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Functional anlaysis

This course provides an introduction to functional analysis. This is an advanced un-
dergraduate course for which knowledge of real analysis and linear algebra, as well as a
certain degree of mathematical maturity, is required.

Functional analysis has a rich and interesting history for which I recommend the beau-
tiful book History of Functional Analysis by J. Dieudonné. Functional analysis arose in
the late 19th century from questions in classical analysis such as the convergence of Fourier
series, the existence of minimizers in the calculus of variations, or the solvability of inte-
gral equations as well as ordinary and partial differential equations. The solution spaces
of these problems are typically spaces of functions which admit a natural vector space
structure. An integral or differential operator acting on functions can be seen as a linear
operator acting on elements of a vector space, and the question of solvability can now
be abstractly formulated in terms of the invertibility of linear operators between vector
spaces. Typically, these vector spaces of functions are infinite-dimensional. At its core,
functional analysis studies the interplay between the linear structure of infinite dimen-
sional vector spaces and topological concepts such as openness, compactness, continuity,
as well as analytical concepts like differentiation and integration, and additional struc-
tures such as norms and inner products. In particular, the goal is to develop the abstract
frameworks of metric spaces, normed spaces, Banach spaces, Hilbert spaces and establish
general results that apply to concrete realizations of these spaces. This has far-reaching
applications to many modern areas of mathematics and more generally in science. Indeed,
functional analysis plays a key role in partial differential equations, quantum mechanics,
numerical simulations, approximation theory, probability and statistics, machine learning,
data science, control theory, optimization, and many other fields.

1 Basic notions, topological and metric spaces

1.1 Zorn’s lemma

We begin with the famous Zorn’s lemma which will appear in several places in the course,
possibly most prominently in the proof of the Hahn–Banach theorem and the proof of
Tychonoff’s theorem. It is equivalent to the axiom of choice, which is a standard axiom in
modern mathematics. Thus, we will treat Zorn’s lemma as an axiom. However, because of
the non-constructive nature of arguments involving the axiom of choice or Zorn’s lemma, in
applications of functional analysis to PDE or mathematical physics, one is often interested
in circumventing the usage of Zorn’s lemma. Typically, Zorn’s lemma is used to infer the
existence of some highly non-unique objects.

Definition 1.1. Let P be a set. A partial order, denoted by ≤, on P is a binary relation
on P (i.e. a subset of the Cartesian product) such that for all a, b, c ∈ P

• a ≤ a,

• a ≤ b and b ≤ c imply a ≤ c,
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• a ≤ b and b ≤ a imply a = b.

The tuple (P,≤) is called a partially ordered set or poset.

Definition 1.2. Let (P,≤) be a non-empty partially ordered set.

• An element x ∈ P is an upper bound for a subset A ⊂ P if a ≤ x for all a ∈ A.

• A subset C ⊂ P is a chain if it is totally ordered (i.e. x ≤ y or y ≤ x for all
x, y ∈ C.)

• An element x ∈ P is maximal if y ∈ P and x ≤ y implies x = y.

Axiom 1.3 (Zorn’s lemma). Let (P,≤) be a non-empty partially ordered set such that
every non-empty chain C has an upper bound in P . Then, (P,≤) has a maximal element.

1.2 Vector spaces

All vector spaces treated in the course are over the fields R or C. We will use the symbol
K (the German word for field is “Körper”) to mean either R or C, i.e. K ∈ {R,C}.

Definition 1.4. Let V be a vector space over the field K.

• A ⊂ V is linearly independent if
∑

i∈F λivi = 0 implies λi = 0 for all i ∈ F , where
λi ∈ K, ai ∈ A and F a finite index set.

• A ⊂ V spans V if for every v ∈ V , there exists a finite index set F and λi ∈ K, vi ∈ A
for i ∈ F such that v =

∑
i∈F λiai.

• A set B ⊂ V which is linearly independent and spans V is called a Hamel basis.

• A subset W ⊂ V is a subspace of V if W is itself a vector space with the operations
induced by V .

Definition 1.5. A vector space V is called finite dimensional if it admits a Hamel basis
with finite cardinality. Otherwise, it is called infinite dimensional.

Theorem 1.6. Every vector space V admits a Hamel basis B.

Proof. If V = {0} choose B = ∅. If V ̸= {0} let 0 ̸= v ∈ V . Define the non-empty set
P = {C ∈ P(V ) : C is linearly independent and v ∈ C}. P is partially ordered by set
inclusion and for any chain C ⊂ P the union

⋃
A∈C A is an upper bound. Thus, P has

an upper bound B. Since B ∈ P , the set B is linearly independent. It remains to show
that B spans V . Assume for a contradiction that w /∈ span(B). Then B ∪ {w} is linearly
independent and contains v so B∪{w} ∈ P . Since B is maximal, B∪{w} ⊂ B so w ∈ B
giving a contradiction. This shows that B is linearly independent and spans V , i.e. B is
a Hamel basis.

Definition 1.7 (Algebraic dual space). Let V be a vector space. We define the algebraic
dual of V as the vector space V ′ = {f : V → K, f linear}.
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1.3 Topological spaces

A core aspect of functional analysis is the interplay between linear algebra and analysis.
More precisely, it is about how the linear structure of vector spaces plays together with
analytical structures of open and closed sets and the regularity of functions between such
spaces. Especially for infinite-dimensional vector spaces, it will be important in what
sense different vectors are close to each other and what exactly it means for functions to
be continuous. This is captured by the structure of a topology.

Definition 1.8. Let X be a non-empty set. A topology T on X is collection of sets
T ⊂ P(X) such that

1. ∅, X ∈ T .

2. If I is an index set and Ui ∈ T for all i ∈ I, then ∪i∈IUi ∈ T .

3. If U1, . . . Un ∈ T , then ∩1≤i≤nUi ∈ T .

The pair (X, T ) or just X is called a topological space. Elements of T are called open
sets.

• A set A ⊂ X with Ac = X \ A ∈ T is called closed.

• If T1, T2 are two topologies onX, we say that T1 is finer than T2 if T2 ⊂ T1. Similarly,
we say that T1 is coarser than T2 if T1 ⊂ T2.

Example. • For any set X the finest and coarsest topologies are given by the discrete
topology Tdis = P(X) and the trivial topology Ttri = {∅, X}, respectively.

• The Euclidean topology on Rn is defined as follows. O ⊂ Rn is open if for all x ∈ O,
there exists an ε > 0 such that Bε(x) ⊂ O, where Bε(x) = {y ∈ Rn : |x− y| < ε}.

• Let (X, T ) be a topological space and ∅ ≠ A ⊂ X. The relative topology TA ⊂ P(A)
on A is defined as TA = {A ∩ U : U ∈ T }. This makes (A, TA) a topological space.

Definition 1.9. Let X be a topological space.

• U ⊂ X is an open neighborhood of x ∈ X if x ∈ U and U ∈ T .

• A ⊂ X is a neighborhood of x ∈ X if there exists an open neighborhood U of x such
that U ⊂ A.

• X is a Hausdorff space if for all x, y ∈ X with x ̸= y, there exist neighborhoods Ux

of x and Uy of y such that Ux ∩ Uy = ∅.

• x ∈ A is an interior point of A, if there exists a neighborhood U of x such that
U ⊂ A. We define the interior of A, denoted by int(A), as the union of all interior
points.
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• x ∈ X is a boundary point of A if for all neighborhoods U of x, U ∩ A ̸= ∅ and
U ∩Ac ̸= ∅. We denote the set of boundary points of A as ∂A and the closure of A
as A = A ∪ ∂A. Note that int(A) = A \ ∂A.

• A ⊂ X is dense if A = X.

• A sequence (xn)n∈N ⊂ X is convergent if there exists an x ∈ X such that for all
neighborhoods U of x, there exists a N ∈ N such that xn ∈ U for all n ≥ N . We
write x = limn→∞ xn or xn → x as n→ ∞.

Remark 1.10. It is useful to convince yourself that the definition of convergence on R
from 18.100 agrees with the more general definition for topological spaces.

Proposition 1.11. Let X be a topological space and A ⊂ X. Then:

1. A open ⇔ A = int(A).

2. int(A) is the largest open set contained in A.

3. A is the smallest closed set containing A.

4. A closed ⇔ A = A.

5. ∂A is closed.

Proof. 1) “⇒” Clearly int(A) ⊂ A, and since A is open we also have A ⊂ int(A). “⇐”
It suffices to show that int(A) is open. Note that int(A) = ∪x∈int(A)Ux, where Ux ⊂ A =
int(A) is an open neighborhood of x. This shows that int(A) is open. 2) – 5): Problem
set 1.

Definition 1.12. Let X, Y be topological spaces and f : X → Y be a function.

• f is said to be continuous if the preimage of every open set is open.

• f is said to be sequentially continuous if limn→∞ xn = x implies limn→∞ f(xn) =
f(x).

• f is said to be open if the image of every open set is open.

• f is said to be a homeomorphism if f is bijective, continuous and open.

Definition 1.13. Let X be a non-empty set and (Xi)i∈I be a family of topological spaces.

• Let fi : X → Xi be a family of functions indexed by i ∈ I. The initial topology
on X induced by fi is the coarsest topology on X such that all fi are continuous.
In the context of topological vector spaces, the initial topology is also called weak
topology.

• Let gi : Xi → X be a family of functions indexed by i ∈ I. The final topology on X
induced by gi is the finest topology on X such that all gi are continuous.
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Definition 1.14. Let Xi, i ∈ I be topological spaces, where I is an index set. We define
the product topology on X = Πi∈IXi as the initial topology induced by the projections
πj : X → Xj, (xi)i∈I 7→ xj.

Definition 1.15. Let (X, T ) be a topological space.

• B ⊂ T is called a base if every element of T can be written as a union of sets from
B.

• S ⊂ T is called a subbase if finite intersections of sets from S form a base.

• N ⊂ T is a neighborhood base of x ∈ X if every element of N is a neighborhood
of x and for every neighborhood U of x there exists an element V ∈ N such that
V ⊂ U .

• N ⊂ T is a neighborhood subbase of x ∈ X if finite intersections of sets from N
form a neighborhood base of x ∈ X.

• X is called first countable if every point x ∈ X has a countable neighborhood base.

• X is called second countable if X has a countable base.

• X is called separable if there exists a countable set D such that D = X.

Remark 1.16. If X, Y are topological spaces and f : X → Y . Since taking the preimage
f−1 commutes with taking unions and intersections, we obtain that f is continuous if and
only if the preimage of every subbasis element is open.

Example. • Let X = Πi∈IXi. Then, the collection of sets of the form π−1
i (Ui) where

Ui is open in Xi form a subbase of the product topology on X and sets of the form
π−1
i1
(Ui1) ∩ · · · ∩ π−1

in
(Uin) form a base of the product topology. In mild abuse of

notation, we can also write that the sets Πi∈IUi form a basis, where Ui = Xi for
all but finitely many i ∈ I. For instance if X = X1 × X2, then sets of the form
U1 × U2 = π−1

1 (U1) ∩ π−1
2 (U2), where U1 ⊂ X1, U2 ⊂ X2 are open, form a basis.

• Let Rn be equipped with the Euclidean topology. Then, for x ∈ Rn, {B1/k(x)}k∈N
is a neighborhood base at x and {B1/k(q) : q ∈ Q, k ∈ N} is a countable base for
Rn. Thus, Rn is second countable.

Remark 1.17. For any family C ⊂ P(X) there exists a unique topology TC, defined as
the coarsest topology on X containing C. If the union of elements in C covers X, then C
forms a subbase for TC.

Proposition 1.18. Let X be a topological space. If X is second countable, then it is
first countable and separable.

7



Proof. Let B be a countable base. First countability is clear. For the separability, let D
be a countable set such that for all ∅ ≠ B ∈ B, there exists a b ∈ B with b ∈ D. Let
x ∈ X and let U be an open neighborhood around x. Since B is a base, there exists
a B ∈ B such that B ⊂ U . Thus, there exists a b ∈ D ∩ B such that b ∈ U . Hence,
D = X.

Proposition 1.19. Let X, Y be topological spaces and f : X → Y be a map.

1. If f is continuous, then f is sequentially continuous.

2. If f is sequentially continuous and X is first countable, then f is continuous.

Proof. 1) If f is continuous and xn → x in X. Let V be an open neighborhood of f(x)
in Y . Since f is continuous U = f−1(V ) is open and since xn → x in X, eventually all xn
are in U . Hence, f(xn) ∈ V eventually, which shows that f(xn) → f(x).

2) Let V ⊂ Y open. If f−1(V ) = ∅, then f−1(V ) is open, so we can assume that
f−1(V ) ̸= ∅. Let x ∈ f−1(V ). For a contradiction, assume that x is not an interior point
of f−1(V ). Let (Un)n be a countable, nested neighborhood base around x. Since x is not
an interior point, there exists a sequence xn ∈ Un \ f−1(V ) which in particular satisfies
xn → x as n→ ∞. Since f is sequentially continuous, we have that f(xn) → f(x). Hence,
f(xn) ∈ V for n ≥ N and thus, xn ∈ f−1(V ) for n ≥ N which is a contradiction.

Definition 1.20. Let X be a topological space and K ⊂ X.

• K is compact if every open covering of K has a finite subcovering.

• K is sequentially compact if every sequence in K has a convergent subsequence in
K.

• K is relatively compact if K is compact.

• A collection of sets A ⊂ P(X) is said to have the finite intersection property (FIP)
if ∩1≤j≤nUj ̸= ∅ for any finite subfamily {Uj}1≤j≤n ⊂ A.

Proposition 1.21. Let X be a topological space and K ⊂ X. Then, K is compact if and
only if every family of closed sets having the finite intersection property has non-empty
intersection.

Proof. Problem set 1.

Theorem 1.22 (Tychonoff). Let Xi, i ∈ I be topological spaces. X = Πi∈IXi equipped
with the product topology is compact if and only if Xi is compact for all i ∈ I.

Proof. “⇒” Clear since πi are continuous and the compact set X is mapped to a compact
set Xi. So we will show “⇐” in the following. Let C be a non-empty family of closed sets
of X having the finite intersection property. We want to show that

⋂
c∈C c ̸= ∅.

The collection P = {D ⊂ P(X) : C ⊂ D,D has the FIP} is partially ordered by set
inclusion. Let D be a non-empty chain in P , then ∪E∈DE ∈ P is an upper bound. By
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Zorn’s lemma, there exists a maximal element B ∈ P and we note that C ⊂ B. The
relevance of B is that it is maximal which means that (i) e, f ∈ B ⇒ e ∩ f ∈ B and (ii)
e ∩ b ̸= ∅ for all b ∈ B ⇒ e ∈ B.

Since the elements of C are closed and C ⊂ B, we have
⋂

b∈B b ⊂
⋂

c∈C c, so it suffices
to show that ∩b∈B b̄ ̸= ∅.

We now pull back to each product and note that {πi(b) : b ∈ B} has the FIP so in
particular, {πi(b) : b ∈ B} has the FIP for each i ∈ I. By compactness for each Xi, we
obtain x = (xi)i∈I with xi ∈

⋂
b∈B πi(b).

Finally, we will show that ∩b∈B b̄ ̸= ∅. To do set let v be a neighborhood of x, where
we assume without loss of generality that v =

⋂n
j=1 π

−1
ij
(vij) for vij open neighborhoods

of xij .

Since xij ∈ vij ∩ πij(b) for all b ∈ B, we have that vij ∩ πij(b) ̸= ∅ for all b ∈ B
and thus, π−1

ij
(vij) ∩ b ̸= ∅ for all b ∈ B. By (ii), this means that π−1

ij
(vij) ∈ B for each

j = 1, . . . , n and hence, by (ii), v ∈ B, i.e. v∩b ̸= ∅ for all b ∈ B. Since v was an arbitrary
neighborhood of x, we have that x ∈ b̄ for all b ∈ B and thus x ∈ ∩b∈B b̄ ̸= ∅.

Definition 1.23. A topological vector space (V, T ) is a vector space V equipped with a
Hausdorff topology T such that scalar multiplication K×V → V and addition V ×V → V
are continuous.

Definition 1.24 (Continuous dual). Let V be a topological vector space. Define the
continuous dual V ∗ as V ∗ = {f ∈ V ′ : f continuous}.

Example. There are examples (e.g. Lp(R), 0 < p < 1) of topological vector spaces which
have trivial continuous dual.

Many important results in functional analysis can be formulated in the context of topo-
logical vector spaces. Many interesting spaces such as C∞(R) or spaces of distributions
are merely topological vector spaces that cannot be equipped with a norm. Nevertheless,
in this course, we will be mostly concerned with more rigid topological structures on our
vector spaces, namely those of normed (or metric) spaces.

1.4 Metric spaces

Definition 1.25. Let X be a non-empty set. A mapping d : X ×X → [0,∞) is a metric
if it satisfies

1. d(x, y) = 0 ⇔ x = y,

2. d(x, y) = d(y, x),

3. d(x, y) ≤ d(x, z) + d(z, y)

for all x, y, z ∈ X. A pair (X, d) is called a metric space. We denote Bε(x) = {y ∈ X :
d(x, y) < ε} and Bε(x) = {y ∈ X : d(x, y) ≤ ε}.

Remark 1.26. A metric space (X, d) carries a natural topology, the metric topology
induced by the subbase {B1/n(x)}x∈X,n∈N. It is easy to verify that
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• the topology is Hausdorff and first countable (i.e. the topology is characterized by
convergent and divergent sequences),

• A ⊂ X is closed if and only if (xn)n ⊂ A with xn → x implies x ∈ A,

• xn → x as n → ∞ if and only if for all ε > 0 there exists a N ∈ N such that
d(xn, x) < ε for all n ≥ N ,

• and if Y is a topological space then f : X → Y is continuous if and only if f is
sequentially continuous (recall Proposition 1.19),

• the family {B1/n(x)}x∈X,n∈N is a base for the topology.

Proposition 1.27. Let X be a metric space, and let x ∈ X and ε > 0. Then:

1. Bε(x) is open.

2. B̄ε(x) is closed.

3. d : X ×X → R is continuous.

Proof. Let y ∈ Bε(x) and let fix k ∈ N with 0 < 1
k
< ε − d(x, y). Then, B 1

k
(y) ⊂ Bε(x)

because for z ∈ B 1
k
(y) we have d(z, x) ≤ d(z, y) + d(y, x) < 1

k
+ d(x, y) < ε. A similar

argument also shows that B̄ε(x) is closed. The last property is also a consequence of the
triangle inequality and is left as an exercise.

Remark 1.28. Note that Bε(x) ⊂ B̄ε(x). For example, the above inclusion is strict for
X = R with the discrete metric (d(x, y) = 1 for x ̸= y and d(x, x) = 0) which induces the
discrete topology.

Definition 1.29. Let (X, d) be a metric space. A sequence (xn)n∈N ⊂ X is called a
Cauchy sequence if for all ε > 0 there exists a N ∈ N such that d(xn, xm) < ε for all
n,m ≥ N .

Definition 1.30. X is complete if every Cauchy sequence in X converges.

Remark 1.31. Completeness is a notion of metric spaces. There exist metric spaces
(X, d) and (X, d′) with the same topology but such that (X, d) is complete while (X, d′)
is incomplete, see problem set 1.

Proposition 1.32. Let (X, d) be a metric space. Then, X is separable if and only if it
is second countable.

Proof. “⇐” See Proposition 1.18. “⇒” See problem set 1.

Proposition 1.33. Let X be a complete metric space. A subspace W ⊂ X is complete
if and only if it is closed.
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Proof. “⇒” Let (xn)n ⊂ W satisfy xn → x as n → ∞. Then xn is a Cauchy sequence
and since W is complete, x ∈ W which shows that W is closed. (In a metric space A is
closed if and only if xn → x, where xn ∈ A implies x ∈ A.) “⇐” Let (xn)n ⊂ W be a
Cauchy sequence. Since X is complete, xn → x as n → ∞ for come x ∈ X. Moreover,
x ∈ W because W is closed.

Proposition 1.34. Let X be a metric space. Then K ⊂ X is compact if and only if K
is sequentially compact.

Proof. See problem set 2.

Remark 1.35. For first countable topological spaces only the direction “⇒” in Propo-
sition 1.34 is true. For second countable topological spaces the equivalence in Proposi-
tion 1.34 is also true.

Definition 1.36. Let (X, d) and (Y, d′) be metric spaces.

• A map Φ : X → Y is an isometry if d(x, y) = d′(Φ(x),Φ(y)) for all x, y ∈ X.

• We say (X, d) and (Y, d′) are isometric if there exists a bijective isometry Φ : X → Y .

