudoinverse of M with
respect to U, for ε ∈ (0, 1), ~b ∈ im(M), and N ≥ 0, then PreconRichardson(M,Z,~b, 1, N)
computes ~xN = ZN , for some matrix ZN only depending on Z, M and N , such that ZN is an
εN -approximate pseudoinverse of M with respect to U.

Proof. By Lemma 4.2 we know that ~xN = ZN~b, for some ZN that only depends on Z, M, and N ;
furthermore, we know that:∥∥∥(Iim(M) − ZNM)M+~b

∥∥∥
U→U

=
∥∥∥~xN −M+~b

∥∥∥
U
≤
∥∥Iim(M) − ZM

∥∥N
U→U

∥∥∥M+~b
∥∥∥
U
≤ εN

∥∥∥M+~b
∥∥∥
U
,

and that this holds for any vector ~b ∈ im (M) (since ZN does not depend on ~b). Equivalently, this
means that ∥∥Iim(M) − ZNM

∥∥
U→U

≤ εN .

In order to complete the proof we need to show that ker(Z) = ker(Z>) = ker(Z).
As we saw in the proof of Lemma 4.2, over Iim(M), ZN is a polynomial in Z and M with no

constant term. Also, since all the kernels and cokernels of Z and M are identical by definition,
ker ZN ⊇ ker Z, and similarly ker Z> ⊇ ker Z.

Now suppose the first inclusion is strict, i.e. there exists ~x ⊥ ker(Z) such that ZN~x = 0. Then,
‖M+~x‖U > 0 since M+~x ⊥ ker(U), as by definition, the kernel of U is a subset of that of Z. This
implies that ∥∥(Iim(M) − ZNM)M+~x

∥∥
U

=
∥∥M+~x

∥∥
U

This shows that ‖Iim(M) − ZNM‖U→U ≥ 1, which contradicts the fact that it is at most εN .
Similarly, if there exists ~x ⊥ ker(Z>) such that Z>~x = 0, then we obtain∥∥∥(Iim(M) − Z>NM>)(M>)+~x

∥∥∥
U

=
∥∥∥(M>)+~x

∥∥∥
U
,

and thus
∥∥Iim(M) − Z>NM>∥∥

U→U
≥ 1. Equivalently, this shows that ‖Iim(M) − ZNM‖U→U ≥ 1,

which yields a contradiction. The fact that the norm is the same when taking transposes follows
from writing it in terms of the `2 norm, and using the fact that ker(U) is a subset of both the kernel
of the matrix and that of its transpose.

In addition, we show that preconditioned Richardson converges quickly whenever the matrix
M is well conditioned (as a matter of fact, for our purposes we only care about the case when the
ratio between ‖M‖ and λ∗(UM) is at most a constant). The lemma below gives precise bounds on
the number of iterations required to obtain a good approximate pseudoinverse with respect to I.
Such an approximate pseudoinverse is the standard object that can be used as a preconditioner in
order to obtain a small number of preconditioned Richardson iterations when measuring error with
respect to the `2 norm.
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Lemma 4.5 (Building a Pseudoinverse). Let M ∈ Rn×n such that UM is positive semidefinite, and
ker(M) = ker(M>). Let the vector ~b ∈ im(M), the step size η ≤ λ∗(UM)/‖M‖22, and the number
of iterations N . Then PreconRichardson(M, ηIim(M),~b, 1, N) computes ~xN = ZN~b, for some
matrix ZN only depending on Z, M and N , such that ZN is an exp(−Nηλ∗(UM)/2)-approximate
pseudoinverse of M with respect to I.

Proof. We begin by showing that ηIim(M) is a (1− ηλ∗(UM))1/2-approximate pseudoinverse of M
with respect to I. First we notice that the kernel conditions for Iim(M) being an approximate
pseudoinverse for M are trivially satisfied. Second, we bound the matrix induced norm of Iim(M)−
ηIim(M) ·M = Iim(M) − ηM:

‖Iim(M) − ηM‖22 = max
~x∈im(M),‖~x‖2=1

~x>
(
Iim(M) − ηM

)> (
Iim(M) − ηM

)
~x

= max
~x∈im(M),‖~x‖2=1

(
~x>Iim(M)~x− η~x>

(
M + M>

)
~x+ η2~x>M>M~x

)
≤ 1− 2η min

~x∈im(M),‖~x‖2=1
~x>UM~x+ η2 max

~x∈im(M),‖~x2‖=1
~x>M>M~x .

≤ 1− 2ηλ∗(UM) + η2‖M‖22 ≤ 1− ηλ∗(UM) .

Consequently, by Lemma 4.4 we have that ZN is a (1−ηλ∗(UM))N/2-approximate pseudoinverse of
M with respect to I. The conclusion follows by using (1−ηλ∗(UM))N/2 ≤ exp(−Nηλ∗(UM)/2).

4.2 Construction of Square-Sparsification Chains

Here we define the square-sparsification chain we use in our algorithm and show how to compute
such a chain efficiently. In other words, we show how to create the sequence of matrices that through
careful application yield an almost linear time algorithm for solving an Eulerian Laplacian system.

Definition 4.6. [Square Sparsifier Chain] We call a sequence of matrices A0,A1, . . .Ad ∈ Rn×n a
square-sparsifier chain of length d with parameter 0 < α < 1

2 and error ε ≤ 1/2 (or a (d, ε, α)-chain
for short) if under the definitions Li = I−Ai and A(α)

i = αI+ (1−α)Ai for all i the following hold

1. ‖Ai‖2 ≤ 1 for all i,

2. I−Ai is an ε-approximation of I− (A(α)
i−1)2 for all i ≥ 1,

3. ker(Li) = ker(L>i ) = ker(Lj) = ker(L>j ) = ker(ULi) = ker(ULj ) for all i, j.

Pseudocode for the construction of the square-sparsifier chain is given in Figure 4.2. In the
remainder of this subsection we prove correctness of this construction. We first provide a helper
lemma, Lemma 4.7 and then analyze the algorithm in Lemma 4.8. In Section 4.3 we prove additional
properties regarding solver chains such as how the ULi multiplicatively approximate each other and
how the smallest eigenvalue at the end of the chain must eventually rise to at least a constant.

Lemma 4.7. If for A ∈ Rn×n≥0 and D = diag(A1) the matrix L = D−A is an Eulerian Laplacian
associated with a strongly connected graph then, ‖D−1/2A>D−1/2‖2 ≤ 1 and ker(L) = ker(L>) =
ker(UL) = span(D1/2

1).

Proof. Since L is Eulerian A1 = A>1 = D1 and therefore we have ‖D−1A>‖∞ = ‖A>D−1‖1 = 1.
Consequently, by Lemma B.4 we have that ‖D−1/2A>D−1/2‖2 ≤

√
‖D−1A>‖∞ · ‖A>D−1‖1 ≤ 1.

The characterization of the kernels follows from Lemma 2.2 and that L1 = L>1 = UL1 = 0.

33



(A0, ...,Ad) = BuildChain(L = D−A>, d, α, ε, p)
Input: Eulerian Laplacian L, parameters α, ε, p ∈ (0, 1).

1. L0 ← SparsifyEulerian(L, p/(d+ 1), 1/20), and set A0 = I−D−1/2L0D
−1/2.

2. For i = 0, 1 . . . d− 1 do

(a) A(α)
i ← αI + (1− α)Ai,

(b) Ai+1 ← SparsifySquare
(
D1/2A(α)

i D1/2, p/(d+ 1), ε
)
,

and set Ai+1 = D−1/2Ai+1D
−1/2.

3. Return A0, ...,Ad.

Figure 4.2: Algorithm for Constructing the Square-Sparsification Chain.

Lemma 4.8 (Chain Construction). Let L = D −A> be an Eulerian Laplacian that is associated
with a strongly connected graph, let α, ε, p ∈ (0, 1), and let d ≥ 1. Then in Õ(nnz(L) + nε−2d) time
the routine BuildChain(L, d, α, ε, p) produces A0, ...,Ad ∈ Rn×n that with probability 1− p

1. A0, ...,Ad is a (d, α, ε)-chain,

2. nnz(Ai) = Õ(nε−2) for all i, and

3. I−A0 is a (1/20)-approximation of D−1/2LD−1/2.

Proof. By Theorem 3.16, the call to SparsifyEulerian computes in Õ(m + n) time L0 that
with probability 1 − p/(d + 1) is a (1/20)-sparsifier of L with the same diagonal as L. Con-
sequently, for A0 = D1/2A0D

1/2 we have L0 = D − A0. By Lemma 3.7 this implies that
I − A0 is a (1/20)-approximation of D−1/2LD−1/2. Furthermore, Lemma 4.7 then implies that
‖A0‖2 = ‖D−1/2A0D

−1/2‖2 ≤ 1, and ker(I−A0) = ker((I−A0)>) = ker(UI−A0) = span(D1/2
1).

Thus, A0 has all the desired properties.
Now suppose the desired properties hold for A0, ...,Ak with probability 1 − p(k + 1)/(d + 1),

for some k ∈ [0, d − 1], and that for all i ∈ [k] we have Ai ∈ Rn×n≥0 such that D − Ai is an
Eulerian Laplacian associated with a strongly connected graph. Under this assumption, clearly
D−1/2AkD

−1/2 = αD + (1−α)Ak has both row and column sums equal to D1. By Theorem 3.19,
the call to SparsifySquare computes in Õ(m+nε−2) time a matrix Ak+1 ∈ Rn×n≥0 such that, with

probability 1− p(k + 2)/(d+ 1), D−Ak+1 is an ε-sparsifier for D−A
(α)
k D−1A

(α)
k , where A

(α)
k =

αI+(1−α)Ak. Again, using Lemma 3.7, we see that I−Ak+1 is an ε-approximation of I−(A(α)
k )2.

Furthermore, since D − A
(α)
k D−1A

(α)
k contains D − Ak as a subgraph, this Eulerian Laplacian

is strongly connected and therefore so is D − Ak+1. Consequently, by Lemma 4.7 we have that
‖Ak+1‖2 = ‖D−1/2Ak+1D

−1/2‖2 ≤ 1, and ker(I −Ak+1) = ker((I −Ak+1)>) = ker(UI−Ak+1
) =

span(D1/2
1). Therefore, by induction all the desired properties hold.

4.3 Properties of the Square-Sparsification Chain

Here we prove several properties of the square-sparsification chain which we use in the analysis of
our solver algorithm. The main result of this subsection is to prove the following:
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Lemma 4.9. [Chain Properties] For length d ≥ 1, parameter α = 1/4, and error ε ∈ (0, 1/2), and
(d, α, ε)-chain A0,A1, . . .Ad the following properties hold:

1. κ(I−UAi , I−UAi−1) ≤ 21, for all i ∈ [d] , and

2. λ∗(I−UAd
) ≥ min{1/4, λ∗(I−UA0) · ((1− ε)1.25)d} .

The first property shows that the matrix I − UAi changes only within a constant factor for
a constant change in i, while the second implies that the smallest non-zero eigenvalue improves
geometrically with squaring, up to some fixed value that depends on α.

The proof of Lemma 4.9 relies on several components. First, we use a lemma which shows how
squaring changes the associated symmetric matrix (see Lemma B.7 in Appendix B). Combining
with the sparsification guarantees from Lemma 3.6, we derive the first property. Second, we use
a bound on how the smallest non-zero eigenvalue improves after squaring (see Lemma B.8 from
Appendix B), in order to show that this is also the case with the matrices in our chain.

Proof of Lemma 4.9. By definition, I − Ai is an ε-approximation of I − (A(α)
i−1)2, for all i ≥ 1.

Therefore by Lemma 3.6 we know that

(1− ε)
(

I−U
(A(α)

i−1)2

)
� I−UAi � (1 + ε)

(
I−U

(A(α)
i−1)2

)
.

Applying Lemma B.7, we obtain

2α

(
I−UA(α)

i−1

)
� I−U(

A(α)
i−1

)2 � (4− 2α)

(
I−UA(α)

i−1

)
.