Theorem 1.37 (Completion of a metric space). Let (X, d) be a metric space. There exists
a complete metric space (X ′, d′) in which (X, d) embeds isometrically as a dense set, i.e.
there exists a map Φ : X → X ′ such that Φ(X) ⊂ X ′ is dense and d′(Φ(x),Φ(y)) = d(x, y)
for all x, y ∈ X. Moreover, the space (X ′, d′)—the completion of (X, d)—is unique up to
isometry.

Proof. 1) Construction of (X ′, d′). Consider the set

{(xn)n ⊂ X : xn is a Cauchy sequence}

and define (xn)n ∼ (x′n)n if d(xn, x
′
n) → 0 as n→ ∞. Denote the set of equivalence classes

as X ′ and define a metric on X ′ by d′([(xn)n], [(yn)n]) = limn→∞ d(xn, yn), where xn, yn
are representatives of the equivalence class. The above limit exists because we will show
below that (d(xn, yn))n is a Cauchy sequence in R which is complete. Indeed, using the
triangle inequality and the reverse triangle inequality we have

|d(xn, yn)− d(xm, ym)| = |d(xn, yn)− d(xm, yn) + d(xm, yn)− d(xm, ym)|
≤ |d(xn, yn)− d(xm, yn)|+ |d(xm, yn)− d(xm, ym)|
≤ d(xn, xm) + d(yn, ym) → 0 as n,m→ ∞.

2) d′ is a well-defined metric. We have to show that d′ is independent of the
representative of the equivalence class. Let [(xn)n] = [(x′n)n] and [(yn)n] = [(y′n)n]. Then,
as before,

lim
n→∞

|d(xn, yn)− d(x′n, y
′
n)| ≤ lim sup

n→∞
|d(xn, yn)− d(x′n, yn) + d(x′n, yn)− d(x′n, y

′
n)|

≤ lim sup
n→∞

|d(xn, yn)− d(x′n, yn)|+ |d(x′n, yn)− d(x′n, y
′
n)|

≤ lim sup
n→∞

d(xn, x
′
n) + d(y′n, yn) = 0,
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where we used that [(xn)n] = [(x′n)n] and [(yn)n] = [(yn)
′
n]. It is clear that d

′ satisfies the
properties of a metric and in particular, (X ′, d′) is a metric space.

3) X → X ′, x 7→ [(x, x, x, . . . )] is an isometry with dense image. The map

Φ : X → X ′, x 7→ [(x, x, x, . . . )]

is manifestly an isometry and hence continuous and injective. In order to show that the
image of Φ is dense let [(xn)n] ∈ X ′ and ε > 0. Since (xn)n is Cauchy, there exists
an N ∈ N such that d(xn, xm) < ε/2 for all n,m ≥ N . Thus, d′([(xn)n],Φ(xN)) =
limn→∞ d(xn, xN) ≤ ε/2 < ε. Thus, Φ(X) is dense in X ′.

4) (X ′, d′) is complete. It suffices to check the completeness with Cauchy sequences
in the dense set Φ(X) ⊂ X ′ (see problem set 1). Let (Φ(xm))m be a Cauchy sequence in
(X ′, d′). Then, (xm)m is a Cauchy sequence in X because d(xm, xn) = d′(Φ(xm),Φ(xn)).
In particular, [(xn)n] ∈ X ′. We will show that (Φ(xm))m → [(xn)n] as m→ ∞.

Let ε > 0. Since (xm)m is a Cauchy sequence, there existsN ∈ N such that d(xm, xn) <
ε/2 for all n,m ≥ N . Hence, d′(Φ(xm), [(xn)n]) = limn→∞ d(xm, xn) < ε for all m ≥ N .

5) Uniqueness up to isometry. Let (X̃, d̃) be another completion of (X, d), i.e.
there exists an isometry Φ̃ : X → X̃ with dense image. Define the map

Ψ = Φ ◦ Φ̃−1 : Φ̃(X) → Φ(X)

which is an isometry defined on the dense set Φ̃(X) ⊂ X̃. The map Ψ extends uniquely
to an isometry Ψ̃ : X̃ → X ′ by setting Ψ̃(x) = limn→∞Ψ(xn), where xn → x in X̃ and
(xn)n ⊂ Φ̃(X). Since Ψ is an isometry, the sequence (Ψ(xn))n is a Cauchy sequence and
thus the limit limn→∞ Ψ(xn) converges. Using an analogous argument to the arguments
before, the limit is independent of the sequence (xn)n. Similarly, one can show that Ψ̃ is
onto which shows that X̃ and X ′ are isometric. We leave these details as an exercise.

Theorem 1.38 (Young’s inequality). For a, b ≥ 0 and p, q > 1 such that 1
p
+ 1

q
= 1 we

have

ab ≤ ap

p
+
bq

q
.

Proof. Without loss of generality a, b ̸= 0. In the case p = q = 2 this follows from
(a− b)2 ≥ 0. For the general case, we use the concavity of the logarithm:

log(λx+ (1− λ)y) ≥ λ log(x) + (1− λ) log(y)

for x, y > 0 and λ ∈ [0, 1]. For λ ∈ (0, 1) we write

log

(
ap

p
+
bq

q

)
≥ λ log

(
1

λ

ap

p

)
+ (1− λ) log

(
1

1− λ

bq

q

)
.

Choosing λ = 1
p
, 1− λ = 1− 1

p
= 1

q
and exponentiation gives the result.
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Remark 1.39. Note that the condition 1 = 1
p
+ 1

q
on the powers is necessary. Indeed,

assume that for all a, b > 0 we have ab ≤ c1a
p + c2b

q for some p, q > 1 and c1, c2 > 0.
Then, setting a = x

q
p and b = x gives x1+

q
p ≤ (c1 + c2)x

q. Then, sending x → ∞ gives
1 + q

p
≤ q and sending x→ 0 gives 1 + q

p
≥ q so 1

q
+ 1

p
= 1.

Theorem 1.40 (Hölder’s inequality). Assume that p, q > 1 are Hölder conjugates, i.e.
1
p
+ 1

q
= 1. Let (xn)n, (yn)n ⊂ K be sequences such that

∞∑
n=1

|xn|p <∞ and
∞∑
n=1

|yn|q <∞.

Then,
∞∑
n=1

|xnyn| ≤

(
∞∑
n=1

|xn|p
)1/p( ∞∑

n=1

|yn|q
)1/q

.

Proof. We define the normalized quantities

x̃n =
xn

(
∑∞

n=1 |xn|p)
1/p
, and ỹn =

yn

(
∑∞

n=1 |yn|q)
1/q
.

Then, using Young’s inequality, we obtain

N∑
n=1

|x̃nỹn| ≤
N∑

n=1

|x̃n|p

p
+

N∑
n=1

|ỹn|q

q
→ 1

p
+

1

q
= 1

as N → ∞.

Remark 1.41. The condition 1 = 1
p
+ 1

q
is necessary.

Remark 1.42. For the limiting case p = 1 and q = ∞, the inequality

∞∑
n=1

|xnyn| ≤ sup
n∈N

|yn| ·
∞∑
n=1

|xn|

is also often included in the family of Hölder’s inequalities.

Proposition 1.43. The following spaces of sequences are examples of metric spaces.

1. For 1 ≤ p < ∞, we set ℓp = {(xn)n ⊂ K :
∑∞

i=1 |xn|p < ∞} with metric d(x, y) =

(
∑∞

n=1 |xn − yn|p)1/p.

2. For p = ∞, we set ℓ∞ = {(xn)n ⊂ K : supn∈N |xn| < ∞} with metric d(x, y) =
supn∈N |xn − yn|.

3. c0 = {(xn)n ∈ ℓ∞ : limn→∞ xn = 0} with metric d(x, y) = supn∈N |xn − yn|.

4. cc = {(xn)n ∈ ℓ∞ : xn = 0 for all but finitely many n ∈ N} with metric d(x, y) =
supn∈N |xn − yn|.

13



Proof. The fact that 2)–4) are metric spaces follows directly from the triangle inequality.
The fact that ℓp is a metric space for 1 ≤ p < ∞ follows from the Minkowski inequality
below.

Lemma 1.44 (Minkowski inequality). Let x, y ∈ ℓp for 1 ≤ p <∞. Then,(
∞∑
n=1

|xn + yn|p
) 1

p

≤

(
∞∑
n=1

|xn|p
) 1

p

+

(
∞∑
n=1

|yn|p
) 1

p

Proof. See problem set.

Proposition 1.45. The space c0 and the space ℓp for any p ∈ [1,∞] are complete.

Proof. We begin with the space ℓp for 1 ≤ p < ∞. Let ((xmn )n)m be a Cauchy sequence
in ℓp. Clearly, for fixed n ∈ N the sequence (xmn )m is a Cauchy sequence in K and hence
convergent. By completeness of K we have a limit xn for each n ∈ N. We will first show
that (xn)n ∈ ℓp. Indeed,

N∑
n=1

|xn|p = lim
m→∞

N∑
n=1

|xmn |p ≤ lim sup
m→∞

∞∑
n=1

|xmn |p = lim sup
m→∞

d(0, xm) <∞

since Cauchy sequences are bounded. Sending N → ∞ shows that (xn)n ∈ ℓp. To show
that xm → x in ℓp we let ε > 0 and let M ∈ N such that d(xm, xn) < ε for n,m ≥ M .
Then,

N∑
k=1

|xmk − xnk |p ≤ εp ⇒
N∑
k=1

|xmk − xk|p ≤ εp ⇒
∞∑
k=1

|xmk − xk|p ≤ εp,

from which we obtain that xm → x as m→ ∞. For the cases p = ∞ and c0, see problem
set 2.

Proposition 1.46. The space ℓp is separable for 1 ≤ p <∞. ℓ∞ is not separable.

Proof. See problem set 2.

Proposition 1.47. Let K be a compact topological space. Consider the space C(K) of
real-valued, continuous functions. The assignment d(f, g) = supx∈K |f(x)− g(x)| defines
a metric on C(K) which makes C(K) a complete metric space.

Proof. Since K is compact, d is well-defined so that C(K) is a metric space. It remains
to show that it is complete. Let (fn)n be a Cauchy sequence in C(K). For each x0 ∈ K,
the sequence (fn(x0))n is Cauchy in R and we define f as the pointwise limit f(x) :=
limn→∞ fn(x). We will now show that fn → f with respect to d. Let ε > 0. Then
supx∈K |fn(x)− fm(x)| ≤ ε for n,m > N . Thus, for every x ∈ K and n > N we have

|fn(x)− f(x)| = lim
m→∞

|fn(x)− fm(x)| ≤ ε ⇒ sup
x∈K

|fn(x)− f(x)| ≤ ε.
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This shows that fn → f uniformly.
Finally, we want to show that f is continuous. Let x ∈ K and let ε > 0. Then, choose

N ≥ 1 such that d(f, fN) < ε/3. Moreover, since fN is continuous, there exists an open
neighborhood Ux,N of x such that |fN(x) − fN(y)| < ε/3 for all y ∈ Ux,N . Then, for
y ∈ Ux,N

|f(x)−f(y)| ≤ |f(x)−fN(x)|+|fN(x)−fN(y)|+|fN(y)−f(y)| < 2ε/3+|fN(x)−fN(y)| < ε.

Since x was arbitrary, this shows that f is continuous and concludes the proof.

Remark 1.48. The last part of the above argument also shows the uniform limit theorem:
If a sequence fn of continuous functions on a topological space converges uniformly to f ,
then f also has to be continuous.

Remark 1.49. If K is not compact, the same argument as above shows that Cb(K), the
space of bounded continuous functions forms a Banach space.

1.5 Baire category theorem

Definition 1.50. Let X be a topological space and A ⊂ X. A is said to be

• nowhere dense if Ā contains no interior points.

• meager (or of first category) if A ⊂ ∪i∈NBi, where Bi are nowhere dense.

• coarse (or of second category) if A is not meager.

• Baire-generic (or residual) if Ac is meager.

Theorem 1.51 (Baire category theorem). Let X be a complete metric space and let
(An)n be a family of open and dense sets. Then, ∩n∈NAn is dense.

Proof. Let x0 ∈ X and Bε(x0) be an open ball around x0. Since A1 is open and dense
and Bε(x0) is open, there exists x1 ∈ X and ε1 > 0 such that Bε1(x1) ⊂ A1 ∩Bε(x0). For
n ≥ 2 we use that An is open and dense, to find xn ∈ X and 0 < εn <

1
n
such that

Bεn(xn) ⊂ Bεn−1(xn−1) ∩ An ∩Bε(x0).

Since the balls Bεn(xn) are nested we have that d(xn, xm) ≤ 1
min(n,m)

→ 0 as n,m→ ∞.

Thus, (xn)n is a Cauchy sequence and by completeness of X, there exists an x ∈ X such
that xn → x as n → ∞. By construction xn ∈ Bϵm(xm) ⊂ Am for all n ≥ m and since
Bεm(xm) is closed we have that

x ∈ Bϵm(xm) ⊂ Am ∩Bε(x0)

for all m ∈ N which concludes the proof.

Corollary 1.52. A complete metric space is not the countable union of nowhere dense
sets.
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Proof. Define A = ∪n∈NAn, where An are nowhere dense sets. In particular, An is closed
and nowhere dense for every n. Hence, An

c
is open and dense for every n so by Baire’s

theorem, ∅ ≠ ∩n∈NAn
c
= (∪n∈NAn)

c ⊂ Ac so A ̸= X.

Theorem 1.53. A Baire-generic continuous function on [0,1] is nowhere differentiable.
More precisely, the set A = {f ∈ C[0, 1] : f is nowhere differentiable} is a Baire-generic
subset of C[0, 1].

Proof. We define for n, k ∈ N the sets

An,k := {f ∈ C[0, 1] : for all x ∈ [0, 1],∃y ∈ B1/k(x) such that |f(x)− f(y)| > n|x− y|}.

We note that ∩n,k∈NAn,k ⊂ A. We claim that An,k is open and dense for each n, k ∈ N.
To show that An,k is open, we will show that Ac

n,k is closed. Let (fm)m be a sequence
in Ac

n,k such that fm → f in C[0, 1]. We will show that f ∈ Ac
n,k. Since fm ∈ Ac

n,k,
there is a sequence xm such that |fm(xm) − f(y)| ≤ n|xm − y| for all y ∈ B1/k(xm). By
compactness, xm has a convergent subsequence with limit x. In mild abuse of notation,
we denote the subsequence again by xm. Then, for y ∈ B1/k(x) we have

|f(xm)− f(y)| ≤ |fm(xm)− f(xm)|+ |fm(xm)− fm(y)|+ |fm(y)− f(y)|
≤ 2 sup

x∈[0,1]
|fm(x)− f(x)|+ n|xm − y|.

Taking the limit m→ ∞ on both sides shows |f(x)− f(y)| ≤ n|x− y| for all y ∈ B1/k(x)
which shows that f ∈ Ac

n,k is closed and An,k is open.
In order to show that An,k is dense, we let f ∈ C[0, 1] and ε > 0 be given. Note that

piecewise linear functions are dense in C[0, 1] (recall problem set 1) so we can assume
without loss of generality that f is piecewise linear. Let αf ≥ 0 be the largest slope (in
magnitude) of f . Let g be a piecewise linear function such that supx∈[0,1] |g(x)| < ε, and
|g′(x)| > αf + n for all x ∈ [0, 1] where g is differentiable. We claim that f + g ∈ An,k.
Indeed, let x ∈ [0, 1]. Then, there exists a y ∈ B1/k(x) such that |g(x) − g(y)| > (n +
αf )|x− y|. In particular,

|g(x) + f(x)− g(y)− f(y)| ≥ |g(x)− g(y)| − |f(x)− f(y)|
≥ (n+ αf )|x− y| − αf |x− y| > n|x− y|

so f + g ∈ An,k. To conclude we note that by Baire’s theorem the set A =
⋂

n,k∈NAn,k is
dense (in fact Baire generic).

Remark 1.54. There is a saying among mathematicians: “Most continuous functions
are nowhere differentiable, but nobody has ever seen one.” While this is mostly true in
practice for an analyst, you may have encountered such a function in fractal geometry or in
probability theory: for instance the Wiener process1 is a famous example of a continuous
but nowhere differentiable curve.

1Norbert Wiener (1894-1964) is somewhat of a legend at MIT because he spent essentially his whole
professional career at MIT. The common room in the mathematics department is named after him.
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The first rigorous construction of such a continuous but nowhere differentiable func-
tion was given by Karl Weierstraß in 1872. Weierstraß can be seen as the father of modern
analysis and played a key role in establishing the firm foundations of analysis. For math-
ematicians like Hermite or Poincaré, who practiced a more intuitive approach to analysis,
the construction came as a surprise. Poincaré famously called it a “monster”.

2 Normed and Banach spaces

Definition 2.1. A normed space is a vector space V equipped with a norm ∥ · ∥, i.e. a
map ∥ · ∥ : V → [0,∞) such that

1. ∥αv∥ = |α|∥v∥

2. ∥v + w∥ ≤ ∥v∥+ ∥w∥

3. ∥v∥ = 0 implies v = 0.

A map p : V → [0,∞) for which condition 3. (positive definiteness) is dropped is called a
seminorm.

Remark 2.2. If clear from the context, we will often use the notation ∥ · ∥ for different
norms on different spaces. We will use the initiation ∥ · ∥X to explicitly mention that the
norm is with respect to the normed space X.

Remark 2.3. A norm on V induces a natural metric, d(v, w) = ∥v − w∥, and hence a
natural topology on V . From the triangle inequality, it is easy to verify that addition,
multiplication and the map x 7→ ∥x∥ are continuous (Exercise).

Definition 2.4. A complete normed space is called a Banach space.

Theorem 2.5. Let X be a normed space. Then there exists a Banach space X̃ and an
isometry from X onto a dense subspace of X̃. The space X̃ is unique up to isometric
isomorphism.

Proof. The proof is similar to the metric space competition and will be left to the reader.

Example. All finite dimensional normed space V (e.g. Rn or Cn) are Banach spaces.
Moreover, ℓp for p ∈ [1,∞] and C(K) are Banach spaces. For x ∈ ℓp we use the notation

∥x∥p = (
∑∞

n=1 |xn|p)
1
p .

Definition 2.6. Let X be a normed space. A set {en, n ∈ N} is a Schauder basis of X
if for every x ∈ X there exists a unique sequence xn ∈ K such that

∑N
n=1 xnen → x as

N → ∞ or equivalently, ∥
∑N

n=1 xnen − x∥ → 0 as N → ∞.

Lemma 2.7. LetX be a normed space. IfX admits a Schauder basis, then it is separable.
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Proof. If X is a complex vector space consider the countable set AN = {
∑N

i=1 λiei, λi ∈
Q+ iQ}. It is easy to see that ∪n∈NAn is dense in X.

Remark 2.8. Note that the reverse implication in Lemma 2.7 is not true.

We will now proceed to a central lemma for infinite dimensional normed spaces. It
can be seen as a statement about “orthogonality” in normed spaces up to ε > 0.

Lemma 2.9 (Riesz’s lemma). Let X be a normed space and Y be a proper closed
subspace. For every ε > 0 there exists a vector x ∈ X \ Y with ∥x∥ = 1 such that
infy∈Y ∥x− y∥ ≥ 1− ε.

Proof. Let z ∈ X \ Y . Since Y is closed d := infy∈Y ∥z− y∥ > 0. Choose y ∈ Y such that
d ≤ ∥z − y∥ ≤ d/(1 − ε). Set x = (z − y)/(∥z − y∥) and note that ∥x∥ = 1. For w ∈ Y
we compute

∥x− w∥ =
1

∥z − y∥
∥z − y − ∥z − y∥w∥ ≥ 1− ε

d
d = 1− ε

since −y − ∥z − y∥w ∈ Y .

Theorem 2.10. Let X be a normed space. Then X is finite-dimensional if and only if
B̄1(0) is compact.

Proof. “⇒” Let X be finite dimensional and consider a sequence (xn)n ⊂ B̄1(0). Fix a
basis e1, . . . , eN and write xn =

∑N
m=1 x

m
n em. Then, since all norms on finite-dimensional

spaces are equivalent we have that

1 ≥ ∥xn∥ = ∥
N∑

m=1

xmn em∥ ≥ c sup
1≤m≤N

|xmn |

for some constant c > 0. Thus, |xmn | ≤ c−1. By the Heine–Borel property of RN , there
exists a subsequence such that xmnk

are all convergent. Hence, xnk
is convergent and thus

B̄1(0) is sequentially compact and hence compact (because a normed space is a metric
space).