Combining with the sparsification guarantee from above, we obtain:

(1− ε)2α
(

I−UA(α)
i−1

)
� I−UAi � (1 + ε)(4− 2α)

(
I−UA(α)

i−1

)
.

Finally, writing I−UA(α)
i−1

= I− (αI + (1− α)UAi−1) = (1− α)UAi−1 , this gives:

(1− ε)2α(1− α)
(
I−UAi−1

)
� I−UAi � (1 + ε)(4− 2α)(1− α)

(
I−UAi−1

)
,

which shows that
κ(I−UAi , I−UAi−1) ≤ (1 + ε)(4− 2α)

(1− ε)2α
≤ 21 .

For the second part, we see that Lemma B.8 yields:

λ∗(I−U(A(α))2
i−1

) ≥ min{α, (1 + α)λ∗(I−UAi−1)} .

Combining with the first inequality from the sparsification guarantee, this gives

λ∗(I−UAi) ≥ (1− ε) ·min{α, (1 + α)λ∗(I−UAi−1)} .

Applying this inequality d times yields the second part of the result.
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4.4 Pseudoinverse Properties

Here we show that ε-approximations in the square sparsifier chain imply useful properties for building
approximate pseudoinverses. We provide key lemmas to show that an approximate pseudoinverse
for I −Aj can be transformed into one for I −Ai, where i < j. More precisely, this is based on
Equation 2.3, and can be seen by substituting the condition from Definition 4.6 that I −Aj is an
ε-approximation of I− (A(α)

j−1)2 into the identity

(I−Aj−1)+ = (1− α)
(
I−A(α)

j−1

)+
= (1− α)

(
I−

(
A(α)
j−1

)2
)+ (

I + A(α)
j−1

)
.

This method of producing solvers accumulates error very quickly. However, as discussed in
Section 4.1, we can reduce the error accumulation using preconditioned Richardson iterations. Con-
sequently, the main goal of the remainder of this section is to formally bound this accumulated error
so that we can ensure Richardson will quickly produce a high quality approximate pseudoinverse.

We prove this result in several steps. First we provide several properties regarding approxi-
mate pseudoinverses, showing that they are well behaved under composition, and that they exhibit
desirable properties such as approximate triangle inequality, and being preserved under right mul-
tiplication. Then using these lemmas we prove the main result of this section, Lemma 4.13.

Given that ultimately we build our pseudoinverse recursively, in our presentation Z will often
take the role of a solver being used as a preconditioner. This is consistent with the way we use it,
since all solvers we produce are linear operators.

The following lemma bounds the quality of a preconditioner obtained via composition.

Lemma 4.10 (Triangle Inequality of Approximate Pseudoinverses). If matrix Z is an ε-approximate
pseudoinverse of M with respect to U, and M̃+ is an ε′-approximate pseudoinverse of Z+ with respect
to U, and has the same left and right kernels as M and Z, then M̃+ is an (ε+ ε′+ εε′)-approximate
pseudoinverse of M with respect to U.

Proof. Applying triangle inequality for the U→ U norm, we see that, for all x ∈ Rn,∥∥∥(Iim(M) − M̃+M
)
~x
∥∥∥
U
≤
∥∥∥(Iim(M) − M̃+Z+

)
~x
∥∥∥
U

+
∥∥∥(M̃+Z+ − M̃+M

)
~x
∥∥∥
U
.

The first term is upper bounded by ε′‖~x‖U by the condition given in the statement. The second
term can be rewritten as:∥∥∥(M̃+Z+ − M̃+M

)
~x
∥∥∥
U

=
∥∥∥M̃+Z+

(
Iim(M) − ZM

)
~x
∥∥∥
U
≤
∥∥∥M̃+Z+

∥∥∥
U→U

·
∥∥(Iim(M) − ZM

)
~x
∥∥
U
.

Next, we bound the two components of the product. For the first one, using triangle inequality
along with the condition given in the statement, we obtain∥∥∥M̃+Z+

∥∥∥
U→U

≤
∥∥Iim(M)

∥∥
U→U

+
∥∥∥Iim(M) − M̃+Z+

∥∥∥
U→U

≤ 1 + ε′ .

The second term is by definition bounded by ε‖~x‖U. Combining these bounds, we obtain∥∥∥(Iim(M) − M̃+M
)
~x
∥∥∥
U
≤ ε′ ‖~x‖U + (1 + ε′)ε ‖~x‖U = (ε+ ε′ + εε′) ‖~x‖U .
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The following lemma is used to show that ε-approximations obtained via the sparsification
routines from Section 3 also yield matrices whose pseudoinverses are good preconditioners for the
original.

Lemma 4.11. Let M be any matrix with UM positive semidefinite, such that ker(M) = ker(M>) =

ker(UM). Suppose that matrix M̃ ε-approximates M, for some ε ≤ 1/2. Then M̃+ is an 2ε-
approximate pseudoinverse for M with respect to UM. Furthermore, ker(UM) = ker(U

M̃
).

Proof. First, we prove that ker(M̃) = ker(M̃>) = ker(U
M̃

) and that these kernels are the same as
those of M, M> and UM.

We already know that ker(M) = ker(M>) = ker(UM) and it is not hard to prove that
ker(M̃), ker(M̃>) ⊆ ker(U

M̃
). Thus, it suffices to prove that ker(UM) ⊆ ker(M̃), ker(M̃>) and

ker(U
M̃

) ⊆ ker(UM).
To prove ker(UM) ⊆ ker(M̃), ker(M̃>), consider any vector x in the kernel of M. Then x is

also in the kernel of UM. However, by the definition of strong approximation, this means that x
is in the kernel of M − M̃ and M> − M̃>. Since x is in the left and right kernels of M, we have
0 = (M − M̃)x = M̃x and similarly obtain 0 = (M> − M̃>)x = M̃x. Thus, the left and right
kernels of M̃ are supersets of ker(M).

For the reverse direction, note that Lemma 3.6 implies that UM and U
M̃

approximate each
other in the standard positive semidefinite sense for undirected matrices, and thus have the same
kernel. Thus, the kernels of M meet the requirements for being approximate pseudoinverses.

Now we can show the requisite inequality for M̃+ being an approximate pseudoinverse of M
with respect to UM. First we show that M+ is an ε-approximate pseudoinverse of M̃ with respect
to UM. We can apply a lemma upper bounding matrix norms whose proof can be found in the
appendix (Lemma B.9) in order to obtain:∥∥∥Iim(M) −M+M̃

∥∥∥
UM→UM

≤
∥∥∥U+/2

M M
(
Iim(M) −M+M̃

)
U

+/2
M

∥∥∥
2

=
∥∥∥U+/2

M

(
M− M̃

)
U

+/2
M

∥∥∥
2
≤ ε .

Next we prove that this implies the desired conclusion by writing∥∥∥Iim(M) −M+M̃
∥∥∥
UM→UM

=
∥∥∥(M̃+M− Iim(M))M

+M̃
∥∥∥
UM→UM

≥
∥∥∥M̃+M− Iim(M)

∥∥∥
UM→UM

−
∥∥∥(M̃+M− Iim(M))(M

+M̃− Iim(M))
∥∥∥
UM→UM

≥
∥∥∥Iim(M) − M̃+M

∥∥∥
UM→UM

(
1−

∥∥∥Iim(M) −M+M̃
∥∥∥
UM→UM

)
.

For the first inequality we used triangle inequality, for the second one we used the fact that the
norm of a product is upper bounded by the product of norms, which follows immediately from
applying the definition of our matrix norm. By rearranging terms, and using the fact that M+ is
an ε-approximate pseudoinverse of M̃ with respect to UM we obtain:∥∥∥Iim(M) − M̃+M

∥∥∥
UM→UM

≤ ε

1− ε
≤ 2ε .

Next, recall that the goal of the square-sparsifier chain is to allow an approximate inverse for
I−Aj to be used as preconditioner for I−Ai, with i < j. We show that our notion of approximate
pseudoinverse is (approximately) preserved under right-multiplications, and when changing the
reference matrix U.
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Lemma 4.12 (Composition of Approximate Pseudoinverses). Let Z,M,U ∈ Rn×n be matrices such
that U is symmetric positive semidefinite, and ker(Z) = ker(Z>) = ker(M) = ker(M>) ⊇ ker(U).
Then the following hold.

1. (Preserved under right multiplication) Let C ∈ Rn×n such that both C and C> are invariant
on ker(M), in the sense that x ∈ ker(M) if and only if C ∈ ker(M), and similarly for C⊥.
Then Z is an ε-approximate pseudoinverse for CM with respect to U if and only if ZC is an
ε-approximate pseudoinverse for M with respect to U.

2. (Approximately preserved under norm change) If Z is an ε-approximate pseudoinverse for M
with respect to U, then for any symmetric positive semidefinite matrix Ũ, such that ker(Ũ) =

ker(U), Z is an (ε ·
√
κ(Ũ,U))-approximate pseudoinverse of M with respect to Ũ.

Proof. For preservation under right multiplication (claim 1), we immediately see that by associa-
tivity: ∥∥Iim(M) − (ZC) M

∥∥
U→U

=
∥∥Iim(M) − Z(CM)

∥∥
U→U

.

What we have left is to verify that kernel conditions are satisfied. The assumptions on C, together
with the fact that all the left and right kernels of Z and M coincide, ensure that ker(ZC) = ker(M),
ker(C>Z>) = ker(Z>), ker(CM) = ker(M), ker(M>C>) = ker(M>). Therefore the matrices
satisfy the kernel requirements for being approximate pseudoinverses.

For approximate preservation under change of norms (claim 2), the bound on κ(Ũ,U) means
that there exist α and β such that αU � Ũ � βU and β/α ≤ κ(Ũ,U). Using this, we obtain:

∥∥Iim(M) − ZM
∥∥
Ũ→Ũ

= max
~x:Ũ~x6=0

∥∥(Iim(M) − ZM
)
~x
∥∥
Ũ

‖~x‖
Ũ

≤ max
~x:U~x6=0

β
∥∥(Iim(M) − ZM

)
~x
∥∥
U

α‖~x‖U

≤
√
κ
(
Ũ,U

)
·
∥∥Iim(M) − ZM

∥∥
U→U

≤ ε ·
√
κ
(
Ũ,U

)
.

The preservation under right-multiplications combined with Equation 2.3 suggests that if we
have a linear operator Z that is an approximate pseudoinverse for I −Aj , we can right-multiply
it by (1 − α)(I + A(α)

j−1) to form an operator that is an approximate pseudoinverse for I −Aj−1.
This process can then be repeated down the chain, but will lead to an accumulation of error. The
following lemma bounds the amount of error accumulated after repeating this process ∆ times.

Lemma 4.13. Let the sequence A0,A1, . . .Ad be a (d, ε, α)-chain as specified in Definition 4.6,
with ε ≤ 1/2 and α = 1/4. Using the notation from Definition 4.6, consider the matrix

Zi,i+∆ = (1− α)∆ (I−Ai+∆)+
(
I + A(α)

i+∆−1

)
· · ·
(
I + A(α)

i

)
,

for any i,∆ ≥ 0. Then Zi,i+∆ is an (exp(5∆) · ε)-approximate pseudoinverse of I−Ai with respect
to I−UAi .

Proof. We will prove this by induction on ∆. The base case ∆ = 0 follows immediately, since
Zi,i = (I−Ai)

+, which is a 0-approximate pseudoinverse of I−Ai with respect to I−UAi .
For the induction step, let us assume that the claim is true for ∆− 1. Therefore, the matrix

Zi+1,i+∆ = (1− α)∆−1 (I−Ai+∆)+
(
I + A(α)

i+∆−1

)
· · ·
(
I + A(α)

i+1

)
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is an (exp(5(∆− 1)) · ε)-approximate pseudoinverse of I−Ai+1 with respect to I−UAi+1 .
From Lemma 4.9 we see that for our choice of α = 1/4, we have κ(I−UAi+1 , I−UAi) ≤ 21. Since

the matrices I−UAi and I−UAi+1 have the same kernel, we can use the bound on their relative
condition number with Lemma 1, part 2 to obtain that Zi+1,i+∆ is also a (

√
21 exp(5(∆− 1)) · ε)-

approximate pseudoinverse of I−Ai+1 with respect to I−UAi .
By definition, we have that I − Ai+1 is an ε-approximation of I − (A(α)

i )2. Therefore, by
Lemma 4.11, we know that (I − Ai+1)+ is a 2ε-approximate pseudoinverse of I − (A(α)

i )2 with
respect to I−U

(A(α)
i )2 . In order to change norms, we use Lemma B.7, which gives us that

κ

(
I−U(

A(α)
i

)2 , (1− α) (I−UAi)

)
= κ

(
I−U(

A(α)
i

)2 , I−UA(α)
i

)
≤ 4− 2α

2α
,

and therefore

κ

(
I−U(

A(α)
i

)2 , I−UAi

)
≤ 4− 2α

2α(1− α)
≤ 28

3
.

Therefore, using Lemma 2, and since
√

28/3 ·2 ≤ 7, we obtain that (I−Ai+1)+ is a 7ε-approximate
pseudoinverse of I−(A(α)

i )2 with respect to I−UAi . Combining these two results via the triangle in-
equality for approximate pseudoinverses (Lemma 4.10), we obtain that Zi+1,i+∆ is an ε′-approximate
pseudoinverse of I− (A(α)

i )2 with respect to I−UAi , where

ε′ =
√

21 exp(5(∆− 1))ε+ 7ε+
√

21 exp(5(∆− 1))ε · 7ε ≤ 50 exp(5(∆− 1))ε .

Equivalently, by writing I − (A(α)
i )2 = (I + A(α)

i )(I −A(α)
i ) = (1 − α)(I + A(α)

i ) · (I −Ai), and
applying the composition under multiplication property from Lemma 4.12 Part 1, we obtain that
Zi+1,i+∆ ·(1−α)(I+A(α)

i ) is an ε′-approximate pseudoinverse of I−Ai with respect to I−UAi . Note
that in order to correctly apply the lemma, we require the kernel requirement for (1−α)(I +A(α)

i )
to be satisfied, but this follows easily since all left and right kernels of the other matrices involved
are identical to ker(I−A(α)

i ).
Finally, since Zi,i+∆ = Zi+1,i+∆ · (1 − α)(I + A(α)

i ), this is equivalent to saying that Zi,i+∆ is
an approximate pseudoinverse of I−Ai with respect to I−UAi , with error bounded by

50 exp(5(∆− 1))ε ≤ exp(5∆)ε .

Note that the amount of error accumulated through this process is significantly greater than
the sum of ε’s across the different levels of the chain. This is because we are measuring the quality
of the approximate inverse with respect to a matrix that may change by a constant factor at each
level, rather than with respect to a fixed one.

If we only invoke Lemma 4.13 for the first and last matrices of the chain (i = 0, j = d), it
would give an error of exp(O(d))ε = poly(κ(L))ε, necessitating a sparsifier accuracy that is more or
less keeping everything dense. Instead, in our algorithms we will only invoke the above result for
j ≈ i +

√
d. Between such steps, we will remove the accumulated error using the preconditioned

Richardson iteration, which was described in Section 4.1.
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4.5 The Recursive Solver

Here we combine the pseudoinverse properties of the solver chain proved in Lemma 4.13 with
the preconditioned Richardson iteration from Lemma 4.4 to obtain an almost-linear time solver
for Eulerian Laplacians. The resulting algorithm makes recursive calls on the square-sparsifier
chain. These recursive calls can be viewed as phases. For some moderate value of ∆ which we
set to

√
log κ, where κ is the condition number of UD−1/2LD−1/2 , we utilize Lemma 4.13 to turn an

approximate pseudoinverse of Li+∆ into an approximate pseudoinverse for Li with larger error. The
error accumulated in this process is then removed via preconditioned Richardson iteration. This
iteration leads to recursive calls to Li+∆.

The resulting algorithm is a linear operator: its output can be viewed as multiplying the input
by a fixed matrix. To analyze it, it is helpful to define the notion of implicit matrices, which is a
more succinct way of writing “linear operator”-style solver statements like those in [37] as well as
subsequent works. An implicit matrix is a routine that applies a linear operator to a vector. It’s
complexity is defined as the time it takes to run it when given a vector. Note that if we have a
matrix explicitly given, we can view it as an implicit matrix with complexity equal to one plus its
number of nonzero entries.

If A is an implicit matrix, then we will use the notation A~x to denote A(~x). In particular, this
notation choice means we can write A(B(·)) as AB and A(·) + B(·) as A + B. If we form a new
implicit matrix from two (or more) explicit matrices in either of these manners, the complexity of
the new explicit matrix is equal to the sum of the complexities of the matrices it was formed from.

Because an implicit matrix implements a linear operator, we are—for the purposes of analysis—
free to treat it as if it is an actual matrix and talk about things like its eigenvalues or whether it
approximates something—provided we do so with the understanding that whenever we say such
things, we are really talking about the linear operator that the implicit matrix implements. When
possible, we will use Z to denote implicit matrices that represent inverses of matrices, and M to
represent matrices related to linear systems that we are trying to solve.

In particular, preconditioned Richardson iteration from Lemma 4.4 can be viewed as an implicit
matrix PreconRichardson(I−Ai,M, 1

2 , O(1/∆)) built from I−Ai and M, which might them-
selves be implicit matrices. With this in mind we can state the function that does most of the work
in our algorithm in Figure 4.3.

We now show that given a square-sparsifier chain and access to an implicit matrix that is an
approximate pseudoinverse of I−Ad with respect to I−UAd

, we can efficiently compute an implicit
matrix Z0 which is an approximate pseudoinverse of I−A0 with respect to I−UA0 .

This done by invoking the transformations of approximate pseudoinverses in Lemma 4.13, but
also swapping out the exact (I−Ai)

+ with an operator which is an approximate pseudoinverse for
it.

We first provide a helper lemma, which shows that error does not increase between recursive
calls to the Solve routine.

Lemma 4.14. Let A0,A1, . . . ,Ad be a (d, ε̂, 1/4)-chain. Let 0 ≤ i < d, and let ∆ = min{
√
d log d, d−

i}. Suppose that ε̂ ≤ exp(−5∆)/30, and that for any ε∆ ≤ exp(−5∆)/30, calling the routine
Solve((Ai+∆, . . . ,Ad), λ̂, ε∆) returns an implicit matrix Zi+∆ which is an ε∆-approximate pseu-
doinverse of I−Ai+∆ with respect to I−UAi+∆

. Then, calling the routine Solve((Ai, . . . ,Ad), λ̂, ε)
returns an implicit matrix Zi which is an ε-approximate pseudoinverse of I − Ai with respect to
I−UAi .

Proof. First we notice that by Lemma 4.9 part 1, κ(I −UAi , I −UAi+∆) ≤ 21∆. Therefore, by
the norm change property from Lemma 4.12 part 2, and our hypothesis, we obtain that Zi+∆ is an
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Solve((Ai . . .Ad), λ̂, ε)
Input: Matrices Ai . . .Ad forming a subsequence of a (d, ε̂, 1/4)-chain corresponding to an

Eulerian Laplacian L = D−A>, a lower bound λ̂ on λ∗(D−1/2LD−1/2), accuracy ε.
Output: Implicit matrix that is an ε-approximate pseudoinverse of I−Ai with respect

to I−UAi .

1. If i = d,

(a) `← min{1/4, 1.125d · 0.9 · λ̂}.
(b) Return PreconRichardson(I−Ad,

`
4Iim(I−Ad), 1,

8
`2

log(1/ε)).

2. ∆← min{
√
d log d, d− i}.

3. Z̃i ← (1− α)∆ · Solve(Ai+∆ . . .Ad, λ̂, exp(−5∆)/30) · (I + A(1/4)
i+∆−1) · · · (I + A(1/4)

i ).

4. Return PreconRichardson(I−Ai, Z̃i, 1, log(1/ε)).

Figure 4.3: Algorithm that produces a matrix polynomial that produces an ε-approximate pseudoin-
verse of I−Ai with respect to I−UAi , using the global solver chain constructed via BuildChain.

(
√

21∆ · ε∆)- and therefore also a (1/30)-approximate pseudoinverse of I −Ai+∆ with respect to
I−UAi .

On the other hand, the error propagation down the chain, bounded in Lemma 4.13 gives that
the matrix

Zi = (1− 1/4)∆(I−Ai+∆)+
(
I + A(1/4)

i+∆−1

)
. . .
(
I + A(1/4)

i

)
is an (exp(5∆)ε̂)- and by the bound on ε̂ also a (1/30)-approximate pseudoinverse of I −Ai with
respect to I−UAi .

Using these two facts, we can now show that the implicit matrix

Z̃i = (1− 1/4)∆Zi+∆

(
I + A(1/4)

i+∆−1

)
. . .
(
I + A(1/4)

i

)
is an 1/2-approximate pseudoinverse of I−Ai with respect to I−UAi .

This can be easily seen by applying the properties of approximate pseudoinverses we proved in
Section 4.4. Letting M = (1 − 1/4)∆(I + A(1/4)

i+∆−1) . . . (I + A(1/4)
i ), and applying Lemma 1 part 2

we obtain that (I −Ai+∆)+ is a (1/30)-approximate pseudoinverse of M(I −Ai) with respect to
I−UAi . Applying the triangle inequality from Lemma 4.10 we then obtain that Zi+∆ is a (1/10)-
approximate pseudoinverse of M(I−Ai) with respect to I−UAi . Finally, applying Lemma 1 part 2
again, we obtain that Z̃i = Zi+∆M is a (1/10)-approximate pseudoinverse of I −Ai with respect
to I−UAi .

Finally, the guarantee on the output matrix Zi = PreconRichardson(Li, Z̃i, 1, log(1/ε)) then
follows from Lemma 4.4.

Given this, we can now analyze the quality of the implicit matrix produced by calling Solve on
the entire square sparsification chain.

Lemma 4.15. Given a (d, ε̂, 1/4)-square-sparsifier chain A0,A1, . . .Ad constructed for a Laplacian
L = D − A>, with ε̂ ≤ exp(−5∆)/30, calling the routine Solve((A0 . . .Ad), λ̂, ε), where ε ≤
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exp(−5∆)/30, returns an implicit matrix Z which is an ε-approximate pseudoinverse of I−A0 with
respect to I−UA0.

Proof. The proof relies on Lemma 4.14, and follows from induction on the depth of the call to the
Solve routine.

The base case is i = d, for which we prove that the operator

Zd = PreconRichardson
(

I−Ad,
`

4
Iim(I−Ad), 1,

8

`2
log (1/ε)

)
is an ε-approximate pseudoinverse of I −Ad with respect to I −UAd

. In order to do so, we show
that the input parameters fulfill the requirements for applying Lemma 4.5.

First we notice that by Lemma 4.9, we have λ∗(I−UAd
) ≥ min{1/4, λ∗(I−UA0) ·1.125d}. Also,

from Lemma 4.8, we know that I −A0 is a (1/10)-approximation of D−1/2LD−1/2. Therefore by
Lemma 3.6 we know that λ∗(I−UA0) ≥ 9/10 ·λ∗(UD−1/2LD−1/2) ≥ 9/10 · λ̂. Hence λ∗(I−UAd

) ≥
min{1/4, 1.125d · 0.9 · λ̂} = `.

By Lemma 4.7 we have ‖I − Ad‖2 ≤ 2, and therefore, applying Lemma 4.5, we obtain that
PreconRichardson(I −Ad,

`
4 · Iim(I−Ad), 1,

8
`2

log(1/ε)) returns an implicit matrix Z that is an
ε-approximate pseudoinverse of I−Ad with respect to I−UAd

.
Now for the induction step, suppose that the induction hypothesis holds for i + ∆. Then, by

Lemma 4.14, the matrix produced when calling the chain starting at i, Zi, is an ε-approximate
pseudoinverse of I−Ai with respect to I−UAi . Therefore, this property also holds for the matrix
at the bottom of the call stack, which is what we wanted to prove.