“⇐” We will show that if X is infinite-dimensional, then the unit ball is not se-
quentially compact, i.e. not compact. To do so let x1 ∈ X with ∥x1∥ = 1 and define
Y1 = span(x1) which is a closed subspace of X. Now, using Riesz’s lemma, choose x2 with
∥x2∥ = 1 and infy∈Y1 ∥y − x2∥ ≥ 1

2
. Define Y2 = span(x1, x2) and note that Y2 is a closed

subspace. Defining xn and Yn iteratively such that ∥xn∥ = 1 and infy∈Yn−1 ∥xn − y∥ ≥ 1
2

gives us a bounded sequence which clearly has no convergent subsequence.

2.1 Linear operators

Definition 2.11. Let V,W be normed spaces and dom(T ) ⊂ V a subspace. A linear
map T : dom(T ) → W with domain dom(T ) is called bounded if

∥T∥dom(T )→Y = sup
0 ̸=x∈dom(T )

∥Tx∥
∥x∥

<∞.
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We denote the range of T as range(T ) = {T (v) : v ∈ dom(T ) ⊂ V } ⊂ W and the kernel
of T as ker(T ) = {v ∈ dom(T ) : T (v) = 0}. Linear maps between normed spaces are also
denoted as linear operators.

Remark 2.12. From linear algebra we know for a linear operator T :

• range(T ) and ker(T ) are subspaces,

• dim range(T ) ≤ dimdom(T ),

• ker(T ) = {0} if and only if there exists a linear inverse T−1 : range(T ) → dom(T )
such that T−1T = Idom(T ) and TT

−1 = Irange(T ).

Example. Consider V = W = C[0, 1].

• The differentiation operator TD : C1[0, 1] → C[0, 1], f 7→ f ′ with domain C1[0, 1] ⊂
C[0, 1] is a linear operator.

• The integration operator TI : C(R) → C(R), f 7→
∫ x

0
f(y)dy is a linear operator.

Proposition 2.13. The integration operator TI defined above is bounded with ∥TI∥ = 1
but the differentiation operator defined above is unbounded.

Proof. Let TI be the integration operator from above and f ∈ C[0, 1]. Then, by the
fundamental theorem of calculus, TIf ∈ C1[0, 1] ⊂ C[0, 1] and moreover,

|(TIf)(x)| = |
∫ x

0

f(y)dy| ≤ sup
y∈[0,1]

|f(y)||x| ≤ ∥f∥.

Hence, ∥TI∥ ≤ 1. The inequality is sharp for f(x) = 1. Hence, ∥TI∥ = 1.
For the differentiation operator, we consider the sequence of function fn(x) = sin(nx)

for which ∥fn∥ ≤ 1. Thus, we estimate

∥TD∥ ≥ ∥f ′
n∥ ≥ sup

x∈[0,1]
|n cos(nx)| = n→ ∞

as n→ ∞.

A crucial property of linear operators is that boundedness is equivalent to continuity,
which we will prove in the following.

Theorem 2.14. Let V,W be normed spaces. A linear map T : V ⊃ dom(T ) → W is
continuous if and only if it is bounded.

Proof. “⇐”: Without loss of generate T ̸= 0. Let ε > 0 and x ∈ dom(T ). Then for
x0 ∈ dom(T ) with ∥x− x0∥ < δ we have

∥T (x− x0)∥ ≤ ∥T∥∥x− x0∥ < ∥T∥δ < ε

for δ = ε
∥T∥ .
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“⇒′′: Assume that T is continuous at x ∈ dom(T ). Then, for every ε > 0 there is
δ > 0 such that ∥x− x0∥ ≤ δ implies ∥T (x)− T (x0)∥ ≤ ε. For y ∈ dom(T ) with ∥y∥ = 1
set z = δy + x0 and note that ∥z − x0∥ ≤ δ. Now we compute

∥T (y)∥ =
1

δ
∥T (z − x0)∥ =

1

δ
∥T (z)− T (x0)∥ ≤ ε

δ
.

This shows that ∥T∥ ≤ ε
δ
.

Remark 2.15. In fact the above shows that continuity of T (and hence boundedness T )
is equivalent to continuity of T at one point.

Definition 2.16. Let V,W be normed spaces. Define BL(V,W ) as the set of linear
bounded maps T : V → W and denote BL(V ) = BL(V, V ).

Proposition 2.17. Let V,W be normed spaces. Let T : V → W be linear and dim(V ) <
∞, then T is bounded.

Proof. This is again a consequence of the equivalence of norms in finite dimensional
normed spaces.

Theorem 2.18. BL(V,W ) is a normed space equipped with the operator norm ∥·∥V→W .
It is a Banach space if W is a Banach space.

Proof. Clearly BL(V,W ) is a normed space so it remains to show that BL(V,W ) is
complete if W is complete. To this end let (Tn)n ⊂ BL(V,W ) be a Cauchy sequence. For
fixed x ∈ V , the sequence Tnx is Cauchy because ∥Tnx − Tmx∥ ≤ ∥Tn − Tm∥∥x∥ → 0
and (Tn)n ⊂ BL(V,W ) is Cauchy. Since W is complete we define Tx = limn→∞ Tnx
which clearly is a bounded linear operator because for any x, ∥Tx∥ ≤ limn∈N ∥Tnx∥ ≤
lim supn→∞ ∥Tn∥∥x∥ <∞.

Finally, in order to show that Tn → T we fix ε > 0. Then,

sup
∥x∥=1

∥Tnx− Tx∥ = sup
∥x∥=1

lim
m→∞

∥Tnx− Tmx∥ ≤ lim
m→∞

∥Tn − Tm∥ < ε

for n ≥ N because (Tn)n is Cauchy.

Corollary 2.19. Let V be a normed space. Then the continuous dual V ∗ = BL(V,K) is
a Banach space.

Theorem 2.20 (Bounded linear extension). Let X be a normed space and Y be Banach
space. Let T : X ⊃ dom(T ) → Y be a bounded linear operator. Then T has an extension
T̃ : dom(T ) → Y (i.e. T̃ |dom(T ) = T ) such that ∥T∥ = ∥T̃∥.

Proof. Let x ∈ dom(T ) and consider a sequence (xn)n ⊂ dom(T ) with xn → x as n→ ∞.
Since T is bounded, T (xn) is a Cauchy sequence in Y and thus has a limit y. Again
by boundedness, this limit is independent of the approximating sequence so we define
T̃ (x) = limn→∞ T (xn) which is well-defined. It is clearly a linear extension of T with
norm bounded by T .

Remark 2.21. For general topological vector space X, the continuous dual X∗ may be
empty, e.g. Lp([0, 1]), 0 < p < 1. A central result in functional analysis is that for normed
spaces, the continuous dual is always non-empty.
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2.2 Hahn–Banach theorem

Theorem 2.22 (Hahn–Banach extension, real version). Let V be a real vector space.
Let p : V → R be sublinear, i.e.

p(x+ y) ≤ p(x) + p(y) and p(λx) = λp(x)

for all λ ≥ 0 and x ∈ V . Let W ⊂ V be a subspace of V and f : W → R be a linear map
such that f(x) ≤ p(x) for all x ∈ W . Then, there exists a linear map f ∗ : V → R such
that f ∗|W = f and f(x) ≤ p(x) for all x ∈ V .

Proof. This is again an application of Zorn’s lemma.
Step 1. We define the poset

P = {g : dom(g) → R linear with W ⊂ dom(g), g|W = f, g ≤ p on dom(g)},

where “⊂” is the restriction/extension. We note that P is non-empty as f ∈ P . Let
C ⊂ P be a chain. Define the subspace

⋃
g∈C dom(g) and the map

gC :
⋃
g∈C

dom(g) → R, x 7→ gx(x),

where gx ∈ C such that x ∈ dom(gx). By construction, gC is independent of the choice
of gx so it is easy to see that gC is an upper bound of C. Hence, by Zorn’s lemma, there
exists a maximal element f ∗ : dom(f ∗) → R of P .

Step 2. It remains to show that dom(f ∗) = V . For the sake of a contradiction
argument, suppose that 0 ̸= v ∈ V \ dom(f ∗). Define

h : span(dom(f ∗), v) → K, w = x+ αv 7→ f ∗(x) + αλ,

where any w ∈ span(dom(f ∗), v) is uniquely decomposed into w = x+αv for x ∈ dom(f ∗)
and some α ∈ R. Here λ = h(v) which we are free to choose. We will choose λ to find an
h that is dominated by p. We need to show that

h(x+ αv) = f ∗(x) + αλ ≤ p(x+ αv) for all x ∈ W,α ∈ R.

Since p is positively homogeneous, this is equivalent to

h(x+ v) = f ∗(x) + λ ≤ p(x+ v)

h(x− v) = f ∗(x)− λ ≤ p(x− v)

for all x ∈ W . Thus, we will have to choose λ such that

f ∗(y)− p(y − v) ≤ λ ≤ p(x+ v)− f ∗(x)

for all x, y ∈ W . This is always possible because

f ∗(y) + f ∗(x) = f ∗(x+ y) ≤ p(x+ y) = p(x+ v + y − v) ≤ p(x+ v) + p(y − v)

for all x, y ∈ W .
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For complex vector spaces, the expression f(x) ≤ p(x) does not make sense so we will
replace this condition with |f(x)| ≤ p(x), where p is now assumed to be a seminorm.

Theorem 2.23 (Hahn–Banach extension, complex version). Let V be a complex vector
space. Let p : V → C be a seminorm, i.e.

p(x+ y) ≤ p(x) + p(y) and p(λx) = |λ|p(x)

for all λ ∈ C and x ∈ V . Let W ⊂ V be a subspace of V and f : W → C be a linear map
such that |f(x)| ≤ p(x) for all x ∈ W . Then, there exists a linear map f ∗ : V → C such
that f ∗|W = f and |f(x)| ≤ p(x) for all x ∈ V .

Proof. We split f into its real and imaginary part f = f1 + if2 and note that f1 and f2
are R-linear and satisfy f1(ix) = −f2(x), hence f is uniquely determined by its real part.
We note that f1(x) ≤ p(x) so by considering V as a real vector space (note that in this
case, the elements x and ix are linearly independent) we can extend f1 to f ∗

1 on all of V
such that f ∗

1 ≤ p(x), where f ∗
1 is R-linear. We now define f ∗(x) = f ∗

1 (x) − if ∗
1 (ix) and

note that f ∗ is C-linear. To show the bound we compute

|f ∗(x)| = eiθf ∗(x) = f ∗(eiθx) = f ∗
1 (e

iθx) ≤ p(eiθx) = p(x),

where we used that the left hand side is real.

Corollary 2.24. Let V be a non-trivial normed space. For all 0 ̸= v ∈ V , there exists a
f ∈ V ∗ such that ∥f∥ = 1 and f(v) = ∥v∥. In particular, V ∗ is non-empty.

Proof. For 0 ̸= v ∈ V the linear functional f0 : span(v) → K by setting f0(v) = ∥v∥ and
extend by linearity to span(v). Using the Hahn–Banach theorem we can extend f0 to the
whole space.

The above tells us that the dual is always non-empty and has a rather rich structure
as it separates points. We recall the definition of X∗ and we define X∗∗ = (X∗)∗ and
similarly X∗∗∗ etc. We first note the following direct consequence of Corollary 2.24.

Corollary 2.25. Let X be a normed space and x ∈ X. Then ∥x∥ = supf∈X∗:∥f∥=1 |f(x)|.

Corollary 2.26. Let X be a normed space and U be a proper, closed subspace. Then,
for any x ∈ X \ U , there exists a function f ∈ X∗ such that f(x) ̸= 0 but f |U = 0.

Proof. We define the quotient map ω : X 7→ X/U with induced norm on X/U defined
as ∥[v]∥X/U = infu∈U ∥v − u∥. This makes X/U a normed space. (Check and see how
closedness enters.) In particular, ω(u) = 0 for all u ∈ U and ω(x) ̸= 0. Use Corollary 2.24
to find a function f ∈ (X/U)∗ such that f(x) ̸= 0. Then, the map f ◦ ω ∈ X∗ has the
desired properties.

Proposition 2.27. Let X be a normed space. The canonical embedding i : X → X∗∗,
defined by i(x)(f) = f(x) for f ∈ X∗, is a linear isometry.
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Proof. Clearly, i is well-defined and linear. Moreover, it is an isometry because

∥i(x)∥ = sup
f∈X∗:∥f∥=1

|i(x)(f)| = sup
f∈X∗:∥f∥=1

|f(x)| = ∥x∥.

Spaces for which the canonical embedding in its double dual is surjective have special
properties. Since X∗∗ is always complete, any such space has to be complete by itself.

Definition 2.28. A Banach space X is called reflexive if the canonical embedding i :
X → X∗∗ is surjective.

Example. • Every finite dimensional space is reflexive.

• ℓp is reflexive for 1 < p <∞.

• Note that ℓ1 ∼= (c0)
∗ and ℓ∞ = (ℓ1)∗ so none of these spaces are reflexive.

Proposition 2.29. Let X be a normed space and assume that X∗ is separable. Then X
is separable.

Proof. See problem set.

Proposition 2.30. A Banach space X is reflexive if and only if X∗ is reflexive.

Proof. See problem set.

2.3 Cornerstones of functional analysis

One often regards the Banach–Steinhaus theorem, open mapping theorem and the closed
graph theorem as the cornerstones2 of functional analysis. An important ingredient in the
following three theorems is completeness, as we will make fundamental use of the Baire
category theorem for complete metric spaces.

We will begin with the proof of the Banach–Steinhaus theorem which is a result under
which pointwise boundedness of a sequence of operators implies uniform boundedness.

Theorem 2.31 (Principle of uniform boundedness, Banach–Steinhaus). Let X be a Ba-
nach space and Y be a normed space. Let (Tn)n ⊂ BL(X, Y ) be a sequence of linear
operators and assume that supn∈N ∥Tn(x)∥ <∞ for all x ∈ X. Then, supn∈N ∥Tn∥ <∞.

Proof. Define the set Am = {x ∈ X : supn∈N ∥Tn(x)∥ ≤ m} and note that each Am =
∩n∈N{x ∈ X : ∥Tn(x)∥ ≤ m} is closed and ∪m∈NAm = X. By Baire’s theorem (Corol-
lary 1.52) there exists an AM with non-empty interior, i.e. there exists a ball B2ε(x0) ⊂ AM

for some ε > 0 and x0 ∈ AM . Let x ∈ X with ∥x∥ ≤ 1. Then,

∥Tn(x)∥ = ε−1∥Tn(εx)∥ ≤ ε−1∥Tn(εx− x0)∥+ ε−1∥Tn(x0)∥ ≤ 2ε−1M.

Thus, supn∈N ∥Tn∥ <∞.

2Some authors also include the Hahn–Banach theorem in that list.
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We will now move on to the open mapping theorem. We recall that the dual concept
of a continuous map is an open map. It is defined as a map such that the image of every
open set is open. (Note however that this is not equivalent to a map that maps closed
sets to closed sets.) It is easy to see that an open, linear map between two normed spaces
is necessarily surjective (Check!).

Our next cornerstone gives a converse result to this: It shows under which condition a
surjective bounded linear operator between normed spaces is an open mapping. The key
ingredient is the completeness of both, the domain and the codomain.

Theorem 2.32 (Open mapping theorem). Let X, Y be Banach spaces and T : X → Y
be a surjective bounded linear operator. Then T is open.

Proof. Since T is linear, it suffices to show that T (BX
1 (0)) contains an open ball around

the origin in Y .
Step 1. We will first show that T (BX

1/2(0)) contains an interior point. Since T is

surjective, Y = ∪n∈NT (B
X
n (0)) so by the Baire category theorem, there exists a N ∈ N

such that T (BX
N (0)) contains an interior point and by linearity so does T (BX

1/2(0)). In

particular, there exists an ε > 0 and y0 ∈ T (BX
1/2(0)) such that BY

ε (y0) ⊂ T (BX
1/2(0)).

Step 2. We will now show that BY
ε (0) ⊂ T (BX

1 (0)) which follows once we show that

T (BX
1/2(0))− y0 ⊂ T (BX

1 (0)).

Let y ∈ T (BX
1/2(0))− y0, i.e. y + y0 ∈ T (BX

1/2(0)). For y + y0 and y0 we can write

y0 = lim
n→∞

Txn, y + y0 = lim
n→∞

Tzn

for ∥xn∥ < 1
2
and ∥zn∥ < 1

2
. Thus, y = limn→∞ T (zn − xn), where ∥zn − xn∥ < 1 for each

n ∈ N. This shows that y ∈ T (BX
1 (0)) and concludes the step.

Step 3. Using the linearity, we obtain

Vn
.
= BY

ε2−n(0) ⊂ T (BX
2−n(0)). (1)

Step 4. We will finally show that V1 = BY
ε/2(0) ⊂ T (BX

1 (0)). Let y ∈ V1 ⊂ T (BX
1/2(0))

and choose Tx1 ∈ T (BX
1/2(0)) such that ∥y−Tx1∥ ≤ ε/4. From (1) for n = 2 we obtain that

y−Tx1 ∈ V2 ⊂ T (BX
2−2(0)). As before we find x2 ∈ BX

2−2(0) such that ∥y−Tx1−Tx2∥ ≤
ε/8. Continuing inductively, we obtain a sequence (xn)n with ∥xn∥ < 2−n and for which

∥y −
N∑

n=1

Txn∥ ≤ ε2−N−1. (2)

We note that wN =
∑N

n=1 xn is a Cauchy sequence because

∥wN − wM∥ ≤
∞∑

n=min(N,M)

∥xn∥ ≤
∞∑

n=min(N,M)

2−n → 0
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as min(N,M) → ∞. Hence, by the completeness of X we have wN → w as N → ∞.
From (2) we obtain that y = Tw and we are done once we show that ∥w∥ < 1. Indeed,

∥w∥ ≤
∞∑
n=1

∥xn∥ <
∞∑
n=1

2−n = 1.

This concludes the proof.

Remark 2.33. Note that the completeness of X and Y were used in the proof.

Corollary 2.34 (Inverse mapping theorem). Let X, Y be Banach spaces and T : X → Y
be a bijective bounded linear operator. Then T−1 ∈ BL(Y,X).

Proof. By the open mapping theorem T is an open map, i.e. T−1 is continuous.

Corollary 2.35. Let X and Y be Banach spaces and T ∈ BL(X, Y ) be injective. Then
T−1 : range(T ) → X is continuous if and only if range(T ) is closed.

Proof. “⇒” If T−1 is continuous, then T is an isomorphism between X and range(T ).
Since X is complete so is range(T ) and thus closed.

“⇐” If range(T ) is closed it is complete so T : X → range(T ) is a bijective bounded
linear operator between Banach spaces. By Corollary 2.34, it is a homeomorphism.

We will now proceed to prove the last of the cornerstones, the closed graph theorem.
The essence of the theorem is that closedness of the graph together with completeness of
the spaces gives us regularity of the linear operator. For a map f : X → Y between sets
we recall that the graph is defined as graph(f) = {(x, f(x)) : x ∈ X} ⊂ X ×Y . We recall
the following topological closed graph theorem from the first problem set.

Proposition 2.36. Let X and Y be compact Hausdorff spaces and f : X → Y be a map.
Then, the graph(f) ⊂ X × Y is closed if and only if f is continuous.

Proof. (See also problem set 1) “⇐”: We have that f× id : X×Y → Y ×Y is continuous.
Hence, graph(f) = (f × id)−1(∆Y ) is closed, because the diagonal ∆Y = {(y, y) : y ∈ Y }
is closed in Y 2 because Y is Hausdorff.

“⇒” We have that graph(f) ⊂ X×Y is a closed subset of a compact Hausdorff space.
Hence, graph(f) is compact. In particular, the projection map πX : graph(f) → X is a
bijective continuous map between compact Hausdorff spaces, hence a homeomorphism.
Let now V ⊂ Y be closed. Then, X×V ∩graph(f) is closed. Thus, πX(X×V ∩graph(f)) =
f−1(V ) is closed.

Remark 2.37. The above result even holds if X is merely a topological space. Y however
has to be a compact Hausdorff space.

In the functional analysis setup, we deal with the linear operators and we can relax
the assumption of compactness. However, we will still need the “weaker” assumption of
completeness. We will now introduce the notion of a closed operator which just means
that its graph is closed.
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Definition 2.38. Let V,W be normed spaces and T : dom(T ) → W be a linear operator
with domain dom(T ) ⊂ V . We say that T is a closed linear operator if graph(T ) =
{(x, Tx) : x ∈ dom(T )} ⊂ V ×W is closed.