Having seen that the Solve routine controls the accumulation of error, as it produces an ap-
proximate pseudoinverse for the first matrix in the square sparsification chain, we can now use its
output as a preconditioner for the Richardson iteration, which yields our final algorithm, described
in Figure 4.4.

SolveEulerian(L, ε,~b)
Input: Eulerian Laplacian L = D−A>, accuracy ε, vector ~b ⊥ 1.
Output: An approximate solution x to Lx = b in the sense that ‖x− L+b‖UL ≤ ε‖L+b‖UL .

1. Compute estimate λ̂ of the second eigenvalue of UD−1/2LD−1/2 , such that
1
2λmin(UD−1/2LD−1/2) � λ̂ ≤ λmin(UD−1/2LD−1/2). 10

2. Set the depth of the chain to d = 6 log(1/λ̂), and the chain solving accuracy ε̂ =
exp(−5

√
d log d)/30.

3. (A0, . . .Ad)← BuildChain(L, d, 1
4 , ε̂, 1/n

2).

4. Ẑ← PreconRichardson(D−1/2LD−1/2,Solve((A0, . . . ,Ad), λ̂, ε̂), 1, 10 log(1/ε)).

5. Return D−1/2ẐD−1/2~b.

Figure 4.4: Full algorithm for solving Eulerian Laplacian systems.

10Since we know the nullspace of UL, its minimum non-zero eigenvalue can be estimated in linear time to high
accuracy with high probability via inverse powering. See e.g. Section 7 of [37] or Chapter 8 of [41].
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What we have left is to bound the running time of our solver. We do so by analyzing the
recursion tree, as well as the outermost call to the preconditioned Richardson iteration. The final
bound is provided in the theorem below.

Theorem 4.16 (Eulerian Solver Guarantee). Given an Eulerian Laplacian L = D −A> ∈ Rn×n
withm nonzero entries, and given an error parameter 0 < ε ≤ 1/2, the algorithm SolveEulerian(L, ε,~b)
returns, with probability at least 1− 1/n, an approximate solution ~x to L~x = ~b in the sense that∥∥∥~x− L+~b

∥∥∥
UL
≤ ε

∥∥∥L+~b
∥∥∥
UL

.

Furthermore, the total running time is

Õ
((
m+ neO(

√
log κ·log log κ)

)
log (1/ε)

)
,

where κ is the condition number of the normalized Laplacian D−1/2LD−1/2.

Proof. By Lemma 4.8, it takes

Õ(m+ nε̂−2d) = Õ
(
m+ nd · eO(

√
d log d)

)
time to build the square sparsification chain.

Next we analyze the cost of the recursive calls to Solve. As we can see in the description of
Solve, when invoked on I −Ad, PreconRichardson requires (8/`2) log(1/ε̂) iterations, where
` = min{1/4, 1.125d · 0.9λ̂}. Therefore, whenever d = O(log λ̂−1), the base case of Solve requires

O

(
1

λ̂eO(d)
log(1/ε̂)

)
= O

(
κ
√
d log d

eΩ(d)

)
iterations.

For the cost of invoking Solve(I − A0, λ̂, ε̂), note that at each recursive call, the branching
factor in the recursion is

O (log(1/ε̂)) = O
(√

d log d
)
,

due to the iterations of preconditioned Richardson, each of them invoking the solver for a matrix
from further down the chain.

Furthermore, the depth of the call stack for Solve (or the number of layers of the recursion
tree) is bounded by d/

√
d log d =

√
d/ log d. Therefore the total number of recursive calls made

before the final solve on I−Ad is

O(
√
d log d)O(

√
d/ log d) = eO(

√
d log d).

Now, note that each of the recursive call requires one multiplication by each of the matrices in the
chain. Therefore each such recursive call makes

Õ
(
ndε̂−2

)
= Õ

(
nd · eO(

√
d log d)

)
work. Thus we see that the total amount of work it takes to construct and invoke the implicit
matrix given by Solve(I−A0, λ̂, ε̂) is

Õ
(
nd · eO(

√
d log d)

)
· eO(

√
d log d) ·O

(
κ
√
d log d

eΩ(d)

)
= Õ

(
nκ · d

e
Ω
(√

d/ log d
)
)
.
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Hence for our setting of d = Θ(log κ), this quantity becomes

Õ
(
neO(

√
log κ log log κ)

)
.

Finally, since by definition and Lemma 4.11 we know that (I−A0)+ is a 1/10-approximate pseu-
doinverse of D−1/2LD−1/2 with respect to UD−1/2LD−1/2 , producing the implicit matrix Ẑ requires
O(log(1/ε)) iterations (by Lemma 4.4), each of them requiring one multiplication by D−1/2LD−1/2

and one call to the recursive Solve. Thus the total running time to construct and apply Ẑ in
SolveEulerian is

Õ

((
m+ neO(

√
log κ log log κ)

)
log

1

ε

)
.

To analyze the solution quality, let

~y
def
= ẐD−1/2~b,

and let ~x = D−1/2~y be the solution returned by the algorithm. Also, to simplify notation, let us
define L = D−1/2LD−1/2.

For any vector ~v, let I⊥v denote orthogonal projection projection orthogonal to ~v. By Lemma 4.4,
we have ∥∥∥~y − L+D−1/2~b

∥∥∥
UL

≤ ε
∥∥∥L+D−1/2~b

∥∥∥
UL

.

Since UL = D−1/2ULD
−1/2, we have that for every vector ~v, ‖~v‖UL

= ‖D−1/2~v‖UL . Also, since
ker(UL) = span(1) we have that for every vector ~v, ‖~v‖UL = ‖I⊥1D−1/2~v‖UL . Using these, the
above inequality is equivalent to

ε
∥∥∥I⊥1D−1/2L+D−1/2~b

∥∥∥
UL
≥
∥∥∥~x− I⊥1D

−1/2L+D−1/2~b
∥∥∥
UL

=
∥∥~x− L+

∥∥
UL

,

where we have used I⊥1~x = ~x.
To finish the proof, it suffices to show that I⊥1D

−1/2L+D−1/2~b = L+~b. We first make the
substitution I⊥1 = L+L and then use L = D1/2LD1/2

I⊥1D
−1/2L+D−1/2~b = L+L(D−1/2L+D−1/2)~b = L+D1/2LL+D−1/2~b.

Since D1/2
1 is the kernel of L, we have LL+ = I⊥D1/21

. By the fact that ~b ⊥ 1, we have D−1/2b ⊥
D1/2

1, and therefore I⊥D1/21
D−1/2~b = D−1/2~b. Making these substitutions, we obtain

I⊥~1D
−1/2L+D−1/2~b = L+~b.
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A Entrywise Sparsification

In this section we prove Theorem 3.9, our main result about entrywise sampling for sparsification.
Our main technical tool for this is a rectangular matrix concentration of Tropp that we restate
below:

Theorem A.1 (Matrix Bernstein (Theorem 1.6 of [40], restated)). Let Z1, ...,Zk ∈ Rd1×d2 be
independent random matrices such that EZi = 0 and ‖Zi‖2 ≤ R almost surely for all i. Then

Pr

∥∥∥∥∥∥
∑
i∈[k]

Zi

∥∥∥∥∥∥
2

≥ t

 ≤ (d1 + d2) · exp

(
−t2/2

σ2 +Rt/3

)
where

σ2 def
= max


∥∥∥∥∥∥
∑
i∈[k]

EZiZ
>
i

∥∥∥∥∥∥
2

,

∥∥∥∥∥∥
∑
i∈[k]

EZ>i Zi

∥∥∥∥∥∥
2

 .

First we simplify this theorem, tailoring it to the case where we are sampling a sequence of
matrices with the same expectation.

Theorem A.2. Let D be a distribution over Rd1×d2. Let Σ
def
= EA∼DA and let RD and σ2

D satisfy

max
{
‖EA∼DAA>‖2 , ‖EA∼DA>A‖2

}
≤ σ2

D and max
A∈supp(D)

‖A‖2 ≤ RD .

Then for A1, ...,Ak sampled independently from D we have

Pr

∥∥∥∥∥∥1

k

∑
i∈[k]

Ai −Σ

∥∥∥∥∥∥
2

≥ ε

 ≤ (d1 + d2) · exp

(
−kε2/2
σ2
D +RDε

)
.

and for k ≥ 64 ·
(
σ2
D
ε2

+ RD
ε

)
log d

p it is the case that Pr
[
‖ 1
k

∑
i∈[k] Ai −Σ‖2 ≥ ε

]
≤ p.

Proof. Let Zi
def
= Ai −Σ. Clearly EZi = 0, and by Jensen’s inequality,

‖Zi‖2 ≤ ‖Ai‖2 + ‖Σ‖2 ≤ ‖Ai‖2 + EA∼D‖A‖2 ≤ 2 ·RD .

Furthermore,

0 � EZ>i Zi = EA∼D(A−Σ)>(A−Σ) = EA∼DA>A−Σ>Σ � EA∼DA>A

and
0 � EZ>i Zi = EA∼D(A−Σ)(A−Σ)> = EA∼DAA> −ΣΣ> � EA∼DAA> .

Consequently,

max


∥∥∥∥∥∥
∑
i∈[k]

EZiZ
>
i

∥∥∥∥∥∥
2

,

∥∥∥∥∥∥
∑
i∈[k]

EZ>i Zi

∥∥∥∥∥∥
2

 ≤ k · σ2
D .

Therefore, by Theorem A.1 we have that for all t,

Pr

∥∥∥∥∥∥
∑
i∈[k]

Zi

∥∥∥∥∥∥
2

≥ t

 ≤ (d1 + d2) · exp

(
−t2/2

k · σ2
D + 2Rt/3

)
.

Since
∑

i∈[k] Zi = k · ( 1
k

∑
i∈[k] Ai −Σ) picking t = k · ε yields the result.
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Using Theorem A.2 we can now prove Theorem 3.9, our main result of this section.

Proof of Theorem 3.9. First note that by the definition of s we have that∑
i,j

pij =
1

s

∑
i,j

[
Aij

~ri
+

Aij

~cj

]
=

1

s
[# non-zero rows + # non-zero columns] = 1

and therefore D is a valid probability distribution. All that remains is to prove each of the claims
of Theorem 3.9 by carefully applying Theorem A.2.

First apply Theorem A.2 for the distribution D which assigns probability pij to matrix
Aij~1i~1

>
j√

~ri·~cj
.

For this application of Theorem A.2, using that x · y ≤ 1
2x

2 + 1
2y

2 we have

RD = max
i,j

∥∥∥∥∥Aij~1i~1
>
j√

~ri · ~cj
· 1

pij

∥∥∥∥∥ = max
i,j

s · 1√
~ri~cj

(
1

~ri
+

1

~cj

)−1

≤ s

2
.

Furthermore we have

∥∥∥EM∼DMM>
∥∥∥

2
= s

∥∥∥∥∥∥
∑
i,j

1

~ri
· 1

~cj
·Aij ·~1i~1>i ·

(
1

~ri
+

1

~cj

)−1
∥∥∥∥∥∥

2

≤ s

and ∥∥∥EM∼DM>M
∥∥∥

2
= s

∥∥∥∥∥∥
∑
i,j

1

~ri
· 1

~cj
·Aij ·~1j~1>j

(
1

~ri
+

1

~cj

)−1
∥∥∥∥∥∥

2

≤ s .

Consequently, σD ≤ s and since ε ∈ (0, 1) and k is chosen appropriately, the first inequality follows
by Theorem A.2.

Next, we apply Theorem A.2 f or the distribution D which assigns probability pij to matrix
~1i

Aij

~ri
. For this application of Theorem A.2 we have

RD = max
i,j

∥∥∥∥Aij

~ri
· 1

pij

∥∥∥∥ ≤ s · 1

~ri
·
(

1

~ri
+

1

~cj

)−1

≤ s .

Furthermore we have

σ2
D =

∥∥∥∥∥∥
∑
j

1

~r2
j

·A2
ij ·
(

1

~ri
+

1

~cj

)−1

· s

∥∥∥∥∥∥
2

≤ s .

Since ε ∈ (0, 1), with k appropriately chosen, the second inequality follows by Theorem A.2. By
symmetry the last inequality follows as well. Finally, by choosing p to be s times larger we can
make all conditions hold simultaneously by union bound.

B Linear Algebra Facts

In this section we provide various general linear algebra facts we use throughout the paper.

Lemma B.1. Suppose that ‖A−B‖2 ≤ ε then for all c > 0 we have

(1− c)B>B− c−1ε2I � A>A � (1 + c)B>B + (1 + c−1)ε2I
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Proof. Using the trivial expansion of A = B + (A−B) we have that

x>A>Ax− x>B>Bx = 2xB>(A−B)x+ x>(A−B)>(A−B)x

Now since xy ≤ c
2x

2 + 1
2cy

2 for all x, y and c > 0 we have∣∣∣2xB>(A−B)x
∣∣∣ ≤ 2‖Bx‖2‖(A−B)x‖2 ≤ c‖Bx‖22 + c−1‖(A−B)x‖22 .

Combining this with the fact that

0 ≤ x>(A−B)>(A−B)x = ‖(A−B)x‖22 ≤ ε2‖x‖22 = ε2x>Ix

we obtain the result.

Lemma B.2. For all A ∈ Rn×n and symmetric PSD M,N ∈ Rn×n such that ker(M) ⊆ ker(A>)
and ker(N) ⊆ ker(A) we have

‖M−1/2AN−1/2‖2 = max
x,y 6=0

x>Ay√
(x>Mx) (y>Ny)

= 2 · max
x,y 6=0

x>Ay

x>Mx+ y>Ny

where in each of the maximization problems we define 0/0 to be 0.

Proof. Let L def
= ‖M−1/2AN−1/2‖2. Since ‖x‖2 = max‖y‖2=1 y

>x we have that

L = max
‖x‖2=‖y‖2=1

x>M−1/2AN−1/2y .

Now, performing the change of basis x := M−1/2x and y := M−1/2y we have

L = max
‖x‖M=‖y‖N=1

x>Ay = max
x,y 6=0

x>Ay

‖x‖M‖y‖M
where in each of these maximization problems we restrict that x ∈ im(M) and y ∈ im(N). However,
for all x ⊥ im(M) or y ⊥ im(N), i.e. x ∈ ker(M) or y ∈ ker(N), we have that either ‖x‖M = 0
or ‖y‖N = 0 and x>Ay = 0. Consequently, the above equalities hold without the x ∈ im(M)
and y ∈ im(N) restriction by our definition of 0/0 = 0. The final equality we wish to prove
follows from the fact that ‖x‖M‖y‖N ≤ 1

2(‖x‖2M + ‖x‖2N) and that this inequality is tight when
‖x‖M = ‖y‖N = 1.

Lemma B.3. For any M ∈ Rn×n and symmetric positive semidefinite matrices A,B ∈ Rn×n such
that A � B we have that ‖A1/2M‖2 ≤ ‖B1/2M‖2 and ‖MA1/2‖2 ≤ ‖MB1/2‖2.

Proof. The first claim follows from the fact that adopting the convention 0/0 = 0

‖A1/2M‖2 = max
x∈Rn

‖A1/2Mx‖2
‖x‖2

= max
x∈Rn

√
x>M>AMx

‖x‖2
≤ max

x∈Rn

√
x>M>BMx

‖x‖2
= ‖B1/2M‖2 .

The second follows from this and the fact that ‖A1/2M‖2 = ‖M>A1/2‖2.

Lemma B.4. Let M ∈ Rn×m, a ∈ Rn≥0 and b ∈ Rm≥0 be arbitrary. Let A = diag(a) and B = diag(b).
We have that for all α, β ∈ [0, 1]

‖AMB‖2 ≤
√
‖A2αMB2β‖∞ · ‖A2(1−α)MB2(1−β)‖1.

Consequently, for PSD diagonal matrices D1 ∈ Rn×n and D2 ∈ Rm×m we have

‖D−1/2
1 MD

−1/2
2 ‖2 ≤ max

{
‖D−1

1 M‖∞ , ‖D−1
2 M>‖∞

}
.
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Proof. Let x ∈ Rn and y ∈ Rm be arbitrary with ‖x‖2 = ‖y‖2 = 1. We have

x>AMBy =
∑
i,j

Mi,jaibjxiyj ≤
∑
i,j

|Mi,j | · ai · bj · |xi| · |yj |

Consequently, by Cauchy Schwarz we have that

(
x>AMBy

)2
≤

∑
i,j

|Mi,j | · a2α
i · b

2β
j · x

2
i

 ·
∑

i,j

|Mi,j | · a2(1−α)
i · b2(1−β)

j · y2
j


≤ ‖A2αMB2β‖∞ · ‖A2(1−α)MB2(1−β)‖1.

The final conclusion follows from the fact that for any matrix C ∈ Rn×m

‖C‖1 = ‖CT ‖∞.

Lemma B.5. If M ∈ Rn×n is a symmetric matrix with ‖M‖2 ≤ 1, then 0 � I−M2 � 2 · (I−M) .

Proof. Since M is symmetric we have that M2 and M are mutually diagonalizable and the above
inequality reduces to showing that 0 ≤ 1 − x2 ≤ 2 · (1 − x) for x ∈ R with |x| ≤ 1. The left hand
side of the inequality is true because x2 ≤ 1 and the right hand side follows by noticing that it is
equivalent to 0 ≤ x2 − 2x+ 1 = (x− 1)2 after rearranging terms.

The following gives a similar statement involving the symmetrization of an arbitrary matrix.
While it is based on the above proof, it loses a factor of 2 over the previous lemma.

Lemma B.6. If M ∈ Rn×n is a possibly asymmetric matrix satisfying ‖M‖2 ≤ 1 then

0 � I−UM2 � 2(I−U2
M) � 4(I−UM) .

Proof. Since the norm of M is at most 1, we immediately obtain ‖(M2)>‖2 = ‖M2‖2 ≤ 1,
‖M>M‖2 ≤ 1, ‖MM>‖2 ≤ 1. Then, by triangle inequality,

‖UM2‖2 =

∥∥∥∥1

2
(M2 + (M2)>)

∥∥∥∥
2

≤ 1

2
(‖M2‖2 + ‖(M2)>‖2) ≤ 1 .

Therefore UM2 � I, yielding the left hand side of the desired inequality.
Next, we note that these inequalities imply M>M � I and MM> � I, yielding

(M + M>)2 = M2 + M>M + MM> + (M>)2 �M2 + (M>)2 + 2I .

Consequently,

I−UM2 = I− 1

2
(M2 + (M2)>) � 2I− 1

2
(M + M>)2 = 2(I−U2

M) .

Finally, since UM is symmetric with ‖UM‖2 ≤ 1, by Lemma B.5 we have I−U2
M � 2·(I−UM).

Lemma B.7. Let M ∈ Rn×n be a matrix such that ‖M‖2 ≤ 1. Furthermore, for α ∈ [0, 1) let
N = αI + (1− α)M and let Li = I−UNi . Then,

2αL1 � L2 � (4− 2α) · L1 .
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Proof. Note that I−N = (1− α)(I−M), and therefore L1 = (1− α)(I−UM). The first identity
gives us that

N2 = α2I + 2α(1− α)M + (1− α)2M2 .

Consequently,

L2 = I− α2I− 2α(1− α)UM − (1− α)2UM2

=
(
1− α2 − (1− α)2

)
I− 2α(1− α)UM + (1− α2) (I−UM2)

= 2α(1− α)(I−UM) + (1− α)2(I−UM2)

= 2αL1 + (1− α)2(I−UM2) .

This yields the first part of the inequality, since the second term in the last line is positive semidef-
inite. Now by Lemma B.6 we know that

0 � I−UM2 � 4 (I−UM) =
4

1− α
L1 ,

Plugging this into our previous identity we obtain

L2 � 2αL1 + (1− α)2 · 4

1− α
L1 = (4− 2α)L1 ,

thus yielding the result.

Lemma B.8 (Condition Number Improvement). Let a nonzero matrix M ∈ Rn×n be such that
ker(M) = ker(M>), and ‖M‖2 ≤ 1. For α ∈ (0, 1/4] let N

def
= αI + (1 − α)M. Then, for

λ∗
def
= λ∗(I−UM) we have

λ∗(I−UN2) ≥ min {α, (1 + α)λ∗} . (B.1)

Proof. Note that we can write

UN2 =
1

2

(
N2 + (N>)2

)
=

(
1

2
(N + N>)

)2

−
(

1

2
(N−N>) · 1

2
(N−N>)>

)
� U2

N .

Therefore I −UN2 � I −U2
N, so it is sufficient to lower bound the smallest nonzero eigenvalue of

the latter. By expanding, we obtain:

I−U2
N = I− (αI + (1− α)UM)2 = I− (I− (1− α)(I−UM))2.

Since ‖M‖2 ≤ 1, we also have ‖UM‖2 ≤ 1 by triangle inequality, and thus λ∗Iim(M) � I −UM �
2Iim(M). Therefore,

I− (1− α)2Iim(M) � I− (1− α)(I−UM) � I− (1− α)λ∗Iim(M) ,

and equivalently

I⊥im(M) + (2α− 1)Iim(M) � I− (1− α)(I−UM) � I⊥im(M) + (1− (1− α)λ∗)Iim(M) .

Hence, after squaring, each eigenvalue of the middle term will become upper bounded by the
maximum of the squares of those in the lower and the upper bound. This can be seen as a matrix
version of the inequality b2 ≤ max{a2, c2}, if a ≤ b ≤ c. Hence,

(I− (1− α)(I−UM))2 � I⊥im(M) + max{(2α− 1)2, (1− (1− α)λ∗)
2}Iim(M) ,
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so after subtracting both sides from I we obtain:

I−U2
N � 1−max{(2α− 1)2, (1− (1− α)λ∗)

2}Iim(M) .

Therefore,

λ∗(I−UN2) ≥ min{1− (2α− 1)2, 1− (1− (1− α)λ∗)
2}

= min{1− (2α− 1)2, 2(1− α)λ∗ − (1− α)2λ2
∗} .

Observe that if λ∗ ≤ (1− 3α)(1− α)−2, then the second part of the lower bound is at least

2(1− α)λ∗ − (1− α)2(1− 3α)(1− α)−2λ∗ = (1 + α)λ∗ .

Otherwise, it can be lower bounded simply by

2(1− α)λ∗ − (1− α)2λ∗ = (1− α2)λ∗ ≥ 1− 3α.

Finally, since for α ≤ 1/4, both 1− 3α ≥ α and 1− (1− 2α)2 ≥ α are true, the result follows.

Lemma B.9. If L is a matrix with ker(L) = ker(L>) = ker(UL), and UL is positive semidefinite,
then

UL � L>U+
LL .

Furthermore, for any matrix A with the same left and right kernels as L, one has that

‖A‖UL→UL
≤
∥∥∥U+/2

L LAU
+/2
L

∥∥∥
2
.

Proof. We decompose L and L> as the sum/difference of a symmetric matrix U and a skew sym-
metric matrix V. Specifically, write L = U + V for

U := UL = (L + L>)/2 and V := (L− L>)/2.

This gives

L>U+L = U>U+U + U>U+V + V>U+U + V>U+V.