For normed space V,W as above, we equip the product space V ×W with the norm
∥(v, w)∥V×W = ∥v∥V + ∥w∥W which induces the product topology. It is easy to check
that if V,W are Banach spaces, then so is V ×W . Note that the name closed operator
is somewhat unfortunate as a closed operator does not have to be a closed map (which
is defined as mapping closed sets to closed sets). Analogously to the topological closed
graph theorem, we will now prove that closed operators which are defined on a closed
domain of a Banach space are bounded.

Theorem 2.39 (Closed graph theorem). Let X, Y be Banach spaces and T : X ⊃
dom(T ) → Y a closed linear operator. If dom(T ) is closed in X, then T is bounded.

Proof. We consider again the projection πX : graph(T ) → dom(T ) which maps πX(x, Tx) =
x. Clearly, πX is a bounded linear operator between the Banach spaces graph(T ) and
dom(T ), where we use that closed subspaces of Banach spaces are Banach spaces them-
selves. Moreover, πX is bijective so by the inverse mapping theorem (Corollary 2.34) a
homeomorphism. In particular, the inverse π−1

X : dom(T ) → graph(T ), x 7→ (x, Tx) is
bounded from which we conclude that T is bounded.

This tells us that a closed linear operator defined on a Banach space has to be contin-
uous.

Proposition 2.40. Let V,W be normed spaces. A linear operator T : V ⊃ dom(T ) → W
is closed if and only if the following implication holds:

(xn)n ⊂ dom(T ) with xn → x ∈ V and T (xn) → y ∈ Y ⇒ x ∈ dom(T ) and y = Tx.

Proof. Follows from the definition of a closed linear operator.

Remark 2.41. In the case of a dom(T ) = V we consider the following statements:

(i) xn → x,

(ii) Txn → y,

(iii) Tx = y.

We note that the T being continuous means (i) ⇒ (ii), (iii) while T being closed means
(i), (ii) ⇒ (iii). So in the cases of Banach spaces, the closed graph theorem gives us an
“easier” condition to check to determine whether an operator is bounded.

Remark 2.42. We note that bounded operators do not have to be closed and closed
operators do not have to be bounded. For instance consider X = C[0, 1] and dom(T ) =
C1[0, 1] ⊂ X. Then it is easy to see that the differentiation operator Tf 7→ f ′ is closed
but not bounded (problem set). On the other hand, consider the identity map on a proper
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dense subspace I : V ⊃ dom(T ) → V which is clearly bounded and not closed if dim(V ) =
∞. However, this operator is the restriction of the closed operator I on the whole space.
Indeed, this motivates the notion of a closure T̃ of an operator T : dom(T ) → X which is
a closed operator T̃ such that T̃ |dom(T ) = T and such that graph(T̃ ) = graph(T ). While
many important operators T are unbounded (e.g. differentiation operators), essentially
all operators of practical relevance are closed (or closable) linear operators. The property
of being closed plays an important role in the study of self-adjoint unbounded operators
which appear prominently in applications to PDEs and quantum mechanics.

3 Measure theory

The goal of this section is to introduce the abstract measure spaces, but then focus mostly
on the Lebesgue measure and the Lebesgue integral on Rn. This is a generalization of
the Riemann integral you encountered in 18.100. There are several reasons why we would
like to have another version of integration theory beyond the Riemann integral.

1. (Generalization of intervals to measurable sets) It turns out that both the Riemann
and Lebesgue integral rely on approximating the integral by simple functions, i.e.
functions of the form fn =

∑n
i=1 λi1Ai

. In the case of the Riemann integral, the
allowed sets for Ai are intervals which makes the fn step functions. In this case,
the length of the interval l(Ai) gives us an intuitive volume of the set Ai and the
(Riemann) integral of fn is then naturally computed as

∫
fn =

∑n
i=1 λil(Ai). One

aspect of Lebesgue’s approach to integration is to relax this condition on the Ai and
allow Ai to be more general subsets of R. In particular, functions of the form 1Q
which are not Riemann integrable can then be integrated. The “downside” of this
approach is that we will have to define a notion of length or volume for more general
sets than intervals. This requires the development of measure theory, which turns
out to be an incredibly rich and rewarding theory that also forms the foundation of
modern probability.

2. (Completeness) If we consider the space of Riemann integrable functions on (let’s

say) [0, 1]. Let us equip the space with the norm
∫ 1

0
|f(x)|dx, where the integral is

taken in the sense of Riemann. Strictly speaking, in order to make this a normed
space, we actually have to identify f ∼ g if

∫ 1

0
|f(x) − g(x)|dx = 0 but let us

ignore that for the moment. We saw already that it would be extremely useful to
have a Banach spaces, not only a normed space. While we can abstractly define a
completion, it will turn out that the Lebesgue integral and the Lebesgue integrable
functions precisely give an explicit construction of the completion.

3. (Convergence theorems) A further disadvantage of Riemann integrals is that it has
rather poor commutation properties with pointwise limits. In analysis we are of-
ten interested in showing limn→∞

∫ 1

0
fn(x)dx =

∫ 1

0
limn→∞ fn(x)dx for instance. In

general, the pointwise limit of Riemann integrable functions might not be Riemann
integrable. Even if it is Riemann integrable, the only real condition which allows
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us to interchange the limit is uniform convergence. Here might lie the biggest prac-
tical advantage of the Lebesgue integral. It will turn out that pointwise limits of
measurable functions are always measurable! Moreover, the famous results domi-
nated convergence, monotone convergence and Fatou’s lemma have turned out to be
very useful in applications giving conditions under which interchanging limits and
integration is allowed.

3.1 Measure spaces

Definition 3.1. A measure space is a triplet (Ω,F , µ) where Ω is a set, F is a σ-algebra
on Ω, i.e. F ⊂ P(Ω) such that

1. ∅ ∈ F

2. A ∈ F implies Ac ∈ F (closed under complementation)

3. Ai ∈ F for i ∈ N implies ∪i∈NAi ∈ F (closed under countable unions),

and µ is a measure, i.e. a function µ : F → [0,∞] such that

1. µ(∅) = 0

2. If Ai ∈ F , i ∈ N is a collection of disjoint sets, then µ(∪i∈NAi) =
∑

i∈N µ(Ai).

The elements of F are called measurable sets. A set A ∈ F with µ(A) = 0 is called a null
set.

Definition 3.2. A property of points x ∈ Ω is said to hold almost everywhere if it holds
for all x ∈ Ω \N , where N is a null set.

Example. Let X be a set. Set F = P(X) and define µ(A) to be the number of elements
of A if A is finite and otherwise set µ(A) = ∞. Then, (X,F , µ is a measure space and µ
is called the counting measure. Note that the empty set ∅ is the only null set.

Proposition 3.3. Note that if µ is a measure then we have the following monotonicities:

1. Let E1 ⊂ E2 ⊂ . . . be measurable. Then,

µ(∪n∈NEn) = lim
n→∞

µ(En) = sup
n
µ(En).

2. Let E1 ⊃ E2 ⊃ . . . be measurable and µ(En) <∞ for at least one n. Then,

µ(∩n∈NEn) = lim
n→∞

µ(En) = inf
n
µ(En).

Proof. Monotonicity 1.) follows by observing ∪n∈NEn = ∪n∈NẼn, where Ẽn are disjoint
and defined as Ẽn = En \ En−1 with E0 = ∅. For 2.) we refer to the problem set.
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Definition 3.4. We say that the measure µ is finite if µ(Ω) < ∞ and µ is σ-finite if
Ω = ∪n∈NAn, where µ(An) <∞ for all n ∈ N.

Proposition 3.5. Let Ω be a set and A ⊂ P(Ω). There exists a unique smallest σ-algebra
FA containing A which is constructed as the intersection of all σ-algebras containing A.
FA is called the σ-algebra generated by A.

Proof. One can easily check that arbitrary intersections of σ-algebras are again σ-algebras.
Thus, FA defined as the intersection of all σ-algebras containing A, is the unique smallest
σ-algebra containing A.

Definition 3.6. Let (X, T ) be a locally compact Hausdorff space.

• The σ-algebra B generated by T is called the Borel σ-algebra and elements of B are
called Borel sets.

• If µ is a measure defined on B such that µ(K) <∞ for all compact sets K, then µ
is called a Borel measure.

3.2 Outer measures and Caratéodory’s extension theorem

In the important example of Ω = R, it turns out that one cannot define a map µ : F →
[0,∞] on a σ-algebra F ⊂ P(R) such that the following holds true.

1. F = P(R),

2. µ((a, b)) = b− a,

3. µ(∪i∈NAi) =
∑

i∈N µ(Ai) for pairwise disjoint sets (Ai)i∈N.

The demand for the above properties go back to Borel and Lebesgue who were searching
for a satisfactory theory of assigning a volume to subsets of Rn. It was G. Vitali in 1905
who proved that the above problem cannot be solved for n = 1. You will develop Vitali’s
construction in the problem set.

To give a reasonable notion of a natural measure on R, we have to relax one of the
conditions. First, since we want to construct a measure, we would like to keep property
3). Moreover, from our intuition, property 2) should also hold true. In order to construct
the Lebesgue measure we will therefore have to give up on property 1) and indeed consider
the σ-algebra of Lebesgue measurable sets which turns out to be a proper subset of P(R).
Before we do this, we however first define an outer measure which keeps 1) and 2) but
relaxes property 3).

Definition 3.7. Let Ω be a set. A function µ∗ : P(Ω) → [0,∞] is called an outer measure
if

1. µ∗(∅) = 0,

2. A ⊂ B implies µ∗(A) ≤ µ∗(B),
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3. µ∗(∪i∈NAi) ≤
∑

i∈N µ
∗(Ai).

Definition 3.8. Let Ω be a set and µ∗ be an outer measure on Ω. A set A ⊂ P(Ω) is
said to be µ∗-measurable if it satisfies Carathéodory’s criterion:

µ∗(B) = µ∗(B ∩ A) + µ∗(B ∩ Ac) for all B ∈ P(Ω). (3)

Remark 3.9. The above criterion can be motivated as follows. It defines measurable sets
exactly as such sets, which can be used to slice other sets respecting the additivity. In
Lebesgue’s original approach, he also defined an inner measure as µ∗(A) = µ∗(B)−µ∗(B\
A) for some A ⊂ B. Then Lebesgue defined A to be measurable if the inner and the outer
measure agree, i.e. µ∗(A) = µ∗(A). This gives µ∗(A∩B) = µ∗(A) = µ∗(B)−µ∗(B\A) and
can then be seen as a motivation for (3). In fact, it was the Carathéodory who introduced
criterion (3) which is significantly more elegant and efficient compared to Lebesgue’s
original construction.

We remark already an important class of measurable sets.

Lemma 3.10. Let Ω be a set and µ∗ be an outer measure. Any set A with µ∗(A) = 0 or
µ∗(Ac) = 0 is µ∗-measurable.

Proof. Let µ∗(A) = 0 and B ⊂ Ω. Then µ∗(Ac∩B)+µ∗(A∩B) ≤ µ∗(B)+µ∗(A) = µ∗(B)
so A is measurable. The proof is similar for Ac.

The following general result shows the power of Carathéodory’s criterion of measura-
bility.

Theorem 3.11 (Carathéodory’s extension theorem). Let Ω be a set and µ∗ be an outer
measure on Ω. The family F ⊂ P(Ω) of µ∗-measurable sets is a σ-algebra and µ = µ∗|F
is a measure on F . Moreover, µ is complete, i.e. if A ⊂ N ∈ F and µ(N) = 0, then A ∈ F
with µ(A) = 0.

Remark 3.12. There is even a more general version of the Carathédory extension theo-
rem which only assumes the existence of a pre-measure from which an outer measure is
constructed.

Proof of Theorem 3.11. In order to show that F is a σ-algebra, we have to check the three
properties from Definition 3.1 for sets satisfying (3). Clearly ∅ ∈ F . Let A ∈ F then
Ac ∈ F since (Ac)c = A.

Checking the last property takes a bit more time. We will first show closedness with
respect to finite unions. Let A1, A2 ∈ F . The inequality “ ≤ ” in (3) follows from the
subadditivity of outer measures. Thus, it suffices to show “ ≥ ”. Let B ⊂ Ω.

µ∗(B ∩ (A1 ∪ A2)) + µ∗(B ∩ (A1 ∪ A2)
c)

≤ µ∗(B ∩ A1 ∩ A2) + µ∗(B ∩ A1 ∩ Ac
2)

+ µ∗(B ∩ Ac
1 ∩ A2) + µ∗(B ∩ Ac

1 ∩ Ac
2)

= µ∗(B ∩ A1) + µ∗(B ∩ Ac
1) = µ∗(B).
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This also shows closeness under finite intersections since A1 ∩ A2 = (A1 ∪ A2)
c.

We will now upgrade to countably many Ai. Let Ai ∈ F be a countable collection of
measurable sets. We have to show that A := ∪i∈NAi ∈ F . We assume without loss of
generality that the Ai are pairwise disjoint. (Indeed, if not note that A = ∪∞

i=1Ãi, where
for i ≥ 2, Ãi = Ai ∩ ∪i−1

j=1A
c
j ∈ F because we have already shown closedness under taking

the complement, as well as taking finite intersections and unions.)
We will first show that µ∗(B ∩ ∪n

i=1Ai) =
∑n

i=1 µ
∗(B ∩ Ai) for all B ⊂ Ω. We argue

by induction and note that the case n = 1 is trivial. For the induction step we have

µ∗(B ∩ ∪n+1
i=1 Ai) = µ∗(B ∩ ∪n+1

i=1 Ai ∩Bn+1) + µ∗(B ∩ (∪n+1
i=1 Ai) ∩Bc

n+1)

= µ∗(B ∩Bn+1) + µ∗(B ∩ ∪n
i=1Ai) =

n+1∑
i=1

µ∗(B ∩ Ai).

Finally, we will show that A ∈ F . We estimate

µ∗(B) = µ∗(B ∩ ∪n
i=1Ai) + µ∗(B ∩ ∩n

i=1A
c
i) ≥ µ∗(B ∩ ∪n

i=1Ai) + µ∗(B ∩ Ac)

=
n∑

i=1

µ∗(B ∩ Ai) + µ∗(B ∩ Ac) →
∞∑
i=1

µ∗(B ∩ Ai) + µ∗(B ∩ Ac) as n→ ∞.

Thus,

µ∗(B) ≥
∞∑
i=1

µ∗(B ∩ Ai) + µ∗(B ∩ Ac) ≥ µ∗(B ∩ ∪i∈NAi) + µ∗(B ∩ Ac)

from which we conclude that A = ∪i∈NAi ∈ F . Hence, F is a σ-algebra and the estimate
above shows that µ∗(∪i∈NAi) =

∑
i∈N µ

∗(Ai) for pairwise disjoint Ai ∈ F . Since µ∗(∅) = 0,
we have that µ = µ∗|F is a measure.

Finally, note that µ is complete because all null sets of µ∗ are measurable in view of
Lemma 3.10.

3.3 The Lebesgue measure

Definition 3.13. A set C ⊂ Rn of the form C = I1 × . . . In, where I ⊂ R are intervals,
is called a cuboid. We define vol(C) = Πn

i=1l(Ii), where l(I) is the length of the interval.
C is called an open/closed cuboid if all the intervals are open/closed, respectively.

Definition 3.14 (Lebesgue outer measure). On Rn define the Lebesgue outer measure
λ∗ : P(Rn) → [0,∞] as

λ∗(A) = inf

{∑
i∈N

vol(Ci),where (Ci)i∈N are open cuboids such that A ⊂ ∪i∈NCi

}
.

Proposition 3.15. The Lebesgue outer measure λ∗ defines an outer measure. Moreover,
λ∗ is translation invariant and λ∗(C) = vol(C) for any cuboid C.
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Proof. Clearly, λ∗ is monotonic and λ∗(∅) = 0. Let us give more details for the countable
subadditivity property. Let ε > 0 and let Ai, i ∈ N be a family of subsets. For i ∈ N,
there exists a sequence of open cuboids Ci,n such that λ∗(Ai) ≥

∑
n∈N vol(Ci,n)−ε2−i and

Ai ⊂ ∪n∈NCi,n. Note that ∪i∈NAi ⊂ ∪i∈N ∪n∈N Ci,n and hence,

λ∗(∪i∈NAi) ≤
∑
i∈N

∑
n∈N

vol(Ci,n) ≤
∑
i∈N

(
λ∗(Ai) + ε2−i

)
≤
∑
i∈N

λ∗(Ai) + ε.

Since ε > 0, this shows the first claim.
Clearly, λ∗ is translation invariant by translating cuboids. Let us now show the last

property and only consider the case for n = 1. We first observe that for an open interval
I̊ we have λ∗(I̊) ≤ vol(I̊).

We will now show that vol(I) ≤ λ∗(I) for a closed interval I = [a, b]. Assume that
(Ii)i∈N is an open cover of I with open intervals. Then, there exists a finite subcover, i.e.
finitely many Ii which cover I = [a, b]. Clearly, b − a ≤

∑n
i=1 vol(Ii) and hence vol(I) ≤

λ∗(I). For the other direction, we consider an open interval Jn = (a−1/n, b+1/n). Then,
λ∗(I) ≤ λ∗(Jn) = b−a+2/n→ b−a as n→ ∞. For an open interval I̊ it still remains to
show that vol(I̊) ≤ λ∗(I̊). However, this follows by noting that [a+ 1/n, b− 1/n] ⊂ (a, b)
and performing a similar argument as before. The cases of a half-open interval and higher
dimensions work analogously. We will omit these steps here.

Definition 3.16. The family L ⊂ P(Rn) of λ∗-measurable sets of Rn is called the
Lebesgue σ-algebra and λ = λ∗|L is called the Lebesgue measure on L.

If not specified otherwise, we equip Rn and Cn (seen as R2n) with the Lebesgue mea-
sure.

Proposition 3.17. All open and closed sets of Rn are measurable.

Proof. We will restrict to the case n = 1; the cases n > 1 work analogously. We will first
show that sets of the form A = (a,∞) for a ∈ R are measurable. Let B ⊂ R and ε > 0. Let
In be a collection of open intervals such that B ⊂ ∪n∈NIn and λ∗(B) ≥

∑
n∈N vol(In)− ε.

Since In are open intervals, we have that In ∩ A is an open interval for every n ∈ N.
Further, for n ∈ N, note that In ∩ Ac ⊂ In ∩ (−∞, a+ ε2−n).

Since B ∩ A ⊂ ∪n∈NIn ∩ A and B ∩ Ac ⊂ ∪n∈NIn ∩ (−∞, a+ ε2−n), we estimate

λ∗(B ∩ A) + λ∗(B ∩ Ac) ≤ λ∗(∪n∈NIn ∩ A) + λ∗
(
∪n∈NIn ∩ (−∞, a+ ε2−n)

)
≤
∑
n∈N

λ∗(In ∩ A) +
∑
n∈N

λ∗
(
In ∩ (−∞, a+ ε2−n)

)
=
∑
n∈N

[
vol(In ∩ A) + vol(In ∩ Ac) + vol((a, a+ ε2−n))

]
=
∑
n∈N

[
vol(In) + ε2−n)

]
≤ λ∗(B) + 2ε,

where we have used that for intervals I we have λ∗(I) = vol(I). Since ε was arbitrary,
we conclude that sets of the form (a,∞) are measurable. By taking approximations,
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intersections and complements, all intervals are measurable. Since all open sets can be
written as a countable union of intervals, we conclude that all open sets are measurable.
The case n > 1 is similar.

Proposition 3.18. The Lebesgue measure λ on Rn has the following properties.

• If C be a cuboid, then λ(C) = vol(C).

• It is translation invariant, i.e. λ(A) = λ(A+ x) for all A ∈ L and x ∈ Rn.

Proof. The first statement follows from Proposition 3.15 and the fact that any cuboid is
measurable. Since the Lebesgue outer measure is translation-invariant, this property also
holds for the Lebesgue measure.

Theorem 3.19. Let A ⊂ Rn be a set. Then A is Lebesgue measurable if and only if the
following two statements hold:

1. For every ε > 0 there exist an open set U with A ⊂ U such that λ∗(U \ A) < ε.

2. For every ε > 0 there exist a closed set C with C ⊂ A such that λ∗(A \ C) < ε.

Remark 3.20. Note that this implies that A is measurable if and only if every ε > 0
there exists an open U and closed sets C such that C ⊂ A ⊂ U such that λ(U \ C) ≤ ε.

Proof. “⇒”: Let A be Lebesgue measurable. Assume first that λ∗(A) <∞. By definition
of λ∗ there exists an open set U := ∪i∈NUi ⊃ A such that

λ∗(U) = λ∗(∪i∈NUi) ≤
∑
i∈N

λ∗(Ui) ≤ λ∗(A) + ε/2

and thus
λ∗(U \ A) = λ∗(U)− λ∗(A) ≤ ε/2,

where we used that A is measurable. If λ∗(A) = ∞, then consider disjoints sequence (Ai)i
of measurable sets with A = ∪i∈NAi and λ

∗(Ai) <∞, e.g. Ai = A∩([i−1, i)∪(−i,−i+1])
and similar in Rn. Apply the above argument to each Ai and obtain open sets Ui with
λ∗(Ui \ Ai) < ε2−i. Then, set U = ∪i∈NUi which satisfies U \ A = ∪i∈N(Ui \ A) ⊂
∪i∈N(Ui \ Ai). Hence,

λ∗(U \ A) ≤ λ∗(∪i∈NUi \ Ai) =
∑
i∈N

λ∗(Ui \ Ai) <
∑
i∈N

ε2−i = ε.

For 2.) do the same argument but with A replaced by Ac and note that Ũ \Ac = A \ Ũ c,
where Ũ c is closed if Ũ was open.

“⇐”: By 1.) and 2.), choose for each n an open Un and a closed Cn such that
λ∗(Un \ Cn) < 1/n and define U = ∩n∈NUn, C = ∪n∈NCn which are measurable. Then,

λ∗(U \ C) ≤ λ∗(Un \ Cn) ≤ 1/n

so λ∗(U \C) = 0. Now A = C ∪ (A\C) is measurable because C is measurable and A\C
is measurable as a null set as λ∗(A \ C) ≤ λ∗(U \ C) = 0.
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Definition 3.21. A Borel measure µ is called

• inner regular if µ(A) = supK⊂A:K compact µ(K) for all A ∈ A,

• outer regular if µ(A) = infO⊃A:O open µ(K) for all A ∈ A,

• regular if µ is both inner and outer regular.

Theorem 3.22. The Lebesgue measure, restricted to the Borel sets, is a regular Borel
measure.

Proof. We have shown above that λ is outer regular. The inner regularity of λ is left as
an exercise.

Proposition 3.23. A set is Lebesgue measurable if and only if it can be written as a
union of a Borel set and a Lebesgue null set.

This means that the Lebesgue σ-algebra is the completion of the Borel σ-algebra.

Proposition 3.24. There exist non-measurable sets in R.

Proof. Problem set.

Remark 3.25. While the above shows that not all sets are measurable, “most” sets which
one encounters in practice are however measurable. Indeed, as a rule of thumb, any set
whose existence does not rely on the axiom of choice (or some equivalent formulation
thereof) is measurable.

Remark 3.26. The famous Banach–Tarski paradox states that the unit ball in R3 can
be decomposed into finitely (as few as five) many subsets which, after reassembling them
via translation and rotation, form two disjoint copies of the unit ball. The sets involved
cannot be measurable and the construction relies on the axiom of choice.

3.4 The Hausdorff measure

Another interesting measure which can be seen as a generalization of the Lebesgue measure
to fractional dimensions is the Hausdorff measure. For a set A ⊂ Rn, we will use the
shorthand notation for its diameter d(A) = supa,b∈A |a− b|.

Definition 3.27 (Hausdorff measure). Let A ⊂ Rn. Then, the s-dimensional Hausdorff
outer measure Hs(A) is defined as

Hs(A) := lim
δ→0

Hs,δ, (4)

where

Hs,δ(A) := inf{
∞∑
i=1

(d(Ui))
s : d(Ui) ≤ δ, A ⊂ ∪i∈NUi}. (5)

The Hausdorff measure which we denote again by Hs is then the restriction of the outer
measure to Hs-measurable sets.
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We note that Hs scales like a s-dimensional volume Hs(αA) = αsHs(A) and it agrees
(up to a constant) with the Lebesgue measure on Rn if s = n.

Remark 3.28. Even though for each δ > 0, Hs,δ is an outer measure it is not very well
behaved because the corresponding measure has few measurable sets, e.g. [0, 1] is not
measurable for s = 1/2 and δ > 0 for instance.

It is not too difficult to show that for each A ⊂ Rn, the function s 7→ Hs(A) is
increasing and that there exists a unique s0 ≥ 0 such that

Hs(A) =

{
∞ if s < s0

0 if s > s0.

This observation leads to the following definition of the Hausdorff dimension

dimH(A) = inf{s ≥ 0 : Hs(A) = 0}.

Remark 3.29. The Hausdorff measure is of particular relevance in the study of fractals,
i.e. sets which are defined through some self-similar procedure. In the problem set, you will
encounter other sets arising in the subject of Diophantine approximation (i.e. the subject
of approximating real numbers by rational numbers) which has a fractional Hausdorff
dimension. We will end our discussion of the Hausdorff measure here.

3.5 Measurable functions

To motivate the definition of a measurable function, let us briefly recall the theory of
Riemann integration. For a function f (let us say on [0, 1]), one partitions the integration
domain [0, 1] into subintervals Ii = (xi, xi+1) and then assigns upper and lower Riemann
sums as LR =

∑n
i=1(xi+1−xi) infIi f(x) and the upper Riemann sum as UR =

∑n
i=1(xi+1−

xi) supIi
f . To define the Riemann integral, one then takes the limit of the upper and

lower sum as the partition gets finer. If this limits agree and are independent of the
partition, it is called the Riemann integral of f and f is said to be Riemann integrable.

The idea of Lebesgue was different. Instead of decomposing the domain (the x-axis),
he proposed to decompose the codomain (the y-axis). Let us say that the function satisfies
0 ≤ f ≤M . The idea of Lebesgue is to consider a partition of the codomain by considering
intervals 0 = y1 < y2 < · · · < yn+1 = M and then defining the lower and upper Lebesgue
sum as LL =

∑n
i=1 yiλ({x : yi ≤ f(x) < yi+1}) and the upper Lebesgue sum as UL =∑n

i=1 yi+1λ({x : yi ≤ f(x) < yi+1}). This then naturally leads to the requirement that f
should satisfy that the set f−1(I) is Lebesgue measurable for intervals I. This motivates
Definition 3.30, the concept of a measurable function.

Notation. We will make use of the extended real line R̄ = R ∪ {±∞}. Note that
R̄ has a natural topology by defining O ⊂ R̄ to be open if O ∩ R is open in R. Similar
considerations apply to the extended non-negative real axis [0,∞]. We also declare ±∞+
x = x ± ∞ = ±∞ for all x ∈ R, x · (±∞) = (±∞) · x = ±∞ for x ∈ (0,+∞],
±∞±∞ = ±∞ but +∞−∞ is not well-defined. Further 0 · (±∞) = ±∞ · 0 = 0. Note
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that R̄ is a compact topological space. We note that any monotone increasing sequence
in R̄ has a limit. We will use this convention only in the chapter on measure theory and
integration.

In the following, we will only consider (extended) real-valued functions. The case of
complex-valued functions is analogous by considering the real and imaginary part inde-
pendently.

Throughout this section, (Ω,F , µ) denotes a measure space. We note that the Borel
σ-algebra induced on R̄ is denoted by B̄.

Definition 3.30. A function f : Ω → R̄ is measurable if the preimage of any Borel set in
R̄ is measurable.

Proposition 3.31. Let f : Ω → R̄ be a function. Then, the following are equivalent.

1. f is measurable.

2. f−1((α,∞]) is measurable for every α ∈ R.

3. f−1([α,∞]) is measurable for every α ∈ R.

4. f−1([−∞, α)) is measurable for every α ∈ R.

5. f−1([−∞, α]) is measurable for every α ∈ R.

Moreover, for each α ∈ R̄, the set {x ∈ Ω : f(x) = α} is measurable.

Proof. The proof is as in Proposition 3.17 using suitable intersections and approximations
by intervals as well as f−1(A ∩B) = f−1(A) ∩ f−1(B) as well as f−1(A ∪B) = f−1(A) ∪
f−1(B).

Remark 3.32. More generally, one often defines measurable functions between measure
spaces as functions such that preimages of measurable sets are measurable. However,
note there exist continuous functions f : R → R which are not Lebesgue measurable if
the codomain R is equipped with the Lebesgue σ-algebra.

Proposition 3.33. Let Ω carry a topology and assume that all Borel sets of Ω are
measurable. Then, every continuous function f : Ω → R̄ is measurable.

Proof. It suffices to check that f−1((α,∞]) is measurable. Since (α,∞] is open, its preim-
age under f is open (and in particular Borel) and hence a measurable set.

Theorem 3.34. Let f and g be measurable and finite almost everywhere and a, b ∈ R,
then af + bg, fg, |f |, and min(f, g),max(f, g) are measurable. Moreover, if (fn)n is a
sequence of real-valued measurable functions, then supn∈N fn, infn∈N fn, lim infn→∞ fn,
lim supn→∞ fn are measurable. In particular, if fn → f almost everywhere, then f is
measurable.
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Proof. Let a > 0 and f : Ω → R be measurable. Clearly af is measurable because
(af)−1((α,∞)) = f−1((α/a,∞)). An analogous argument shows it for a < 0 or a = 0.
For f+g we note that {f+g > α} = ∪q∈Q{f > q}∩{g > α−q}. Indeed, if f(x)+g(x) > α,
then f(x) > α− g(x), i.e. there exists a q ∈ Q such that f(x) > q > α− g(x). The other
direction is immediate.

We now note that f 2 is measurable because {f 2 > α} = {f >
√
α} ∪ {f < −

√
α} for

α ≥ 0.
For fg we note that fg = 1/4((f + g)2 − (f − g)2). A similar argument applies to |f |.
Let (fn)n be real-valued and measurable. We note that {supn∈N fn > α} = ∪n∈N{fn >

α} which shows that the sup is measurable. A similar argument also applied to inf and
thus lim supn→∞ fn = infn≥N supj≥N fj, lim infn→∞ fn = supn≥N infj≥N fj are measurable.

Definition 3.35. A simple function f : Ω → R is a measurable function which only takes
finite values. It can be canonically written in the form f =

∑n
i=1 λi1Ai

, where λi ∈ R and
Ai are measurable and Ai are pairwise disjoint and λi are pairwise different.

The following lemma is a fundamental ingredient in the theory of Lebesgue integration.
It will then allow us to define the Lebesgue integral.

Lemma 3.36. A non-negative function f is measurable if and only if there exists an
increasing sequence of simple functions 0 ≤ f1 ≤ f2 ≤ . . . such that supn∈N fn(x) = f(x)
for all x ∈ Ω.

Proof. If f is the limit of simple functions, then it is measurable by Theorem 3.34.
Let us now prove the converse and assume f is non-negative and measurable. We

define the sets

Aj,n =

{
{j2−n ≤ f < (j + 1)2−n} if 0 ≤ j ≤ n2n − 1

{f ≥ n} if j = n2n.

For fixed n, the sets Aj,n are measurable, disjoint and their union over j ∈ {0, 1, . . . , n2n}
is all of Ω. Thus,

fn =
n2n∑
j=0

j

2n
1Aj,n

is a sequence of increasing simple functions as indeed Aj,n is the disjoint union of A2j,n+1

and A2j+1,n+1 for j ≤ n2n − 1 and An2n,n is the disjoint union of of the sets Aj,n+1,
j = n2n+1, . . . , (n+ 1)2n+1 − 1 and A(n+1)2n+1,n+1.

If f(x) = ∞ at some point x ∈ Ω, then fn(x) = n → ∞ = f(x). Moreover, by
construction

fn(x) ≤ f(x) < fn(x) + 2−n

if f(x) < n. In particular, limn→∞ fn(x) = supn∈N fn(x) = f(x).

Remark 3.37. From the above proof we note that if f is a bounded non-negative mea-
surable function, then the constructed fn above converges uniformly to f .
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3.6 Integration

It turns out that the monotone approximation of measurable functions by simple func-
tions is the key towards a satisfactory definition of the Lebesgue integral of a measurable
function. We will indeed first define the Lebesgue integral for simple functions and then
extend (using the monotone approximation) this definition to measurable functions.

Definition 3.38. Let f =
∑n

i=1 λi1Ai
be a non-negative simple function. Then, we define

Simp

∫
Ω

fdµ =
n∑

i=1

λiµ(Ai) (6)

which is a number in [0,∞].

Remark 3.39. Note that Definition 3.38 is well-defined and independent of the represen-
tation of f as a simple function. In particular, f does not have to be written its canonical
form. This is left as an exercise for the reader. We also observe that (6) is linear and
monotone.

Definition 3.40. Let f be a non-negative measurable function. We define∫
Ω

fdµ = lim
n→∞

Simp

∫
Ω

fndµ,

where fn is a monotonically increasing sequence of simple functions with fn → f .

In order for the previous definition to be well-defined, we have to show that it is indeed
independent of the choice of sequence of simple functions. To this end we will first show
the following proposition.

Lemma 3.41. Let f be a non-negative simple function and gn be an increasing sequence
of simple functions such that f ≤ limn→∞ gn, then

Simp

∫
Ω

fdµ ≤ lim
n→∞

Simp

∫
Ω

gndµ.

Proof. Let f =
∑m

j=1 λj1Aj
be written in its canonical form. Let ε > 0 and define the

sets
Bn = {(1 + ε)gn ≥ f}.

If f(x) = 0 then, x ∈ Bn for all n ∈ N and if f(x) > 0 then, x ∈ Bn for all n sufficiently
large. Since gn is increasing so is Bn and ∪n∈NBn = Ω. Thus, by upwards monotonicity

Simp

∫
Ω

fdµ =
m∑
j=1

λjµ(Aj) = lim
n→∞

m∑
j=1

λjµ(Aj ∩Bn) = lim
n→∞

Simp

∫
Ω

m∑
j=1

λj1Aj∩Bndµ

= lim
n→∞

∫
Ω

f1Bndµ ≤ lim
n→∞

Simp

∫
Ω

(1 + ε)gn1Bndµ

≤ (1 + ε) lim
n→∞

Simp

∫
Ω

gndµ,
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where we have used the linearity of Simp
∫
Ω
and the monotonicity

Simp

∫
Ω

s1dµ ≤ Simp

∫
Ω

s2dµ

for simple functions s1, s2 with s1 ≤ s2. These properties follow directly from the defini-
tion. Taking ε→ 0 gives the desired result.

We obtain the following corollary which establishes that Definition 3.40 is well-defined.

Corollary 3.42. Let fn and gn be increasing sequences of simple functions and limn→∞ fn =
limn→∞ gn. Then,

lim
n→∞

Simp

∫
fndµ = lim

n→∞
Simp

∫
gndµ.

Proof. For some fixed n0 note that fn0 ≤ limn→∞ gn. Thus,

Simp

∫
fn0dµ ≤ lim

n→∞
Simp

∫
gndµ.

Now taking the limit n0 → ∞ gives “≤”. By reversing the roles of fn and gn we obtain
“≥”.

From the corollary above we deduce that the expression of the integral in Defini-
tion 3.40 is well-defined and that it agrees with the definition Simp

∫
for simple functions.

Proposition 3.43. Let f, g be non-negative measurable functions and α, β ≥ 0. Then∫
Ω

αf + βgdµ = α

∫
Ω

fdµ+ β

∫
Ω

gdµ

and if f ≤ g then ∫
Ω

fdµ ≤
∫
Ω

gdµ.

Proof. This follows directly from the definition.

Proposition 3.44. If f is a non-negative measurable function. Then, f = 0 almost
everywhere if and only if

∫
Ω
fdµ = 0.

Proof. If {f > 0} is a null set, then f ≤ g = ∞ · 1{f>0} which however integrates to
zero. By monotonicity,

∫
Ω
fdµ = 0. For the other direction let A = {f > 0} and write

An = {f > 1/n} and note that An → A as n → ∞, where the limit is increasing. Since
n−11An ≤ f we have

0 ≤ 1

n
µ(An) =

∫
1

n
1Andµ ≤

∫
Ω

fdµ = 0.

Since An → A we have by Proposition 3.3 that µ(A) = 0.
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In particular, this means that if two non-negative measurable functions f, g agree
almost everywhere, their integrals agree. We will now show our first fundamental conver-
gence theorem in the Lebesgue integration theory.

Theorem 3.45 (Monotone convergence). Let (fn)n be an increasing sequence of non-
negative measurable functions and define f = limn→∞ fn. Then,

lim
n→∞

∫
fndµ =

∫
fdµ.

Proof. Since fn are monotone, we obtain

lim
n→∞

∫
fndµ ≤

∫
fdµ

and it remains to show the reverse inequality. For the reverse inequality we let s ≤ f be
a simple function and ε > 0. Consider the set Bn = {(1 − ε)s ≤ fn}. Clearly, Bn are
measurable, monotone and satisfy Ω = ∪n∈NBn and thus s1Bn → s monotonically. But
then using Lemma 3.41 we obtain

(1− ε)

∫
Ω

sdµ ≤ (1− ε) lim
n→∞

∫
Ω

s1Bndµ ≤ lim
n→∞

∫
Ω

fndµ.

Since ε > 0 was arbitrary and the above holds for all simple function s ≤ f we obtain the
claim.

We will now extend our integral to functions which can also take negative values. In
order to obtain a meaningful theory we will have to limit ourself to integrable functions.

Definition 3.46. A function f : Ω → R is said to be integrable if it is measurable and∫
Ω

|f |dµ <∞.

In this case, we define ∫
Ω

fdµ =

∫
Ω

f+dµ−
∫
Ω

f−dµ,

where f = f+ − f−, f+ = max{f, 0} and f− = max{−f, 0}.

Proposition 3.47. Let f : Ω → R be integrable. Then {|f | = ∞} is a null set.

Proof. Set An = {|f | ≥ n} and note that A := {|f | = ∞} ⊂ An. Moreover, n1An ≤ |f |.
So if |f | is integrable then nµ(A) ≤ nµ(An) =

∫
Ω
n1Andµ ≤

∫
Ω
|f |dµ < ∞. Hence,

µ(A) = 0.

Proposition 3.48. Let f, g be integrable and α1, α2 ∈ R. Then, the function α1f + α2g
is integrable and ∫

Ω

α1fdµ+ α2g dµ = α1

∫
Ω

fdµ+ α2

∫
Ω

gdµ.
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Moreover, if f ≤ g. Then ∫
fdµ ≤

∫
gdµ

and in particular, ∣∣∣∣∫
Ω

fdµ

∣∣∣∣ ≤ ∫
Ω

|f |dµ.

Proof. This follows by decomposing f = f+− f− and using the linearity for non-negative
measurable functions. This is left as an exercise.

Remark 3.49. One can verify that the statements of monotone convergence Theorem 3.45
and Proposition 3.48 remain true if the respective assumptions only hold almost every-
where. Indeed, any construction invling

We have already encountered the monotone convergence theorem for increasing se-
quences of functions. For sequences that fail to be increasing, we still have the following
result.

Lemma 3.50 (Fatou’s lemma). Let (fn)n be a sequence of non-negative measurable
functions. Then, ∫

lim inf
n→∞

fndµ ≤ lim inf
n→∞

∫
fndµ.

Proof. Define f = lim infn→∞ fn and gn = infk≥n fk so gn is increasing and gn ≤ fn.
Moreover, f = limn→∞ gn. Thus, using that gn ≤ gn+1 and monotone convergence, we
obtain ∫

fdµ =

∫
lim
n→∞

gndµ = lim
n→∞

∫
gndµ = lim inf

n→∞

∫
gndµ ≤ lim inf

n→∞

∫
fndµ.

The following theorem on dominated convergence and the monotone convergence the-
orem are the most used convergence theorems. The theorem is quite general because
it allows for µ(X) = ∞ and moreover only requires limn→∞ fn(x) = f(x) pointwise (or
pointwise a.e.).

Theorem 3.51 (Dominated convergence). Let (fn)n and f be measurable functions such
that limn→∞ fn = f almost everywhere. Let g be a non-negative integrable function and
assume that 0 ≤ |fn| ≤ g almost everywhere. Then, all fn and f are integrable and∫

Ω

|fn − f |dµ→ 0 and consequently

∫
Ω

fndµ→
∫
Ω

fdµ.

Proof. By modifying fn and f on a set of measure zero we may assume that fn → f and
|fn| ≤ g pointwise everywhere. In particular, 0 ≤ |fn − f | ≤ 2g such that the function
2g − |fn − f | is non-negative. By Fatou’s lemma we have

lim inf
n→∞

∫
−|fn − f |+ 2gdµ ≥

∫
2gdµ
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from which we conclude (using that
∫
gdµ <∞) and linearity that

lim sup
n→∞

∫
|fn − f |dµ = 0.

The second statement follows from the monotonicity of the integral.