As UU+V = V and V>U+U = V> by our kernel assumptions, and V = −V>, this simplifies to

L>U+L = U + V>U+V � U,

where we used the assumption that U � 0 to guarantee that V>U+V � 0 for the final inequality.
The second part of the lemma follows by writing

‖A‖UL→UL
=
∥∥∥U1/2

L AU
+/2
L

∥∥∥
2

=
∥∥∥U1/2

L L+
(
LAU

+/2
L

)∥∥∥
2
,

then applying the equivalent form of the previous inequality L>+ULL+ � U+
L in order to obtain∥∥∥U1/2

L L+
(
LAU

+/2
L

)∥∥∥
2
≤
∥∥∥U+/2

L LAU
+/2
L

∥∥∥
2
.
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C Decomposition

Here we discuss the proof of Theorem 3.15, our main result on decomposing directed graphs. The
theorem follows directly from standard results involving decomposing undirected graphs into ex-
panders [37, 36, 21].

Before stating the decomposition result, we first define the conductance of a graph:

Definition C.1. Given an undirected graph G(V,E,w), we define the conductance of a S ⊆ V by

Φ(S)
def
=

∑
(u,v)∈E:u∈S,v /∈S wuv

min{vol(S), vol(V \ S)}
,

where vol(S)
def
=
∑

u∈S
∑

v:(u,v)∈E wuv.
The conductance of G is then defined as

Φ(G) = min
S⊂V,S 6=∅

Φ(S)

Relating the conductance of an undirected graph to its smallest nontrivial eigenvalue is done via
Cheeger’s inequality:

Theorem C.2 (Cheeger’s inequality, rephrased). Given an undirected graph G(V,E,w), with a
symmetric Laplacian U = D−A, one has that U’s spectral gap satisfies:

λ2(D−1/2UD−1/2) ≥ Φ(G)2

4
.

We refer to the following lemma, which is implicit in [37, 36].

Lemma C.3 (Lemma 31 from [21]). For an unweighted graph G = (V,E), in Õ(m) time, we
can produce a partition V1, . . . , Vk of V , and a collection of sets S1, . . . , Sk ⊆ V with the following
properties:

1. For all i, Si ⊆ Vi.

2. For all i, there exists a set Ti with Si ⊆ Ti ⊆ Vi, such that Φ(G(Ti)) ≥ Ω(1/ log2 n).

3. At least half of the edges are found within the sets {Si}, i.e.

k∑
i=1

|E(Si)| =
k∑
i=1

|{(a, b) ∈ E : a, b ∈ Si}| ≥
1

2
|E| .

We use this decomposition lemma in order to first prove the result for unweighted graphs. The
more general weighted version will then follow from a bucketing argument.

The decomposition can be produced by iteratively applying Lemma C.3 on the symmetrized
input graph U, choosing L(i) to be the directed Laplacian induced on vertices in Si, and U(i) be
the undirected Laplacian induced on vertices in Ti. Since E[Si] ⊆ E[Ti], clearly diag(SL(i)) �
diag(U(i)). 11 The lower bound on the spectral gap for each Ui is given by the second property
of Lemma C.3, combined with Cheeger’s inequality (Theorem C.2): the spectral gap of U(i) is at

11Note that the decomposition lemma gives us a much stronger property than what we are using, since our sparsi-
fication routine only requires degree dominance.
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least 1/Õ(1). Also, note that the sum of supports of these U(i) is O(n), since the graphs Ti are
vertex-disjoint subgraphs of G, we have

∑k
i=1 U(i) � U.

Removing the graphs induced by Si (or, equivalently, L(i)), for all i, reduces the number of
edges in G by half. Therefore, after dlog ne iterations of applying Lemma C.3, the edges on G
will have been exhausted, and we are done. Since each iteration produces undirected Laplacians
whose sum is bounded by U, the sum of all the undirected Laplacians produced during the dlog ne
iterations is at most dlog ne · U. Also, the sum of support sizes O(n log n). Hence we have a
(Õ(n), 1/Õ(1), Õ(1))-decomposition of G.

In order to obtain a weighted version of the theorem, we initially decompose the graph G into b =
dlog(wmax/wmin)e graphs G1, . . . , Gb , where wmax and wmin represent the maximum, and minimum
arc weight in G, respectively, and Gj = (V,Ej) with Ej = {e ∈ E : wmin · 2t−1 ≤ we < wmin · 2t}.
For each of these graphs, the cover corresponding to the unweighted Gj , scaled by wmin ·2t, becomes
a (Õ(n), 1/Õ(1), Õ(1))-decomposition of the weighted Gj . Therefore, taking the union of all the
decompositions from the b graphs, we obtain a (Õ(bn), 1/Õ(1), Õ(b))-decomposition of G. Since all
weights are polynomially bounded, b = Õ(1), and we obtain the desired result.

In addition, it can be shown that the result from Lemma C.3 can be made parallel using [32].
Indeed, using their SDP-based balanced partitioning routine, one can in Õ(1) parallel time and
Õ(m) work find a balanced cut with with polylogarithmic (i.e. 1/Õ(1)) conductance, or certify
that none exists. Such a partitioning routine is then called recursively on the pieces of the input
graph that are not yet certified to be expanders, yielding a nearly-linear work, polylogarithmic time
algorithm which produces the partition from Lemma C.3. We also refer the reader to Section 6
of [33], for a discussion concerning the parallelization of the decomposition routine.

D The Complete Solver

In this section we provide some details of the full algorithm for computing stationary distributions
and solving directed Laplacians. Various applications of these routines are presented in [12] and
briefly enumerated in Section 1.2. We provide details on these two routines of computing stationary
and solving linear system because they are most important for completing the picture.

We start by stating the stationary computation algorithm given as Algorithm 1 in Section
3.2 of [12]. One difference in presentation is that the routine as shown in [12] relies on solving
matrices whose diagonal entries are strictly bigger than the total magnitude of off-diagonal entries
in the corresponding row/column. On the other hand, we have only presented a solver for Eulerian
Laplacians. The diagonal entries of these matrices are equal to the total magnitude of the off-
diagonal entries. As a result, we also need to incorporate the reduction from such matrices to
Eulerian Laplacians from Section 5 of [12]. Pseudocode of this routine is in Figure D.1.

This can then be turned into a solver for a strongly connected Laplacian by rescaling it by the
stationary, and solve the (approximately) Eulerian Laplacian that result from this. The pseudocode
in Figure D.2 is based on Sections 7.1. and 7.3. of [12].

E Approximating the Harmonic Symmetrization

To solve an Eulerian Laplacian system L~x = ~b, [12] instead solved the system L>U+
LL = L>UL~b.

Since UL is a symmetric Laplacian, its pseudoinverse can be applied in nearly linear time via a
variety of methods [37, 23, 24, 22, 27, 33, 25], and therefore given a linear system solver for L>U+

LL
one is achieved for L with only a polylogarithmic running time overhead at worst.
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~s = ComputeStationary(L, α)
Input: n× n directed Laplacian L, with diagonal D.
Restart parameter α ∈ [0, 1

2 ].
Output: approximate stationary distribution ~s.

1. Set ~x(0) ← D−1
1, ε← poly

(
α
n

)
.

2. For t = 0, . . . , k = 3 ln
(
α−1

)
(a) Set ~e(t) ← max

{
0, L~x(t), diag(~x(t))L1

}
, and let E(t) = diag(~e(t)), X(t) = diag(~x(t))

be the corresponding diagonal matrices.

(b) Create L(t+1) ∈ R(n+1)×(n+1) from (E(t) + L)X(t) by adding a row/column to make
all row/column sums 0.

(c) Create a length n + 1 vector ~b(t) with sum 0 whose first n entries are given by the
vector 1

‖D−1~e(t)‖1
D−1~e(t).

(d) Let ~z(t+1) be the first n entries of the vector returned by SolveEulerian(L(t),~b(t), ε),
and ~x(t+1) ← X(t)~z(t+1)

3. Return ~s = D~x(k+1)

‖D~x(k+1)‖1
.

Figure D.1: Stationary Computational Algorithm. This routine combines the reduction from solving
strictly row/column dominant matrices to Eulerian Laplacians from Section 5 of [12] with the
stationary finding algorithm from Section 3.

The matrix L>U+
LL was referred to in [12] as the harmonic symmetrization of L and it was shown

that linear systems in this harmonic symmetrization can be solved inO((nm3/4+n2/3m) logO(1)(nκ))
time. Here we show that if Ã is a strong approximation for A, then Ã>U+

Ã
Ã is a spectral approx-

imation for A>U+
AA. Consequently, by simply producing a sparsifier for L in nearly linear time

using the results of Section 3, solving the harmonic symmetrization using [12], and then using this
solver as a preconditioner in the standard symmetric sense [34], yields an O(m+ n7/3 logO(1)(nκ))
time algorithm for solving directed Laplacian systems.

Lemma E.1. If Ã is an ε-strong-approximation of A for ε ∈ (0, 1/2) and ker(UA) ⊆ ker(A), then

(1− 2ε)2 A>U+
AA � Ã>U+

Ã
Ã � (1 + ε)3 A>U+

AA .

Proof. Let M = U
+/2
A ÃU

+/2
A and N = U

+/2
A AU

+/2
A . The definition of strong approximation

implies that ‖M − N‖2 ≤ ε. Applying Lemma B.1, a general lemma regarding the difference of
matrices, yields that

(1− ε)N>N− ε−1ε2I �M>M � (1 + ε)N>N + (1 + ε−1)ε2I .

Now let ~x ∈ Rn be an arbitrary vector perpendicular to the kernel of UA. For such a vector ~x, we
have

~x>N>N~x = ~x>U
+/2
A A>U+

AAU
+/2
A ~x ≥ ~x>U

+/2
A UAU

+/2
A ~x ≥ ~x>I~x ,
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~s = SolveFull(L, α)
Input: n× n directed Laplacian L, with diagonal D, desired error ε. vector ~b
Output: approximate solution to L~x = ~b.

1. Estimate the mixing time of L, Tmix by binary searching on the mixing times of L+ αI.

2. Add ε
Tminpoly(n) to L to get a strictly diagonally dominant matrix L̂.

3. Compute approximate stationary distribution of L̂, ~s.

4. Let ~x← SolveEulerian(L̂D−1S,~b, ε/poly(n)).

5. Return D−1S~x.

Figure D.2: Full solver algorithm for strongly connected Laplacians. It first perturbs L to form a
matrix where a good stationary distribution is easy to compute, and uses the normalization given
by it to reduce the problem solving on an Eulerian Laplacian.

where we used that by Lemma B.9 the harmonic symmetrization spectrally dominates the symmetric
Laplacian, i.e., A>U+

AA � UA. Consequently, for C = A>U+
AA and C̃ = Ã>U+

AÃ we have

(1− 2ε)~x>U
+/2
A CU

+/2
A ~x � ~x>U

+/2
A C̃U

+/2
A ~x � (1 + 2ε+ ε2)~x>U

+/2
A CU

+/2
A ~x .

One can easily see that when x ∈ ker(UA) all of the terms are 0. Hence, we have that the above holds
for all x. Since ker(UA) ⊆ ker(A) this in turn implies (1 − 2ε)C � C̃ � (1 + ε)2C. Furthermore,
since (1− ε)UA � U

Ã
� (1 + ε)UA by Lemma 3.6, we also have (1− ε)U+

Ã
� U+

A � (1 + ε)U+

Ã
.

The result follows from combining and using (1− 2ε) ≤ (1− ε).

F Reducing the Condition Number

In this section, we present a reduction from the problem of (approximately) solving Eulerian Lapla-
cians to solving Eulerian Laplacians that are at most polynomially ill-conditioned, with a logarithmic
dependence on condition number. This reduces the overall dependency on κ to logarithmic instead
of sub-polynomial. The main result of this section is:

Theorem F.1. There exists a procedure CrudeSolveIllConditioned which, when given an n×n
Eulerian Laplacian L with m non-zeros such that the condition number of L+L> is bounded by κ,
returns a crude approximate solution x to Lx = b in the sense that

‖~x− L+~b‖UL ≤
1

2
‖L+~b‖UL .

This procedure performs only O(log(nκ)) calls to an approximate Eulerian Laplacian solver, each
on O(n) vertices with O(m) nonzero entries, with error parameter 1

nO(1) and each with condition
number nO(1), plus O(m log(nκ)) additional work.