We note that a Riemann integrable function f on Rn is Lebesgue integrable (and
in particular measurable) as the approximation from below in the Riemann lower sum
constitutes an increasing sequence of simple functions converging to f . In particular, all
results for the Riemann integral also extend to the Lebesgue integral. In fact the following
result holds true

Theorem 3.52. A bounded function f : [a, b] → R is Riemann integrable if and only if
the set of points of discontinuity is a null set. Moreover, in this case, the Riemann and
Lebesgue integral agree.

Remark 3.53. Note however that there exists improper Riemann integrable functions
like sin(x)

x
on [0,∞) which are Riemann integrable as an improper integral but not Lebesgue

integrable.

The example below is an extension of the fundamental theorem of calculus where we
only assume that f ′ is differentiable and not necessarily continuously differentiable. Note
that f ′ is not necessarily Riemann integrable.

Example. Let f : [a, b] → R be differentiable and f ′ be uniformly bounded. Then, f ′ is
Lebesgue-integrable and ∫ b

a

f ′dλ = f(b)− f(a).

Proof. Without loss of generally let f : R → R is differentiable and |f ′| ≤ M on R.
Set gn(x) = n(f(x+ 1/n)− f(x)) and note that gn(x) → f ′(x) pointwise by assumption.
Hence, f ′ is measurable and since |f ′| ≤M it is integrable. From the mean value theorem,
we know that |gn| ≤M . Hence, using the dominated convergence theorem we conclude∫ b

a

f ′(x)dx = lim
n→∞

∫ b

a

gn(x)dx.

Since f is continuous we have that F (x) =
∫ x

a
f(t)dt is differentiable with F ′ = f (Exer-

cise!) and∫ b

a

gn(x)dx = n

∫ b

a

f(x+ 1/n)− f(x)dx

= n(F (b+ 1/n)− F (b))− n(F (a+ 1/n)− F (a)) → f(b)− f(a).

as n→ ∞.
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Remark 3.54. Another important result in Lebesgue integration is Fubini’s theorem.
To state it, we note that given two measure spaces there is a a natural product measure
µ1 ⊗ µ2 such that µ1 ⊗ µ2(A × B) = µ1(A)µ2(B). Fubini’s theorem tells us that if f is
either non-negative or f is integrable with respect to µ1 ⊗ µ2, then one can interchange
the order of integration as follows:∫

Ω1×Ω2

f(x, y)dµ1 ⊗ dµ2(x, y) =

∫
Ω1

(∫
Ω2

f(x, y)dµ2(y)

)
dµ1(x)

=

∫
Ω2

(∫
Ω1

f(x, y)dµ1(x)

)
dµ1(y)

3.7 Lebesgue spaces Lp(Ω)

In this section we let Ω be a measure space.

Definition 3.55. Let 1 ≤ p < ∞. We define the vector space Lp(Ω) as the space of
measurable functions such that |f |p is integrable. We define f, g to be equivalent denoted
as f ∼ g, if f = g almost everywhere and Lp(Ω) = Lp(Ω)/ ∼. The norm

∥f∥Lp =

(∫
Ω

|f |pdµ
) 1

p

(7)

makes Lp(Ω) a normed space (the fact that (7) is a norm follows from Proposition 3.44
and Proposition 3.57 below).

We define the vector space L∞(Ω) as the space of measurable functions such that |f |
is finite almost everywhere and

ess sup
Ω

|f | = inf{c ∈ R : µ({|f | ≥ c}) = 0} <∞.

We define f, g to be equivalent denoted as f ∼ g, if f = g almost everywhere and define
L∞(Ω) = L∞(Ω)/ ∼. This makes L∞(Ω) a normed space with the norm

∥f∥L∞ = ess sup
Ω

|f |,

where we again already appeal to Proposition 3.44 and Proposition 3.57 below.

Remark 3.56. In practice, we will always work with representatives of the equivalence
class. However, for ∥ · ∥p to be a norm (and not only a seminorm) we need to identify
functions that agree almost everywhere.

Example. • If Ω = N and µ = δ, where δ(A) = |A|, then Lp(µ) = ℓp.

• Another important example is the Lebesgue spaces on the reals: Lp(R).

Proposition 3.57. Let f, g : Ω → K be measurable. Then,

1. ∥fg∥1 ≤ ∥f∥p∥g∥q for 1 = 1
p
+ 1

q
and 1 ≤ p, q ≤ ∞. (Hölder inequality)
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2. ∥f + g∥p ≤ ∥f∥p + ∥g∥p for 1 ≤ p ≤ ∞. (Minkowski inequality)

Proof. This is similar to the proof for the ℓp spaces and will be omitted.

Theorem 3.58 (Riesz–Fischer). The space Lp(Ω) for p ∈ [1,∞] is complete.

Proof. Case 1: p = ∞. Let fn be Cauchy in L∞. For all n,m ∈ N, there exists a null
set Nn,m such that supx∈Nc

n,m
|fn(x) − fm(x)| ≤ ∥fn − fm∥∞. Then, N = ∪n,m∈NNn,m is

null and for each x ∈ N c, the sequence fn(x) is Cauchy in K and hence convergent with
limit f(x). Now, let ε > 0. Then choose N sufficiently large that ∥fm − fn∥∞ < ε for all
m,n ≥ N . Then,

sup
x∈Nc

|f(x)− fn(x)| ≤ sup
x∈Nc

lim
m→∞

|fm(x)− fn(x)| < ε.

Hence fn → f in L∞ as n→ ∞.
Case 2: 1 ≤ p <∞. Let fn be Cauchy in Lp. Then it has a fast-Cauchy subsequence

fnk
, i.e. a subsequence such that ∥fnk+1

− fnk
∥ ≤ 2−k. We define the function

g(x) = |fn1(x)|+
∞∑
k=1

|fnk+1
(x)− fnk

(x)| (8)

which is in Lp because ∥g∥p ≤ ∥fn1∥p+
∑∞

k=1 ∥fnk+1
−fnk

∥p by monotone convergence. In
particular, this means that

∑∞
k=1 |fnk+1

(x)−fnk
(x)| is finite almost everywhere and hence

(fnk
(x))k is Cauchy in K for almost every x ∈ Ω. Define f as the almost everywhere limit.

We note that |f | ≤ g because fnl
= fn1 +

∑l−1
k=1(fnk+1

− fnk
). In particular, |f |p and |fnk

|p
are integrable. From the dominated convergence theorem we obtain that

∥f − fnk
∥p → 0 (9)

as k → ∞. Hence, fn converges to f .

The above proof also gives the following important result.

Theorem 3.59. If fn → f as n → ∞ in Lp(Ω) for 1 ≤ p ≤ ∞. Then, there exists a
subsequence fnk

such that fnk
→ f pointwise almost everywhere as k → ∞.

Remark 3.60. Passing to a subsequence is necessary in the above theorem as you con-
structed a sequence of functions which does not converge pointwise anywhere but which
converges in L1([0, 1]).

Proposition 3.61. Let Ω be a finite measure space. Then Lp(Ω) ⊂ Lq(Ω) for 1 ≤ q ≤
p ≤ ∞. Moreover, the inclusions are dense.

Proof. Problem set 4.

Theorem 3.62. Let Ω be a locally compact (for all x ∈ Ω there exists compact neigh-
borhood) and σ-compact (there exists Kn compact such that Ω = ∪n∈NKn). Let µ be a
regular Borel measure on Ω. Then, Lp(Ω) is separable for 1 ≤ p <∞.
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Proof. We have shown it for ℓp spaces in the problem set. For the general result, see
[Rud91].

Remark 3.63. In particular, the spaces Lp(Rn) are separable for 1 ≤ p <∞. Moreover,
C∞

c is dense Lp(Rn) for 1 ≤ p <∞.

Theorem 3.64. The space Lp(Ω) is uniformly convex for 1 < p <∞, i.e. for every ε > 0,
there exists a δ > 0 such that for all f, g ∈ Lp with ∥f∥p = ∥g∥p = 1 and ∥f − g∥p ≥ ε we
have ∥f+g

2
∥p ≤ 1− δ.

The above theorem is a consequence of the following inequalities due to Clarkson.

Lemma 3.65 (Clarkson inequality). Let 1 < p <∞, q its Hölder conjugate and f, g ∈ Lp.

1. If 2 ≤ p <∞, then∥∥∥∥f + g

2

∥∥∥∥p
p

+

∥∥∥∥f − g

2

∥∥∥∥p
p

≤ 1

2
∥f∥pp +

1

2
∥g∥pp (10)∥∥∥∥f + g

2

∥∥∥∥q
p

+

∥∥∥∥f − g

2

∥∥∥∥q
p

≥
(
1

2
∥f∥pp +

1

2
∥g∥pp

)q/p

(11)

2. If 1 < p < 2, then ∥∥∥∥f + g

2

∥∥∥∥q
p

+

∥∥∥∥f − g

2

∥∥∥∥q
p

≤
(
1

2
∥f∥pp +

1

2
∥g∥pp

)q/p

(12)∥∥∥∥f + g

2

∥∥∥∥p
p

+

∥∥∥∥f − g

2

∥∥∥∥p
p

≥ 1

2
∥f∥pp +

1

2
∥g∥pp. (13)

Proof. We will begin by showing (10). It is enough to show the following inequality for
a, b ∈ R: ∣∣∣∣a+ b

2

∣∣∣∣p + ∣∣∣∣a− b

2

∣∣∣∣p ≤ 1

2
|a|p + 1

2
|b|p.

We first note that for c, d ≥ 0 we have

cq + dq ≤ (c+ d)q

for any q ≥ 1. Indeed, without loss of generality, we can set d = 1 and then consider the
function

f(x) = (x+ 1)q − xq − 1

which satisfies f(0) = 0 and f ′(x) = q(x+ 1)q−1 − qxq−1 ≥ 0. Hence, f(x) ≥ 0 for x ≥ 0.
Apply this observation to c = (|a+ b|/2)2 and d = (|a− b|/2)2 and q = p/2 to obtain∣∣∣∣a+ b

2

∣∣∣∣p + ∣∣∣∣a− b

2

∣∣∣∣p ≤ ( |a− b|2

4
+

|a+ b|2

4

)p/2

=

(
|a|2 + |b|2

2

)p/2

≤ 1

2
|a|p + 1

2
|b|p,

where in the last step we used the convexity of x 7→ xp/2. The other inequalities follow
using similar arguments, see e.g. [Ada75, Theorem 2.38].
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Proof of Theorem 3.64. If 1 < p < 2, then from (12) we obtain∥∥∥∥f + g

2

∥∥∥∥q
p

≤ 1−
∥∥∥∥f − g

2

∥∥∥∥q
p

≤ 1− 2−qεq. (14)

Similarly, the case 2 ≤ p <∞ follows from (10).

An interesting consequence of uniform convexity is the following.

Theorem 3.66 (Milman–Pettis theorem). Every uniformly convex Banach space is re-
flexive.

Proof. See e.g. [Bre11].

In particular, this shows that Lp is reflexive for 1 < p < ∞. In the next section, we
will give a direct characterization of the dual of Lp and directly show that Lp is reflexive.

4 Dual spaces and weak topologies

In this section we will explore more consequences of the rich structure of duals of normed
space and introduce the central weak topologies induced by the dual space. We will then
give an explicit characterization of the duals of the Lp spaces.

4.1 Locally convex spaces and weak topologies

Definition 4.1. A locally convex space (LCS) X is a topological vector space for which
the topology is induced by a family of seminorms (pi)i∈I on X (i.e. the sets Vi,ε(x) = {y ∈
X : pi(x − y) < ε} form a neighborhood subbase) which separates points (i.e. for x ∈ X
there exists pi such that pi(x) ̸= 0).

Remark 4.2. More precisely, if X is a LCS then a set U ⊂ X is open if and only if for
all x ∈ U there exists a finite set F ⊂ I and ε > 0 such that⋂

i∈F

{y ∈ X : pi(x− y) < ε} = {y ∈ X : pi(x− y) < ε for all i ∈ F} ⊂ U.

Moreover, from the assumption that the family of seminorms separates points, we obtain
that every locally convex space is Hausdorff.

Definition 4.3. Let X be a normed space.

• The weak topology on X is the locally convex topology on X induced by the family
of seminorms {x 7→ |f(x)|}f∈X∗ . Notations: Tw, wX or σ(X,X∗).

• The weak* topology on X∗ is the locally convex topology on X∗ induced by the
family of seminorms {f 7→ |f(x)|}x∈X . Notations: Tw∗, w∗X∗ or σ(X∗, X).
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Proposition 4.4. Let X be a normed space. The weak topology on X is the initial
topology induced by X∗ (i.e. the weak topology is the coarsest topology such that for all
f ∈ X∗, the map (X, Tw) → K, x 7→ f(x) is continuous).

Proof. The sets {y ∈ X : |f(x − y)| < ε} for f ∈ X∗ and ε > 0 form a neighborhood
subbase (around x ∈ X) for the LCS topology. Note that sets of the form f−1(U)
for f ∈ X∗ and U ⊂ K open form a subbase for the initial topology. In particular,
{y ∈ X : |f(x − y)| < ε} for f ∈ X∗ and ε > 0 form a neighborhood subbase (around
x ∈ X) for the initial topology. Since both topologies have the same neighborhood subbase
around every point, the topologies agree.

Analogously, we obtain the following.

Proposition 4.5. Let X be a normed space and X∗ be its dual. The weak* topology on
X∗ is the initial topology induced by X (i.e. the weak* topology is the coarsest topology
such that for all x ∈ X, the map (X∗, Tw∗) → K, f 7→ f(x) is continuous).

Remark 4.6. • The weak topology is coarser than the norm (strong) topology. They
agree for finite dimensional normed spaces.

• The weak* topology is coarser than the weak topology on X∗. They agree if and
only if X is reflexive. Indeed, if σ(X∗, X) ⊂ σ(X∗, X∗∗), where the equality holds
if and only if X = X∗∗.

• We also note that a function g : Y → (X, Tw) is continuous if and only if f ◦ g :
Y → K is continuous for all f ∈ X∗. Similarly, g : Y → (X∗, Tw∗) is continuous if
and only if i(x) ◦ g : Y → K is continuous for all x ∈ X, where i : X → X∗∗ is the
canonical embedding.

Proposition 4.7. Let X be a normed space.

1. A sequence (xn)n ⊂ X converges to x in the weak topology, denoted as xn ⇀ x as
n→ ∞ if and only if f(xn) → f(x) as n→ ∞ for all f ∈ X∗.

2. A sequence (fn)n ⊂ X∗ converges to f in the weak* topology, denoted as fn
∗
⇀ f

as n→ ∞ if and only if fn(x) → f(x) as n→ ∞ for all x ∈ X.

Proof. We have that xn ⇀ x if and only if for any member Uf,ε,x = {y : |f(x− y)| < ε} of
the neighborhood subbase of x, we have xn ∈ Uf,ε,x eventually (i.e. for all n ≥ Nf,ε). But
this is equivalent to the statement that |f(xn) − f(x)| < ε eventually, i.e. f(xn) → f(x)
for all f ∈ X∗.

Theorem 4.8. Let (xn)n ⊂ ℓ1. Then, xn → x if and only if xn ⇀ x as n→ ∞.

Proof. Problem set.

Remark 4.9. The reason why it is true is that (ℓ1)∗ = ℓ∞ is a very large space so testing
only against ℓ∞ elements is enough. Note however that the weak topology is not the
same as the norm topology. In fact, the weak topology (or weak* topology) on an infinite
dimensional space is never metrizable.
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Theorem 4.10. Let X be a normed space and xn ⇀ x. Then,

∥x∥ ≤ lim inf
n→∞

∥xn∥ ≤ sup
n∈N

∥xn∥ <∞.

Proof. See problem set.

Theorem 4.11. Let X be a normed space and X∗ its dual. If fn
∗
⇀ f . Then,

∥f∥ ≤ lim inf
n→∞

∥fn∥ ≤ sup
n∈N

∥fn∥ <∞.

Proof. See problem set.

4.2 Banach–Alaoglu theorem

We have seen that the unit ball in an infinite dimensional normed space is never compact
in the norm topology. This is somewhat unfortunate because compactness arguments are
incredibly useful in applications. However, we will see that we can obtain compactness
when we consider coarser topologies.

Theorem 4.12 (Banach–Alaoglu). Let X be a normed space. Then the closed unit ball

B̄X∗ = {f ∈ X∗ : ∥f∥ ≤ 1} ⊂ X∗

is weak* compact.

Remark 4.13. A word of caution: Even though B̄X∗ is compact, the space X∗ with the
weak* topology is not locally compact (i.e. there does not exist a compact neighborhood
around any point). In particular, B̄X∗ has empty interior in the weak* topology.

Proof. For x ∈ X define Kx = {λ ∈ K : |λ| ≤ ∥x∥} and set K = Πx∈XKx with projections
πx : K → Kx. By Tychonoff’s theorem (Theorem 1.22), K is compact in the product
topology. Note that (in mild abuse of notation) B̄X∗ ⊂ K because f(x) ∈ Kx and thus
Πx∈X{f(x)} ∈ K. Note that the weak* topology on B̄X∗ is the initial topology induced
by the maps {B̄X∗ ∋ f 7→ f(x)}x∈X and the subspace topology on B̄X∗ ⊂ K is the initial
topology induced by the maps {πx}x∈X = {B̄X∗ ∋ f → f(x)}x∈X . Thus, the subspace
topology on B̄X∗ ⊂ K induced by the product topology on K agrees with the weak*
topology on B̄X∗ . Thus, it suffices to show that B̄X∗ ⊂ K is closed. To see this we write

B̄X∗ = {f ∈ K : f linear} =
⋂

x,y∈X,λ,µ∈K

{f ∈ K : f(λx+ µy)− λf(x)− µf(y) = 0}

=
⋂

x,y∈X,λ,µ∈K

{f ∈ K : (πλx+µy − πλx − πµy)(f) = 0}

which is an intersection of closed sets. Thus, B̄X∗ is closed and hence compact.

Of particular interest in PDEs for the direct method of calculus of variations is sequen-
tial compactness. Under the additional assumption of separability of X we can improve
the Banach–Alaoglu result to obtain weak* sequential compactness.
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Theorem 4.14 (Banach–Alaoglu, separable normed space). LetX be a separable normed
space. Then, B̄X∗ in X∗ is weak* sequentially compact.

Proof. Proof 1. On the problem set, you will show that if X is separable, then the weak*
topology restricted to B̄X∗ is metrizable. Hence, sequential compactness is equivalent to
compactness (problem set 2), so B̄X∗ is sequentially compact.

Proof 2. We will also give a direct proof using a diagonal argument, a standard
technique in analysis. Let D = (xn)n ⊂ X be dense and let (fk)k ⊂ B̄X∗ . We have
to show that fk has a subsequence which converges in the weak* topology. For n = 1
consider the sequence (fk(x1))k in K. The sequence is uniformly bounded by ∥x1∥ and
thus has a convergence subsequence (fkj,1(x1))j. Now, consider the sequence (fkj,1(x2))j in
K which is again uniformly bounded and thus has a convergent subsequence (fkj,2(x2))j,
where we emphasize that (kj,2)j is a subsequence of (kj,1)j. We iterate this procedure to
obtain that (kj,n)j is a subsequence of any (kj,m)j for m ≤ n. We now take the diagonal
sequence (kj,j)j.

For xl ∈ D we define f̄(xl) = limj→∞ fkj,j(xl) which converges by the construction
above. By linearity, we extend f̄ to span(D) which is a dense subspace. Since f̄ is
bounded, we can extend f̄ uniquely to f on X by the bounded linear extension theorem
Theorem 2.20.

Remark 4.15. We will end our discussion on locally convex space here, but there are
many interesting results one can show. Especially, metrizable LCS (called Fréchet spaces),
which are complete, constitute the foundation of distribution theory.

4.3 Riesz representation for Lp spaces

Our next theorem will be the famous characterizations for the dual spaces of the Lp spaces.
We will consider a measure space Ω with measure µ. We let p ∈ [1,∞) and q ∈ (1,∞] be
Hölder conjugates, i.e. 1 = 1

p
+ 1

q
. We define the map

ϕ : Lq → (Lp)∗, g 7→ ϕg, where ϕg(f) =

∫
Ω

gfdµ.

This is a linear, well-defined map because |ϕg(f)| ≤ ∥g∥q∥f∥p by the Hölder inequality.
This also shows that the map ϕ is bounded by ∥ϕ∥ ≤ 1.

Theorem 4.16 (Riesz representation). Let Ω, µ, p, q and ϕ as above.