Furthermore, if the Eulerian solver is an implicit polynomial, the overall procedure is an implicit
polynomial as well.
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Combining this routine with iterative refinement / preconditioned Richardson iteration as stated
in Lemma 4.2 implies that one can obtain an ε-approximate solution with O(log(nκ) log(1/ε)) such
solver calls and O(m log(nκ) log(1/ε)) additional work. We note that this construction can also be
used to reduce the log κ dependencies in [33] to log n.

We include this construction here because it removes the exp(
√

log κ) dependencies in our algo-
rithms and replaces them with similar terms in n. Since problems on directed graphs can be highly
ill-conditioned even when the edge weights are all small integers, this can potentially be a significant
improvement.

Remark. We believe that developing combinatorial techniques to mitigate the effects of ill-conditioning
is an important endeavor in both theory and practice, and that the scheme we include reflects only
partial progress. While the technique we describe is sufficient to improve our running time bounds,
we conjecture that far better reduction schemes are possible. Some ways in which an ideal such
result could improve on the one presented here include:

1. The overhead in work and depth could be as low as O(1): the different scales would only have
minimal overlap, and processing could occur in parallel.

2. The scheme could only need to manipulate numbers with double or quadruple the precision
of n/ε, instead of involving words whose sizes are O(1) bigger. Treating these increases with
similar emphasis as constants in approximation algorithms may be a more realistic model of
the costs of floating point arithmetic.

3. As highly ill conditioned systems often arise under floating point arithmetic (due to the ex-
ponent) such reductions should ideally be robust to floating instead of fixed point arithmetic.

Systematically developing strong versions of such “condition number reducing reductions” is poten-
tially a challenging but important direction important direction for future work.

The main idea of our reduction is to collar the Laplacian to a fixed “scale” of edge weights,
contracting edges above the scale while adding a smaller multiple of a clique to bound the lower
eigenvalue. The algorithm then uses the Laplacian at a given scale to route demand between
vertices connected at about that scale. Our algorithm is defined around the following contraction
and projection operators:

Definition F.2. Given a partition of [n] into k sets S1, S2, ..., Sk,

1. the contraction operator C is the linear map Rn → Rk mapping ~1i to ~1j if i ∈ Sj .

2. let Proj be the orthogonal projection onto the kernel of C.

Pseudocode based on these operators is in Figure F.1.
Our proofs crucially rely on the following fact that relates the ordinary (arithmetic) and harmonic

symmetrizations of Eulerian Laplacians. It is immediate from Lemma 13 of [12], and one side of it
is also present as Lemma B.9.

Lemma F.3. Let L be an Eulerian Laplacian and UL its symmetrization L+L>
2 . Then

UL � L>UL
+L � 2(n− 1)2UL.

We also need a simple technical lemma about the extreme values in solutions to Eulerian Lapla-
cian systems in terms of the support of the demand vector.
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CrudeSolveIllConditioned(L,~b)
Input: Eulerian Laplacian L = D−A>, ~b ⊥ 1

Output: A crude approximate solution ~x to L~x = ~b in the sense that ‖~x−L+~b‖UL ≤ 1
2‖L

+~b‖UL .

1. Let r = 1000n10.

2. Let w(0) be the smallest edge weight in a maximal spanning tree of UL.

3. Let ~x(0) = 0, ~b(0) = b, i = 0.

4. Loop:

(a) Let C(i) and Proj(i) be the contraction and projection operators as given in Defi-
nition F.2 for the connected components in the graph of edges in UL with weight
≥ w(i).

(b) Let ~z(i) = C(i)>
(
C(i)LC(i)> + w(i)

r2 I
)−1

C(i)~b(i).

(A 1
r -approximate solver may be substituted for the inverse).

(c) Let ~x(i+1) = ~x(i) + ~z(i).

(d) Let ~b(i+1) = Proj(i)(~b(i) − L~z(i)).

(e) Let w′(i) be the smallest edge weight in UL that is ≥ w(i). If none, stop looping.

(f) Let w(i+1) = 2w′(i).

(g) i← i+ 1.

5. Return ~x(i+1).

Figure F.1: Reduction to solving well-conditioned Eulerian systems

Lemma F.4. Let L be a connected Eulerian Laplacian and ~x and ~b be nonzero vectors such that
L~x = ~b. Then the maximum value of the entries of ~x, as well as the minimum value, must be
attained on sup~b.

Proof. Consider the set S of all entries of ~b attaining the maximum value v. If this set contains
every vertex, it automatically overlaps sup~b. Otherwise, we have:

∑
i∈S

~bi =

 ∑
i∈S,j 6∈S

wji~xj

−
 ∑
i∈S,j 6∈S

wij~xi

 < v

 ∑
i∈S,j 6∈S

wji

− v
 ∑
i∈S,j 6∈S

wij

 = 0.

Here the last equality is due to L being Eulerian: the total weight entering and leaving S is equal.
The sum of the entries from S in ~b is strictly negative and thus nonzero, so S must overlap with
the support of ~b.

The case of the minimum value is analogous.

Next, we show that if the demands for an Eulerian Laplacian system are supported on a well-
connected subset of the graph, perturbing the system by a small multiple of the identity matrix
cannot induce too much error.
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Lemma F.5. Let L be a connected Eulerian Laplacian with corresponding undirected Laplacian UL,
and let S be a subset of the vertices such that any two vertices in S are connected by a path in UL
containing only edges of weight at least β. Let ~b be a vector in the image of L supported on S, and
let α > 0. Then ∥∥∥(L+ αI)−1~b− L+~b

∥∥∥
UL
≤ n

√
α

β

∥∥∥L+~b
∥∥∥
UL

.

Proof. We define ~x = L+~b and ~y = (L+ αI)−1~b. Writing ~y as ~x+ (L+ αI)−1(~b− (L+ αI)~x) gives:

~y − ~x = (L+ αI)−1 (L~x− (L+ αI) ~x) = −α (L+ αI)−1 ~x.

which when substituted into the µL norm gives:

‖~y − ~x‖2UL = α2~x>
(
L> + αI

)−1
UL (L+ αI)−1 ~x.

Since UL � UL + αI, we can invoke Lemma F.3 with the matrix (L+ αI) to get:

‖~y − ~x‖2UL ≤
α2

α
~x>~x = nα‖~x‖2∞.

Now, by Lemma F.4, the full range of the entries of ~x occurs within S. The existence of a path
with at most n vertices connecting the minimum and maximum of these entries implies that

‖~x‖2UL ≥
β

n
‖~x‖2∞ .

Putting this together we get
‖~y − ~x‖2UL ≤ n

2α

β
‖~x‖2UL .

Next, we handle the case of simultaneous demands within multiple well-connected components.
We also switch the error bound to be in ‖~b‖UL+ to facilitate our later steps.

Lemma F.6. Let L be a connected Eulerian Laplacian with corresponding undirected Laplacian UL,
and let S1, S2, ...Sk be the connected components of the graph consisting of those edges in UL with
edges of weight at least β. Let ~b be a vector such that

∑
i∈Sj

~bi = 0 for all j, and let α > 0. Then∥∥∥(L+ αI)−1~b− L+~b
∥∥∥
UL
≤ 2n7/2

√
α

β

∥∥∥~b∥∥∥
UL

+
.

Proof. We decompose ~b as
~b =

∑
j

~bj

where ~bj is supported on Sj , and 0 everywhere else.
Now we aim to bound ‖~bj‖UL+ . Note that there is an electrical flow ~y on UL with energy

‖~b‖2
UL

+ routing overall demands ~b. We define ~y′j as the restriction of the flow to the internal edges

of Sj , and let is residuals be ~b′j . Since this flow is on a subset of the edges, its total energy is almost
most ‖~b‖2

UL
+ so this certifies that ‖~b′j‖UL+ ≤ ‖~b‖UL+ . Then∥∥∥~b′j − ~bj

∥∥∥
1
≤ n√

β

∥∥∥~b∥∥∥
UL

+
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since it is at most the `1 norm of the flows on the edges incident to but not contained in Sj in y,
and each of these ≤ n2 edges has weight at most β by the assumption of Sj being the connected
components on edges with weights ≥ β. ~b′j − ~bj is also supported on Sj ; since Sj is connected by
edges of weight ≥ β, we have∥∥∥~b′j − ~bj

∥∥∥
UL

+
≤
√
nβ
∥∥∥~b′j − ~bj

∥∥∥
1
≤ n3/2

∥∥∥~b∥∥∥
UL

+
.

Then by the triangle inequality∥∥∥~bj∥∥∥
UL

+
≤
∥∥∥~b′j∥∥∥

UL
+

+
∥∥∥~b′j − ~bj

∥∥∥
UL

+
≤ 2n3/2

∥∥∥~b∥∥∥
UL

+
.

Lemma B.9 then implies that ‖L+~bj‖U ≤ ‖~bj‖UL+ . Finally, we apply Lemma F.5 to each ~bj ,
yielding that ∥∥∥(L+ αI)−1~bj − L+~bj

∥∥∥
UL
≤ 2n5/2

√
α

β

∥∥∥~b∥∥∥
UL

+
.

Summing over the up to n different ~bj and applying the triangle inequality over this sum gives∥∥∥(L+ αI)−1~b− L+~b
∥∥∥
UL
≤ 2n7/2

√
α

β

∥∥∥~b∥∥∥
UL

+

as desired.

We now have the tools to analyze CrudeSolveIllConditioned. Our analyses rely on the
following key intermediate variables:

1.
~q(i) def

= C(i)>
(
C(i)LC(i)>

)+
C(i)~b(i).

2.
~e(i) def

= ~z(i) − ~q(i),

where ~z(i) is the ‘shifted’ solution obtained on Step 4b.

3.
~f (i) def

= Proj(i)
(
L~e(i)

)
.

4.
~b∗(i)

def
= ~b−

∑
j<i

~f (j).

We first show that the right hand side in the iterations can be expressed as a close form involving
the errors.

Lemma F.7. For all i,

~b(i) =

(
I− LC(i−1)>

(
C(i−1)LC(i−1)>

)+
C(i−1)

)
~b∗(i).
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Proof. First we note two equations about the projection operator
(

I− LC(i−1)>
(
C(i−1)LC(i−1)>

)+
C(i−1)

)
.

Now we prove this by induction. The base case of i = 0 follows from the two sides being identical.
For the inductive case, substituting in the construction of ~b(i+1) on Step 4d gives:

~b(i+1) = Proj(i)(~b(i) − L~z(i))

= Proj(i)
(
~b(i) − LC(i)>

(
C(i)LC(i)>

)+
C(i)~b(i) − L~e(i)

)
= Proj(i)

((
I− LC(i)>

(
C(i)LC(i)>

)+
C(i)

)
~b(i)
)
− Proj(i)(L~e(i))

=

(
I− LC(i)>

(
C(i)LC(i)>

)+
C(i)

)
~b(i) − ~f (i).

Here, the last line follows from the fact that
(

I− LC(i)>
(
C(i)LC(i)>

)+
C(i)

)
~b(i) is already in the

kernel of C(i), as

C(i)

(
I− LC(i)>

(
C(i)LC(i)>

)+
C(i)

)
~b(i) = C(i)~b(i) −

(
C(i)LC(i)>

)(
C(i)LC(i)>

)+
C(i)~b(i)

= C(i)~b(i) −C(i)~b(i)

= 0

We similarly have(
I− LC(i)>

(
C(i)LC(i)>

)+
C(i)

)
LC(i)> = LC(i)> − LC(i)>

(
C(i)LC(i)>

)+ (
C(i)LC(i)>

)
= LC(i)> − LC(i)>

= 0

Since the image of C(i−1)> is contained in the image of C(i)>, this also implies that(
I− LC(i)>

(
C(i)LC(i)>

)+
C(i)

)
LC(i−1)> = 0

and hence that(
I− LC(i)>

(
C(i)LC(i)>

)+
C(i)

)(
I− LC(i−1)>

(
C(i−1)LC(i−1)>

)+
C(i−1)

)
=

(
I− LC(i)>

(
C(i)LC(i)>

)+
C(i)

)
.