1. If 1 < p <∞, then (Lp(Ω))∗ ≃ Lq(Ω).

2. If p = 1 and Ω is σ-finite, then (L1(Ω))∗ ≃ L∞(Ω).

Remark 4.17. An alternative and possibly more standard proof of the Lp duality can be
given using the Radon–Nikodym theorem. In the following, we will however give a more
elementary proof via a direct minimization argument exploiting the uniform convexity of
Lp for 1 < p <∞. The case p = 1 will then follow using a limiting argument.
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Proof. Note that from Höder’s inequality, we obtain that ϕ is a well-defined linear map
with norm ∥ϕ∥ ≤ 1. We will first show that ϕ is in fact an isometry.

Step 1: ϕ is an isometry for p > 1. Let 0 ̸≡ g ∈ Lq. Define f = eiθ|g|q−1, where θ
is chosen such that fg = |g|q almost everywhere. Then,

∥ϕg∥ ≥ |ϕg(f)|
∥f∥p

=

∫
|g|q(∫

|g|pq−p
) 1

p

=

(∫
|g|q
) 1

q

= ∥g∥q.

Together with the bound ∥ϕg∥ ≤ ∥g∥q from above we obtain that ϕ is an isometry.
Step 2: ϕ is an isometry for p = 1. Let 0 ̸≡ g ∈ L∞ and fix 0 < α < ∥g∥L∞ . By

definition, there exists a measurable set K such that |g|K | ≥ α and µ(K) > 0. Since µ is
σ-finite we find a collection of sets An such that ∪n∈NAn = Ω. We set Km = K ∩∪m

n=1An

and note that ∪m∈NKm = K from which we conclude that there exists aM ∈ N such that
µ(KM) > 0 as 0 < µ(K) = µ(∪mKm) ≤

∑
m∈N µ(Km) by the σ-additivity of µ. Now we

define f = λ1KM
, where λ is chosen such that λg = |g| on KM . Then,

∥ϕg∥ ≥ |ϕg(f)|
∥f∥1

=

∫
|g|1KM

µ(KM)
≥ α.

Since α < ∥g∥L∞ was arbitrary, we obtain ∥ϕg∥ = ∥g∥L∞ .
Step 3: ϕ is surjective for 1 < p < ∞. Let F ∈ (Lp)∗ and assume without loss of

generality that ∥F∥ = 1.
Some intuition: We want to construct a g with ∥g∥q = 1 such that F (f) =

∫
fgdµ for all ∥f∥p = 1.

If there exists a F -normalizing f such that 1 = ∥F∥ = F (f) =
∫
gf ≤ ∥g∥q∥f∥p ≤ 1, then we would have

equality in Hölder’s inequality so in particular |f |p = |g|q so this would mean we should set g = λ|f |p/q =

λ|f |p−1 s.t. gf = |f |p. In order to construct such an f (and then also g), we will exploit the convexity of

the unit sphere and the completeness.

There exists a sequence (fn)n ⊂ Lp with ∥fn∥p = 1 such that 1
2
≤ F (fn) → 1 as

n→ ∞. We will show that (fn)n is a Cauchy sequence. Let ε > 0. Since Lp is uniformly
convex, there exists a δ > 0 such that if∥∥∥∥12(f + g)

∥∥∥∥ > 1− δ, then ∥f − g∥ < ε. (15)

Choose N large such that F (fn) > 1 − δ for all n ≥ N . Thus, by linearity and since
∥F∥ = 1, we estimate ∥∥∥∥12 (fn + fm)

∥∥∥∥ ≥ F

(
1

2
(fn + fm)

)
> 1− δ

for all n,m ≥ N from which we conclude using (15) that ∥fn−fm∥p < ε for all n,m ≥ N .
Hence, (fn)n is Cauchy with limit f satisfying ∥f∥p = 1 and F (f) = 1. We have now
constructed our normalizing f ∈ Lp. From our intuition gained before, we set g = λ|f |p/q
for some function λ with |λ| = 1 chosen such that gf = |f |p. Note that g ∈ Lq with

∥g∥qq =
∫

|f |pdµ = 1 =

∫
gfdµ = ϕg(f).
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We want to show that F = ϕg. To do so, we will prove the following claim. If
F1, F2 ∈ (Lp)∗ with ∥F1∥ = ∥F2∥ = 1 and there exists a f ∈ Lp with ∥f∥p = 1 such
that F1(f) = F2(f) = 1, then F1 = F2. For the sake of a contradiction, suppose that
F1 ̸= F2. Hence there exists a function h such that F1(h) ̸= F2(h). By multiplying h
with a constant we can assume that F1(h) − F2(h) = 2. By replacing h with h + αf for
a suitable constant α, we can assume in addition that F1(h) = 1 and hence, F2(h) = −1.
For t > 0 we have F1(f + th) = 1 + t and F2(f − th) = 1 + t and thus

1 + t ≤ ∥f + th∥ and 1 + t ≤ ∥f − th∥.

For 1 < p < 2 we estimate using (13)

1 + tp∥h∥pp =
∥∥∥∥(f + th) + (f − th)

2

∥∥∥∥p
p

+

∥∥∥∥(f + th)− (f − th)

2

∥∥∥∥p
p

≥ 1

2
∥f + th∥pp +

1

2
∥f − th∥pp ≥ (1 + t)p ≥ 1 + tp

which gives a contradiction by sending t → 0. Similarly, we argue for 2 ≤ p < ∞ using
(11). This establishes the result for 1 < p <∞.

Step 4: ϕ is surjective for p = 1. We will approximate the construction for p > 1.
First, we will consider the case of a finite measure, i.e. µ(Ω) < ∞. Let F ∈ (L1)∗. Since
Lp (for p > 1) is continuously embedded in L1, we have that F ∈ (Lp)∗. Thus, by the
above, there exists a gq ∈ Lq with ϕgq = F and

∥gq∥q = ∥F∥(Lp)∗ ≤ sup
∥g∥p=1

|F (g)| ≤ sup
∥g∥∞≤(µ(X))1/p

|F (g)| ≤ µ(X)1/p

which is uniformly bounded for p ∈ [1, 2].
We note that gq is independent of q because for q1, q2 define the test function f ∈ L∞

such that f(gq1 − gq2) = |gq1 − gq2|. Then,

0 = F (f)− F (f) = ϕgq1
(f)− ϕgq2

(f) =

∫
|gq1 − gq2|dµ,

hence gq1 = gq2 . Moreover, g ∈ L∞ because for gF := min(|g|, ∥F∥ + 1) we note that
(exercise!) ∥gF∥∞ = limq→∞ ∥gF∥q ≤ ∥F∥ so min(|g|, ∥F∥+ 1) ≤ ∥F∥ almost everywhere
and hence |g| ≤ ∥F∥ almost everywhere. Finally, F and ϕg agree on the dense subspace
L2 (problem set 4), and since they are continuous, they have to agree everywhere.

In order to relax the assumption of a finite measure space, we write Ω =
⊔

n∈NAn

for pairwise disjoint sets An with µ(An) < ∞. For F ∈ (L1)∗ define Fn ∈ (L1(An))
∗

as Fn(f) = F (f), where f ∈ L1(Ω) is continued by zero outside An. Then, we obtain
a gn ∈ L∞(An) such that ϕgn = Fn and ∥gn∥∞ = ∥Fn∥ ≤ ∥F∥ by the previous step.
Then, define g =

∑
n∈N gn, where gn is continued by zero outside of An. Since the gn have

disjoint support, ∥g∥∞ ≤ ∥F∥.
In order to show that ϕg = F we let f ∈ L1(Ω). Then, f =

∑∞
n=1 fn pointwise, where

fn = f1An . Since f = limN→∞
∑N

n=1 fn in L1(Ω) by dominated convergence, and F is
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continuous we have

F (f) =
∞∑
n=1

F (fn) =
∞∑
n=1

Fn(fn) =
∞∑
n=1

∫
fngn1An =

∞∑
n=1

∫
gf1An =

∫
gf = ϕg(f),

where we used dominated convergence in the last step again which is allowed because∣∣∣∣∣
∞∑
n=1

gf1An

∣∣∣∣∣ ≤ |gf | ∈ L1(Ω)

by Hölders inequality.

We immediately obtain the following corollary.

Corollary 4.18. The space Lp(Ω) is reflexive for 1 < p <∞.

Theorem 4.19. The spaces ℓ1, ℓ∞, L1(R), and L∞(R) are not reflexive.

Proof. We have established these facts for ℓ1 and ℓ∞ before.
If L1(R) was reflexive, then L1(R) = (L1(R))∗∗ = (L∞(R))∗ was separable (since L1(R)

is separable) so L∞(R) would have to be separable which is a contradiction (note that
all different members of the uncountable family (1[0,x])x∈R have unit distance from each
other). But if L1(R) is not reflexive then L∞(R) = (L1(R))∗ cannot be reflexive (pset
3).

Remark 4.20. An example of a functional on L∞(R) that is not in L1(R) can be given
as follows. Consider the function F : Cb(R) → K, f 7→ f(0). Note that F is a well-defined
functional on the space of bounded continuous functions Cb(R) ⊂ L∞(R). Moreover,
∥F∥ = 1. By Hahn–Banach it can be continued to a functional on (L∞(R))∗. If F was
represented by g ∈ L1(R), one can verify that then g = 0 almost everywhere which is a
contradiction.

5 Hilbert spaces

In the previous section we encountered the Lp(Ω) spaces and characterized their dual
space as Lq(Ω). A special case is the case p = 2 for which we have L2(Ω) ∼= (L2(Ω))∗ and
moreover Hölder’s inequality gives∫

Ω

|fg|dµ ≤ ∥f∥L2∥g∥L2 .

This is special because f and g lie in the same space and there is a natural “inner product”
defined on L2(Ω) as

⟨f, g⟩ =
∫
Ω

f̄ gdµ.
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Based on Hilbert’s work on the L2(Ω) and the additional structure of the inner product,
John von Neumann introduced the abstract concept of a Hilbert spaces. The additional
structure of an inner product allows us to define orthogonality and orthogonal projections.
In particular, many geometric features of the Euclidean space have generalizations to
Hilbert spaces. They also play a central role in applications such as in PDEs, quantum
mechanics, etc.

Definition 5.1. Let X be a vector space. A map ⟨·, ·⟩ : X × X → K is called a scalar
product (or inner product) if

1. ⟨x, x⟩ ≥ 0 for every x ∈ X and ⟨x, x⟩ = 0 if and only if x = 0.

2. ⟨x, λy + µz⟩ = λ⟨x, y⟩+ µ⟨x, z⟩ for every λ, µ ∈ K and x, y, z ∈ X.

3. ⟨x, y⟩ = ⟨y, x⟩

The pair (X, ⟨·, ·⟩ is called an inner product space (or pre-Hilbert space).

Remark 5.2. In the Hilbert space axioms, we choose the convention of linearity with
respect to the second component. Be aware that many other textbooks impose linearity
in the first component.

Proposition 5.3 (Cauchy–Schwarz inequality). Let H be a pre-Hilbert space. Then

|⟨v, w⟩| ≤ ∥v∥∥w∥

with equality if and only if v and w are linearly dependent.

Proof. For t ∈ K define p(t) = ∥v + tw∥2 = ∥v∥2 + |t|2∥w∥2 + 2Re (t⟨v, w⟩). Assume
WLOG that w ̸= 0, and set

tmin = −⟨v, w⟩
∥w∥2

Hence,

0 ≤ p(tmin) = ∥v∥2 − |⟨v, w⟩|2

∥w∥2

from which we obtain the conclusion. Clearly, if v, w are linearly dependent, we have
equality. If equality holds, then 0 = p(tmin) but then v and w are dependent.

Lemma 5.4. An inner product space is also a normed space with norm ∥v∥ = ⟨v, v⟩ 1
2

and the inner product ⟨·, ·⟩ → K is continuous.

Proof. It is easy to verify that ∥v∥ fulfills the axioms of a norm. For the continuity
we let vn → v and wn → w. Then, using the bilinearity of the inner product and the
Cauchy–Schwarz inequality we obtain

|⟨vn, wn⟩ − ⟨v, w⟩| ≤ |⟨vn, wn⟩ − ⟨vn, w⟩|+ |⟨vn, w⟩ − ⟨v, w⟩|
≤ sup

m
∥vm∥∥wn − w∥+ ∥w∥∥vn − v∥ → 0

as n→ ∞.
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Definition 5.5. A complete inner product space is called a Hilbert space.

Definition 5.6. A linear map T : H1 → H2 between two inner product spaces is called
an (Hilbert space) isomorphism (or a unitary map) if T is bijective and ⟨Tx, Ty⟩ = ⟨x, y⟩
for all x, y ∈ H1.

Theorem 5.7 (Hilbert space completion). Let H0 be an inner product space. Then there
exists a Hilbert space H, a dense set D ⊂ H and an isomorphism T : H0 → D. The space
H is unique except for (Hilbert space) isomorphisms.

Proof. The proof is similar to the completion of metric and normed spaces, except that
one has to additionally take the Hilbert space structure into account. The details of the
proof are left to the reader.

Remark 5.8. We also note that it is easy to verify that the norm of an inner produce
space satisfies the parallelogram law

∥u+ v∥2 + ∥u− v∥2 = 2∥u∥2 + 2∥v∥2. (16)

In fact, for any real inner product space, one has the polarization identity

⟨u, v⟩ = 1

4
(∥u+ v∥2 − ∥u− v∥2)

and similarly, for complex inner product spaces we have

⟨u, v⟩ = 1

4
(∥u+ v∥2 − ∥u− v∥2 − i∥u+ iv∥2 + i∥u− iv∥2)

We note that not all normed spaces satisfy the parallelogram law and all normed spaces
which satisfies the parallelogram inequality are inner product spaces.

Example. The space ℓ2 is a Hilbert space and more generally, the space L2(Ω) for a
general measurable space Ω is a Hilbert space with inner product

⟨f, g⟩ =
∫
Ω

f̄ gdµ.

We note that the Clarkson inequalities of Lemma 3.65 reduce to the parallelogram law in
the case p = 2. It is easy to verify that for p ̸= 2, the parallelogram law is not satisfied
for ℓp or, more generally, Lp. Thus, Lp and ℓp are Hilbert spaces if and only if p = 2.

5.1 Orthogonality and projection in Hilbert spaces

We will now introduce the concept of orthogonality.

Definition 5.9. Let H be an inner product space and U ⊂ H and x, y ∈ H.

1. We say that x is orthogonal to y denoted as x ⊥ y if ⟨x, y⟩ = 0. In particular, for
such x, y the Pythagorean theorem ∥x+ y∥2 = ∥x∥2 + ∥y∥2 holds.
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2. We define the orthogonal complement of U as U⊥ = {x ∈ H : ⟨x, y⟩ = 0 for all y ∈
U}

3. We say that U is an orthogonal set if ⟨x, y⟩ = 0 for all x ̸= y ∈ U .

4. We say that U is an orthonormal set if it is an orthogonal set and ∥y∥ = 1 for all
y ∈ U .

5. An orthonormal set U is an orthonormal basis (ONB) if it is maximal, i.e. if U ⊂ V ,
where V is an orthonormal set, then U = V .

Remark 5.10. Instead of an orthogonal/orthonormal set U we will often consider an
orthogonal/orthonormal family (eα)α∈I for an index set I. Given such a set, the index set
can be U itself and the map is the identity map.

Lemma 5.11. An orthogonal set is linearly independent.

Proof. Let e1, . . . , en be orthonormal and
∑n

i=1 αiei = 0. Multiplying by ej gives

n∑
i=1

αi⟨ej, ei⟩ = 0,

i.e. αj = 0 for all j ∈ {1, . . . , n}.

Lemma 5.12. Let X be an inner product space and A ⊂ X be a subset. Then

• A⊥ is closed.

• A ⊂ (A⊥)⊥

• A⊥ = (span(A))⊥

Proof. Let bn → b, where bn ∈ A⊥. Since the inner product is continuous we obtain
⟨b, a⟩ = limn→∞⟨bn, a⟩ = 0 for all a ∈ A, i.e. b ∈ A⊥. Clearly, A ⊂ (A⊥)⊥. Finally, if
b ∈ A⊥. Then, for all a ∈ span(A), we have ⟨a, b⟩ = 0 and by continuity we obtain that
then b ∈ (span(A))⊥. The other direction is trivial.

We now come to an important property of Hilbert spaces which reminds us of projec-
tion properties in Euclidean geometry.

For this, we first recall from linear algebra that a vector space X is an algebraic
sum of two subspaces Y and Z of X, denoted as X = Y ⊕alg Z (X ≃ Y ⊕alg Z) if for
each x ∈ X there exists unique y ∈ Y and z ∈ Z such that x = y + z. If the map
(Y, Z) 7→ X, (y, z) 7→ y + z is continuous, then we say that it is a topological direct sum,
which we denote as X = Y ⊕ Z. In the case of a Hilbert space and a closed subspace
we will show that every closed subspace V ⊂ H can be complemented, i.e. there exists a
linear subspace (which will actually be V ⊥) such that H = V ⊕V ⊥. This is in general, not
true for Banach spaces, e.g. c0 ⊂ ℓ∞ is a linear subspace which cannot be complemented.
Before that we will state the following observation.
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Lemma 5.13. Let X be a normed space and P : X → X be a linear continuous projec-
tion, i.e. P 2 = P . Then

• Either P = 0 or ∥P∥ ≥ 1.

• Both ker(P ) and range(P ) are closed.

• X = ker(P )⊕ range(P ).

Proof. We have ∥P∥ = ∥P 2∥ ≤ ∥P∥2 so either P = 0 or ∥P∥ ≥ 1. Since P is continuous
we have that its kernel is closed. Moreover, (I − P )2 = I − P so I − P is a continuous
projection with closed kernel. However, ker(I − P ) = range(P ) because x ∈ range(P )
if and only x = Pz for some z which holds true if and only if Px = P 2z = Pz = x so
x ∈ ker(P − I).

Theorem 5.14. Let V ̸= {0} be a closed subspace of a Hilbert space H and x ∈ H.
Then there exists a unique element y ∈ V such that

∥x− y∥ = dist(x, V ) := inf
z∈V

∥x− z∥.

In addition, the element y ∈ V is the unique element such that y − x ∈ V ⊥.
The map

PV : H → V, x 7→ y

is called the orthogonal projection onto V and is a bounded linear operator satisfying
P 2
V = PV , range(PV ) = V , and ker(PV ) = V ⊥ and ∥PV ∥ = 1.
Moreover, 1 − PV : H → V ⊥ is a projection with ∥1 − PV ∥ = 1 (except for V = H)

and in particular,
H = V ⊕ V ⊥.

Proof. Step 1: Existence and uniqueness. Without loss of generality x /∈ V . Consider
a minimizing sequence (yn)n ⊂ V such that ∥x− yn∥ → dist(x, V ) as n → ∞. Note that
yn is a Cauchy sequence because

∥yn − ym∥2 = ∥yn − x+ x− ym∥2 = 2∥yn − x∥2 + 2∥x− ym∥2 − 4∥1
2
(yn + ym)− x∥2

≤ 2∥yn − x∥2 + 2∥x− ym∥2 − 4(dist(x, V ))2.

Taking n,m → ∞ shows that (yn)n is a Cauchy sequence with limit y ∈ V since V is
complete. An analogous argument using the parallelogram identity also gives uniqueness.

Step 2: Orthonality of y − x. To show the orthogonality we use a linearization
argument. Let z ∈ V and consider for ε ∈ R the vector y + εz ∈ V . Then, since y is a
minimizer we have

∥x− y∥2 ≤ ∥x− y − εz∥2 = ∥x− y∥2 − 2εRe⟨x− y, z⟩+ ε2∥z∥2

and hence
2Re(⟨x− y, z⟩) ≤ ε∥z∥2.
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Considering both cases ε > 0 and ε < 0 and |ε| → 0 shows that Re⟨x − y, z⟩ = 0. By
considering iε instead of ε, we analogously obtain Im⟨x − y, z⟩. For the uniqueness let
y, y′ ∈ V be such that y−x ∈ V ⊥ and y′−x ∈ V ⊥. But then, y−y′ = y−x−(y′−x) ∈ V ⊥

so y = y′.
Step 3: Linearity of PV . In order to show that the map PV is linear we note that

for λx + µx′ ∈ H, we have that λPV (x) + µPV (x
′)− λx + µx′ ∈ V ⊥ since V ⊥ is a linear

space. Thus, by the characterization proved above, PV is linear. The characterization
also implies that P 2

V = PV as well as range(PV ) = V and ker(PV ) = V ⊥.
Step 4: Boundedness of PV . In order to show the boundedness statement, we let

x ∈ H, then PV (x) ∈ V and x− PV (x) ∈ V ⊥. In particular, we obtain

∥x∥2 = ∥PV x+ (1− PV x)∥2 = ∥Pvx∥2 + ∥(1− PV )x∥2

which implies ∥PV ∥ ≤ 1 and ∥1− PV ∥ ≤ 1.
From Lemma 5.13 we obtain that H = V ⊕ V ⊥.