We also have
(

I− LC(i)>
(
C(i)LC(i)>

)+
C(i)

)
~f (i) = ~f (i) as ~f (i), output by Proj(i), is in the

kernel of C(i). Putting these together and substituting in the induction hypothesis on i gives

~b(i+1) =

(
I− LC(i)>

(
C(i)LC(i)>

)+
C(i)

)(
~b∗(i) − ~f (i)

)
=

(
I− LC(i)>

(
C(i)LC(i)>

)+
C(i)

)
~b∗(i+1)

which shows that the identity holds for i+ 1 as well.
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Lemma F.8. For all i,
~x(i) + L+~b(i) =

∑
j<i

~e(j) + L+~b∗(i).

Proof. Again, we proceed by induction.

~x(i+1) + L+~b(i+1) = ~x(i) + ~z(i) + L+ Proj(i)
(
~b(i) − L~z(i)

)
= ~x(i) + ~q(i) + ~e(i) + L+ Proj(i)

(
~b(i) − L~q(i) − L~e(i)

)
= ~x(i) + ~q(i) + ~e(i) + L+ Proj(i)

(
~b(i) − L~q(i)

)
− L+ Proj(i)

(
L~e(i)

)
= ~x(i) + ~q(i) + ~e(i) + L+~b(i) − ~q(i) − L+ ~f (i).

The last line here follows from the fact that~b(i)−L~q(i) is already inside the kernel of C(i). Cancelling
the ~q(i) terms and applying the induction hypothesis then gives

~x(i+1) + L+~b(i+1) = ~x(i) + L+~b(i) + ~e(i) − L+ ~f (i)

= L+~b∗(i) +
∑
j<i

~e(j) + ~e(i) − L+ ~f (i)

= L+~b∗(i+1) +
∑
j<i+1

~e(j).

These relations then allows us to bound the global error via the guarantees of the separate
approximate solves. As these solves produce solutions with relative error, we first need to bound
the norm of ~b(i):

Lemma F.9. For all i, ∥∥∥~b(i)∥∥∥
UL

+
≤ 3n

∥∥∥~b∗(i)∥∥∥
UL

+
.

Proof. First, note that ∥∥∥C(i−1)~b∗(i)
∥∥∥(

C(i−1)ULC(i−1)>
)+ ≤

∥∥∥~b∗(i)∥∥∥
UL

+
.

Lemma F.3 then gives∥∥∥∥(C(i−1)LC(i−1)>
)+

C(i−1)~b∗(i)
∥∥∥∥(

C(i−1)ULC(i−1)>
) ≤ ∥∥∥~b∗(i)∥∥∥

UL
+

or equivalently ∥∥∥∥C(i−1)>
(
C(i−1)LC(i−1)>

)+
C(i−1)~b∗(i)

∥∥∥∥
UL

≤
∥∥∥~b∗(i)∥∥∥

UL
+
.

Now applying Lemma F.3, we get∥∥∥∥LC(i−1)>
(
C(i−1)LC(i−1)>

)+
C(i−1)~b∗(i)

∥∥∥∥
UL

+

≤ 2n
∥∥∥~b∗(i)∥∥∥

UL
+
.

The result then follows from the triangle inequality with ~b∗(i).
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For the next step we will use the following fact about matrices:

Fact F.10. For any symmetric positive semidefinite matrix M and arbitrary matrix C, and for any
vector ~v in the image of M,

‖C~v‖
(CMC>)

+ ≤ ‖~v‖M+ .

Notably, this fact is equivalent to the standard result that the Schur complement of a positive
semidefinite matrix is spectrally dominated by the matrix.

Proof. We can prove this using duality of norms:

‖C~v‖
(CMC>)

+ = max
‖~u‖(CMC>)≤1

〈u,Cv〉

= max
‖C>~u‖

M
≤1

〈
C>u, v

〉
≤ max
‖~u′‖M≤1

〈
u′, v

〉
= ‖~v‖M+ .

We begin to bound the error terms:

Lemma F.11. ∥∥∥~e(i)
∥∥∥
UL
≤ 12n9/2

r

∥∥∥~b∗(i)∥∥∥
UL

+
.

Proof. First, we note that by Fact F.10∥∥∥C(i)~b(i)
∥∥∥(

C(i)ULC(i)>
)+ ≤

∥∥∥~b(i)∥∥∥
UL

+
≤ 3n

∥∥∥~b∗(i)∥∥∥
UL

+
,

where the last inequality is by Lemma F.9. Now, define intermediate variables:

1.
~q′

(i) def
=
(
C(i)LC(i)>

)+
C(i)~b(i),

2.

~z′′
(i) def

=

(
C(i)LC(i)> +

w(i)

r2
I

)−1

C(i)~b(i),

and ~z′
(i)

analogously, but as the output of a 1
r -approximate solver for the system (C(i)LC(i)>+

w(i)

r2 I)~x = C(i)~b(i).

By rearranging and applying the triangle inequality, we have∥∥∥~e(i)
∥∥∥
UL
≤
∥∥∥~z′(i) − ~z′′

(i)
∥∥∥(

C(i)ULC(i)>
) +

∥∥∥ ~z′′(i) − ~q′(i)∥∥∥(
C(i)ULC(i)>

)
The first term captures the error induced by using the approximate rather than exact solver, while
the second captures the error induced from adding the multiple of the identity (the more serious
issue).
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For the first term, we have∥∥∥~z′(i) − ~z′′
(i)
∥∥∥(

C(i)ULC(i)>
) ≤ ∥∥∥~z′(i) − ~z′′

(i)
∥∥∥(

C(i)ULC(i)>+w(i)

r2
I
)

≤ 1

r

∥∥∥ ~z′′(i)∥∥∥(
C(i)ULC(i)>+w(i)

r2
I
) (by definition of approximate solver)

≤ 1

r

∥∥∥C(i)~b(i)
∥∥∥(

C(i)ULC(i)>+w(i)

r2
I
)−1 (by Lemma F.3)

≤ 1

r

∥∥∥C(i)~b(i)
∥∥∥(

C(i)ULC(i)>
)+

≤ 3n

r

∥∥∥~b∗(i)∥∥∥
UL

+
.

For the second term, we will apply Lemma F.6. We will use the fact that ~b(i) is in the image of
C(i−1)–or equivalently, that its entries on any connected component of the edges in UL with weight
≥ w(i−1) sum to 0. By the definition of w(i), these are the same as the edges with weight ≥ w(i)

2 .
Furthermore, contracting can only increase the connectivity of a component, so C(i)~b(i) satisfies
the same property relative to

(
C(i)ULC

(i)>
)
. Then we can apply Lemma F.6 with α = w(i)

r2 and

β = w(i)

2 :∥∥∥ ~z′′(i) − ~q′(i)∥∥∥(
C(i)ULC(i)>

) ≤ 3n7/2

r

∥∥∥C(i)~b(i)
∥∥∥(

C(i)ULC(i)>
)+ ≤

9n9/2

r

∥∥∥~b∗(i)∥∥∥
UL

+
.

Summing these two bounds gives the desired result.

It remains to bound the norms of the other error vectors ~f (i).

Lemma F.12. For all i, ∥∥∥~f (i)
∥∥∥
UL

+
≤ 6n5/2

∥∥∥~e(i)
∥∥∥
UL

.

Proof. First, we apply Lemma F.3, showing that ‖L~e(i)‖UL+ ≤ 2n‖~e(i)‖UL .
Now we will show that the Proj(i) operator cannot increase the UL

+ norm by more than a factor
of 2n3/2.

The proof is similar to that of Lemma F.6: we consider the electrical flow UL that meets the
demands L~e(i). We denote this flow with ~y(i), and define ~y(i)′ as the restriction of ~y(i) to the edges
of weight ≥ w(i). We then let the residue of this flow be ~b(i)′ , and write:

Proj(i)
(
L~e(i)

)
= Proj(i)

(
~b(i)

′
)

+ Proj(i)
(
L~e(i) −~b(i)′

)
.

Since ~b(i)′ is induced by a flow ~y(i)′ wholly within the components with weights ≥ w(i),

Proj(i)(~b(i)
′
) = ~b(i)

′
.

Furthermore, since ~y(i)′ rounds the demand ~b(i)′ , and is a restriction of ~y, we have∥∥∥~b(i)′∥∥∥2

UL
+
≤ EUL

(
~y(i)′

)
≤ EUL

(
~y(i)
)
≤
∥∥∥L~e(i)

∥∥∥2

UL
+
,

where EUL(~y) denotes the electrical energy of the flow ~y on µL.
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On the other hand, L~e(i)−~b(i)′ is the residual of the flow ~y(i)−~y(i)′ , which is supported on edges
with weight < w(i) and also has energy at most ‖L~e(i)‖2

UL
+ . Since each edge can contribute to the

residual of at most two vertices, we have∥∥∥L~e(i) −~b(i)′
∥∥∥

1
≤ 2

∥∥∥~y(i) − ~y(i)′
∥∥∥

1
≤ 2n

∥∥∥~y(i) − ~y(i)′
∥∥∥

2
≤ 2n√

w(i)

∥∥∥L~e(i)
∥∥∥
UL

+
.

Finally, using the fact that Proj(i) can at most double the `1 norm of its input and that the UL
+

norm of demands connected by edges of weight at least w(i) is at most
√
nw(i) times the `1 norm of

those demands, we have ∥∥∥Proj(i)
(
L~e(i) −~b(i)′

)∥∥∥+

UL
≤ 4n3/2

∥∥∥L~e(i)
∥∥∥
UL

+
.

Applying the triangle inequality to ~b(i)′ and L~e(i) −~b(i)′ then gives the desired result.

Note that combining the previous two lemmas shows that∥∥∥~f (i)
∥∥∥
UL

+
≤ 72n7

r

∥∥∥~b∗(i)∥∥∥
UL

+
.

Putting these together with the breakdown of errors then gives the overall guarantees.

Proof of Theorem F.1. First, note that the number of rounds is bounded by min{n2, O(log(nκ))}.
The former is from the number of edges, while the latter follows from the fact that the largest and
smallest eigenvalues of UL are within poly(n) factors of the smallest and largest weighted vertex
degrees.

This then implies by induction that ‖~b∗(i)‖UL+ ≤ 2‖~b‖UL+ for all i – since, assuming it held
for all previous i, each of the at most n2 error terms ~f (j) had norm at most 1

5n3 ‖~b∗(i)‖UL+ (by
Lemmas F.11 and F.12). By Lemma F.11 each ~e(i) had norm at most 1

40n11/2 .
Then applying Lemma F.8 on the final configuration (where ~b(i+1) = 0) with these bounds (and

again using the fact that there are most n2 iterations) implies that∥∥∥~x− L+~b
∥∥∥
UL
≤
∑
i

(∥∥∥~e(i)
∥∥∥
UL

+
∥∥∥L+ ~f (i)

∥∥∥
UL

)
≤
∑
i

(∥∥∥~e(i)
∥∥∥
UL

+
∥∥∥~f (i)

∥∥∥
U+

)
≤ 1

4n

∥∥∥~b∥∥∥
UL

+

≤ 1

2

∥∥∥L+~b
∥∥∥
UL

.

Here the second and last inequalities follow from Lemma F.3. This is the desired bound on the final
error of the solver.

Finally, we need to show that the procedure can be implemented in the desired runtime. We note
that the contracted matrices (C(i)LC(i)>) are still Eulerian Laplacians, and the contractions cannot
increase the number of vertices or edges. The actual systems solved are in (C(i)LC(i)> + w(i)

r2 I),
or an Eulerian Laplacian plus positive diagonal. This matrix can be reduced, with the reduction
in Section 5 of [12], to solving an Eulerian Laplacian with asymptotically the same sparsity and
condition number. The symmetrized matrix for each system has min eigenvalue at least w

(i)

r2 and max
eigenvalue at most O(nw(i)), so all condition numbers of their symmetrizations are polynomially
bounded, as desired.
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