Remark 5.15. The first conclusion of Theorem 5.14 is also true for uniformly convex
Banach spaces and for closed convex sets. More precisely, let V be a closed convex subset
of a uniformly convex Banach space X and x ∈ X. Then there exists a unique element
y ∈ V such that

∥x− y∥ = dist(x, V ) := inf
z∈V

∥x− z∥.

Theorem 5.16. Let H be a Hilbert space and V be a subspace. Then

V = (V ⊥)⊥

Proof. The inclusion⊂ is clear from Lemma 5.12. Assume first that V is a closed subspace.
If v ∈ (V ⊥)⊥, then 0 = PV ⊥v = (1 − PV )v = so v = PV (v) which means v ∈ V . If V is

not closed, then apply the result to V and note that V ⊥ = V
⊥
.

5.2 Riesz’ representation for Hilbert spaces

Theorem 5.17 (Riesz’s representation for Hilbert spaces). Let f ∈ H∗ be a linear func-
tional on a Hilbert space H. There exists a unique zf ∈ H such that

f(x) = ⟨zf , x⟩ (17)

for all x ∈ H and ∥f∥ = ∥zf∥. In particular, the map

A : H∗ → H, f 7→ zf

is an anti-linear isometric bijection with inverse

A−1 : H → H∗, x 7→ ⟨x, ·⟩.

Remark 5.18. In quantum mechanics, one uses the bra-ket notation: ⟨ψ| is an element
of H∗ and |ψ⟩ is an element of H. Then the map A−1 : H → H∗ is the map |ψ⟩ 7→ ⟨ψ|.
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Proof. Without loss of generality f ̸= 0 so let 0 ̸= x0 ∈ ker(f)⊥, where used that ker(f)
is closed. Now define

zf = f(x0)
x0

∥x0∥2

and note that f(x) = ⟨zf , x⟩ = 0 for all x ∈ ker(f). Moreover, ker(f)⊥ is 1-dimensional3

so for any y ∈ ker(f)⊥, we have y = αx0 so

⟨zf , y⟩ = α⟨zf , x0⟩ = αf(x0)
1

∥x0∥2
⟨x0, x0⟩ = f(y).

For the uniqueness of zf , let zf and z′f satisfy (17), then ⟨zf − z′f , x⟩ = 0 for all
x ∈ X so in particular for x = zf − z′f which shows zf = z′f . For the norm, we note that

∥f∥ = sup∥x∥=1 |f(x)| = sup∥x∥=1 |⟨zf , x⟩| ≤ ∥zf∥. Moreover, ∥f∥ ≥ 1
∥zf∥

|f(zf )| = ∥zf∥.
To see the anti-linearity of A we note that

⟨zαf+βg, x⟩ = (αf + βg)(x) = αf(x) + βg(x) = α⟨zf , x⟩+ β⟨zg, x⟩ = ⟨ᾱzf + β̄zg, x⟩.

SinceA is isometric it is injective. It is also surjective as the z ∈ H, the map fz : x 7→ ⟨z, x⟩
is a bounded linear functional.

We directly obtain the following corollary from the Riesz representation theorem and
the canonical map A : H∗ → H.

Corollary 5.19. Let H be a Hilbert space.

• A sequence (xn)n converges weakly to x if and only if ⟨y, xn−x⟩ → 0 as n→ ∞ for
every y ∈ H.

• H is reflexive.

• Every bounded sequence in H contains a weakly convergent subsequence.

Proof. The only non-trivial statement is the third statement. For this, we note that
if (xn)n is a convergent sequence, then define H0 := span{xn : n ∈ N}. Note that
H0 is a Hilbert space as a closed subspace of H and is separable. But since weakly
convergent subsequences are bounded, by Banach–Alaoglu, they are compact in the weak
topology. Since H0 is separable, the unit ball is metrizable in the weak topology and is
thus sequentially compact. Hence, (xn)n has a convergent subsequence in H0 ⊂ H.

5.3 Bessel’s inequality and Parseval identity

Throughout this subsection we let H be a Hilbert space. Some statements clearly also
extend to inner product spaces.

3Here we use that H/ ker(f) ∼= ker(f)⊥ and H/ ker(f) ∼= range(f) so ker(f)⊥ ∼= range(f).
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Lemma 5.20 (Bessel inequality). Let {en : n ∈ N} be an orthonormal set and x ∈ H.
Then,

∞∑
n=1

|⟨x, en⟩|2 ≤ ∥x∥2. (18)

Proof. For {e1, . . . eN} we consider x = u + v, where u :=
∑N

i=1⟨ei, x⟩ei and v := x − u.
We note that u ⊥ v because

⟨u, v⟩ =
N∑
i=1

⟨x, ei⟩

(
⟨ei, x⟩ −

N∑
j=1

⟨ej, x⟩⟨ei, ej⟩

)
=

N∑
i=1

⟨x, ei⟩ (⟨ei, x⟩ − ⟨ei, x⟩) = 0

Similarly,

⟨u, u⟩ =
N∑
i=1

N∑
j=1

⟨x, ei⟩⟨ej, x⟩⟨ei, ej⟩ =
N∑
i=1

|⟨x, ei⟩|2

and thus

∥x∥2 = ∥u∥2 + ∥v∥2 ≥ ∥u∥2 =
N∑
i=1

|⟨x, ei⟩|2.

Sending N → ∞ proves the claim.

Lemma 5.21. Let S ⊂ H be an orthonormal set. Let x ∈ H. Then the set Sx = {e ∈
S : ⟨e, x⟩ ≠ 0} is (at most) countable.

Proof. From Bessel’s inequality we obtain for every n ∈ N the set Sx,n = {e ∈ S : |⟨e, x⟩| ≥
1
n
} is finite. Hence Sx = ∪n∈NSx,n is countable.

In order to deal with non-separable Hilbert space we have to introduce the conecept of
unconditional convergence of series. Recall that a series

∑∞
x=1 xn is absolutely convergent

if
∑∞

x=1 ∥xn∥ <∞.

Definition 5.22. Let X be a normed space and I an uncountable index set. Let xi ∈ X
for all i ∈ I. We say that the series

∑
i∈I xi converges unconditionally to x ∈ X if

• I0 = {i ∈ I : xi ̸= 0} is countable.

• for all enumerations of I0 = {i1, i2, . . . } we have x =
∑∞

n=1 xin .

Remark 5.23. For finite dimensional normed spaces a series converges unconditionally if
and only if it converges absolutely. In infinite dimensions, absolutely convergent series still
converge unconditionally but the converse is not necessarily true, e.g. the series

∑∞
n=1

1
n
en

does not converge absolutely in ℓ∞. However,
∑

n∈N
1
n
en converges unconditionally to

x = (1, 1/2, 1/3, . . . ). In fact, every infinite-dimensional Banach space admits series which
are unconditional convergent but which do not converge absolutely. This is a theorem of
Dvoretzky and Rogers.
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Lemma 5.24 (Bessel inequality). Let (ei)i∈I be an orthonormal set. Then, for every
x ∈ H ∑

i∈I

|⟨x, ei⟩|2 ≤ ∥x∥2.

Proof of Lemma 5.24. This follows directly from Lemma 5.21 and from Lemma 5.20.

Remark 5.25. For αi ∈ [0,∞), i ∈ I the uncountable sum
∑

i∈I αi is defined as∑
i∈I

αi := sup
J⊂I,|J |<∞

∑
j∈J

αj.

If the sum is finite, we can verify that αi = 0 for all but countably many i ∈ I.

Lemma 5.26. Let S ⊂ H be an orthonormal set. Then the following statements are
equivalent.

1. S is an orthonormal basis.

2. If x ∈ X and ⟨x, y⟩ = 0 for all y ∈ S, then x = 0.

3. span(S) is dense in H.

Proof. 1) ⇒ 2) If ⟨x, y⟩ = 0 for all y ∈ S and x ̸= 0, then the set S ∪ {x/∥x∥} would be
an ONB. However, S is maximal so x = 0.

2) ⇒ 3) The closure Y = span(S) is a closed subspace of H. If x ∈ Y ⊥, then by
Lemma 5.12, x ∈ S⊥ so by 2) x = 0. Hence, Y ⊥ = {0} so Y = H.

3) ⇒ 1) If S ′ ⊃ S is an ONS and x ∈ S ′ \S, then x ⊥ S, and hence x ⊥ span(S) = H
so x = 0 which gives a contradiction. So S is an orthonormal basis.

Lemma 5.27 (Parseval identity). Let H be a Hilbert space and (ei)i∈I be an ONB. Then,

x =
∑
i∈I

⟨ei, x⟩ei,

where the series converges unconditionally. Moreover,

∥x∥2 =
∑
i∈I

|⟨ei, x⟩|2.

Proof. We let (en)n∈N ⊂ (ei)i∈I be an enumeration of the subset for which the coefficients
⟨en, x⟩ are non-zero. We define xN =

∑N
n=1⟨en, x⟩en and verify that (xN)N is a Cauchy

sequence. Indeed, for M ≥ N , we compute using the orthogonality that

∥xN − xM∥2 ≤
M∑

n=N

|⟨en, x⟩|2 → 0

as M,N → ∞ since the sum converges by Bessel’s inequality. Thus, xN → y as N → ∞
and we are left to show that y = x. Clearly, x, y ⊥ (ei)i∈I \ (en)n∈N and since ⟨en, y⟩ =
⟨en, x⟩ for all n we have that x = y by Lemma 5.26. The second statement also follows
from the continuity of the inner product and orthogonality and is left to the reader.
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Theorem 5.28. Every Hilbert space H admits an orthonormal basis. Moreover, H is
separable if and only if every orthonormal basis of H is countable.

Proof. This is an application of Zorn’s lemma. Consider P = {O ⊂ H : O is orthonormal}.
Clearly, P is a non-empty poset by set inclusion. For any chain C the set ∪c∈Cc is an
upper bound so P has a maximal element O. Clearly, O is orthonormal and complete.

If O is a countable ONB, then it is a countable Schauder basis so by Lemma 2.7, H is
separable. Now assume that H is separable and let (dn)n∈N be a countable dense set and
(ei)i∈I be an ONB. Consider the collection of balls (B1/2(ei))i∈I . Since ∥ei − ej∥ =

√
2

for i ̸= j, these balls are disjoint. Since (dn)n are dense, for each i ∈ I there exists a
n(i) ∈ N such that dn(i) ∈ B1/2(ei). Since the balls are disjoint, the map I → N, i 7→ n(i)
is injective so I is countable.

Remark 5.29. In practice, virtually all Hilbert spaces of relevance and interest are sep-
arable.

In the separable case, there is essentially only one Hilbert space, ℓ2.

Theorem 5.30. Let H be a separable Hilbert space. If dim(H) = n < ∞, then H is
isomorphic to Kn and when dim(H) = ∞, then H is isomorphic to ℓ2.

Proof. Let us only consider the case dim(H) = ∞. Let (ei)i∈N be a ONB and define the
map T : H → ℓ2 by defining

x 7→ Tx = (⟨ei, x⟩)i∈N ∈ ℓ2.

T is well-defined linear operator by the Bessel inequality. Moreover, T is injective because
ei is an ONB. To show that T is surjective we note that for (xi)i∈N ∈ ℓ2, the sequence∑∞

i=1 xiei is well-defined using the same argument as in the proof of Lemma 5.27.

5.4 Hilbert space adjoints

Definition 5.31. Let X, Y be normed spaces and T ∈ BL(X, Y ). The dual operator T ′

of T is defined as
T ′ : Y ∗ → X∗, f 7→ f ◦ T.

Proposition 5.32. The map ′ : BL(X, Y ) → BL(Y ∗, X∗) is a linear and bounded
isometry.

Proof. Clearly, ′ is linear. Moreover, it is an isometry because

∥T ′∥ = sup
∥f∥=1

∥T ′(f)∥ = sup
∥f∥=1

sup
∥x∥=1

|T ′(f)(x)|

= sup
∥f∥=1

sup
∥x∥=1

|f(Tx)| = sup
∥x∥=1

sup
∥f∥=1

|f(Tx)| = sup
∥x∥=1

∥Tx∥ = ∥T∥,

where we used Corollary 2.24.
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Recall that in a Hilbert space the adjoint map A : H∗ → H is an isomorphism.

Definition 5.33. Let H be a Hilbert space and T ∈ BL(H). We define the Hilbert
adjoint T ∗ as

T ∗ = AT ′A−1

so that T ∗ is uniquely characterized by

⟨x, Ty⟩ = ⟨T ∗x, y⟩

for all x, y ∈ H. Moreover, ∥T ∗∥ = ∥T∥.

Remark 5.34. A word of caution: Often the dual operator is also denoted with ∗ instead
of ′.

Proposition 5.35. Let H be a Hilbert space and S, T ∈ BL(H), λ, µ ∈ C. Then the
following holds true.

• (λT + µS)∗ = λ̄T ∗ + µ̄S∗.

• (ST )∗ = T ∗S∗

• T ∗∗ = T

• ∥T ∗T∥ = ∥T∥2

• ker(S) = range(S∗)⊥

• ker(S∗) = range(S)⊥

• If S−1 ∈ BL(H) exist, then S∗ is invertible with (S∗)−1 = (S−1)∗.

Proof. The first three statements are clear from the definition. For the fourth statement,
we note that

∥T ∗T∥ = sup
∥x∥=∥y∥=1

|⟨x, T ∗Ty⟩| = sup
∥x∥=∥y∥=1

|⟨Tx, Ty⟩| ≤ ∥T∥2

= sup
∥x∥=1

|⟨Tx, Tx⟩| ≤ sup
∥x∥=∥y∥=1

|⟨Tx, Ty⟩| = ∥T ∗T∥.

For the fifth statement, we observe that x ∈ ker(S) if and only if ⟨y, Sx⟩ = 0 for all y ∈ H
which is true if and only if ⟨S∗y, x⟩ = 0 for all y ∈ H, i.e. if and only if x ⊥ range(S∗).

For the last statement we note that (S−1)∗S∗ = (SS−1)∗ = I = (S−1S)∗ = S∗(S−1)∗.

Definition 5.36. Let H be a Hilbert space and T ∈ BL(H). We say that T is

• self-adjoint (or hermitian) if T ∗ = T ,

• unitary if T ∗T = TT ∗ = I,
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• normal if TT ∗ = T ∗T .

Example. • If H is Cn and M ∈ BL(H) be represented by the matrix (Mij)i,j then
M∗ is represented by (Mji)i,j.

• Consider the shift operator S : ℓ2 → ℓ2 which acts as (x1, x2, . . . ) 7→ (x2, x3, . . . ).
Then, S∗ : ℓ2 → ℓ2 is given as (x1, x2, . . . ) 7→ (0, x1, x2, . . . ). T is not normal because
TT ∗ = id but T ∗T = PU for U = {(xi)i : x1 = 0}.

• T ∗T and TT ∗ are always self-adjoint.

Theorem 5.37 (Hellinger–Toeplitz). Let H be a Hilbert space and let T : H → H be a
linear opeator which satisfies

⟨Tx, y⟩ = ⟨x, Ty⟩.
for all x, y ∈ H. Then, T ∈ BL(H) and moreover T is self-adjoint.

Proof. This is a consequence of the closed graph theorem. Let xn → x and Txn → y.
Then,

⟨z, y⟩ = lim
n→∞

⟨z, Txn⟩ = lim
n→∞

⟨Tz, xn⟩ = ⟨Tz, x⟩ = ⟨z, Tx⟩.

Since z ∈ H was arbitrary we have that Tx = y. Thus, the graph of T is closed and by
the closed graph theorem, T is bounded.

Proposition 5.38. Let T : H → H be a self-adjoint operator. Then

∥T∥ = sup
∥x∥=1

|⟨x, Tx⟩|.

Proof. The non-trivial direction is “≤”. It suffices to show that

∥T∥ = sup
∥x∥,∥y∥=1

|⟨x, Ty⟩| ≤ sup
∥x∥=1

|⟨x, Tx⟩|.

Moreover, it suffices to consider only the case ⟨x, Ty⟩ ∈ R where ∥x∥ = ∥y∥ = 1. Using
that T is self-adjoint, we can decompose

⟨x, Ty⟩ = 1

4
⟨x+ y, T (x+ y)⟩ − 1

4
⟨x− y, T (x− y)⟩.

Hence,

|⟨x, Ty⟩| ≤ 1

4
(∥x+ y∥2 + ∥x− y∥2) sup

∥x∥=1

|⟨x, Tx⟩ = sup
∥x∥=1

|⟨x, Tx⟩|.

6 Spectral theory

For linear operators (i.e. matrices) A : V → V in finite dimensions, we say that λ is an
eigenvalue of A if A−λ (we will use this instead of A−λI) is not injective. An eigenvector
is a non-zero element in the kernel of A−λ. In infinite dimensions, A−λ can be injective
but fail to be surjective. This will lead us to define the concept of the spectrum of A
which is a generalization of an eigenvalue.
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6.1 Spectrum in Banach spaces

Throughout this subsection we assume that X is a complex Banach space.

Definition 6.1. Let A ∈ BL(X) be a bounded linear operator. We define

• the resolvent set of A as

ρ(A) = {λ ∈ C : (A− λ)−1 exists in BL(X)}.

• the spectrum of A as
σ(A) = spec(A) = C \ ρ(A).

• the point spectrum of A as

σp(A) = {λ ∈ C : A− λ is not injective}

• the continuous spectrum of A as

σc(A) = {λ ∈ C : A− λ injective, not surjective with dense image}

• the residual spectrum of A as

σr(A) = {λ ∈ C : A− λ injective, not surjective, image not dense}.

For λ ∈ ρ(A), we define the resolvent operator as

Rλ(A) = (A− λ)−1.

Typically, of course not always, σp consists of isolated points, σc of unions of intervals and
σr is empty. This also explains the origins of the names. An element λ ∈ σp(A) is called
an eigenvalue of A and a non-zero element (which we often normalize to have unit norm)
in the kernel of A − λ is called eigenvector of A. This agrees of course with the usual
terminology for finite-dimensional operators (matrices).

Remark 6.2. We note that the spectrum can be written as the disjoint union σ(A) =
σp(A)∪σc(A)∪σr(A). Indeed, by the inverse mapping theorem Corollary 2.34, if A−λ is
bijective, then its inverse is a bounded linear operator. (Here we use that X is a Banach
space.)

Proposition 6.3. Let A ∈ BL(X). Then σ(A) = σ(A′). If X is a Hilbert space, then
σ(A∗) = {λ̄ : λ ∈ σ(A)}.

Proof. In the case of the Banach space, we note that A − λI is an isomorphism if and
only if (A− λI)′ = A′ − λI is (see problem set). The case for Hilbert spaces follows from

(A∗ − λI)−1 =
(
(A− λ̄I)∗

)−1
=
(
(A− λ̄I)−1

)∗
.

Example. • If dim(X) <∞, then σc = σr = ∅.
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• Let H be a Hilbert space and A ∈ BL(H) self-adjoint. Then σ(A) ⊂ R (see already
Corollary 6.22) and σr(A) = ∅ (note that range(A − λ)⊥ = ker(A − λ) so if A − λ
is injective, then range(A− λ) is dense.)

• Let X = C[0, 1] and Af(x) =
∫ x

0
f(t)dt. Then, σ(A) = σr(A) = {0}. (problem set)

Theorem 6.4. Let A ∈ BL(X). Then:

1. ρ(A) is open.

2. The map ρ(A) → BL(X), z 7→ Rz(A) is analytic, i.e. it can be written locally as an
absolutely convergent power series.

3. σ(A) is compact and non-empty. More, precisely, σ(A) ⊂ {z ∈ C : |z| ≤ ∥A∥}.

Before we prove the theorem above, we will need the following additional lemma.

Lemma 6.5. Let A ∈ BL(X) and assume that ∥A∥ < 1. Then, (I − A)−1 exists and is
a bounded linear operator. Moreover,

(I − A)−1 =
∞∑
n=0

An.

Proof. The idea is to use the Neumann series. Recall that for q ∈ C with |q| < 1 we have∑∞
n=0 q

n = 1
1−q

. Since ∥An∥ ≤ ∥A∥n we have (recall problem set 2) that S =
∑∞

n=0A
n

converges. To show that indeed the limit is the inverse, we compute

(I − A)(I + A+ A2 + · · ·+ An) = I − An+1 → I

as n→ ∞ as ∥An+1∥ ≤ ∥A∥n+1 → 0 as n→ ∞. Thus, (I − A)S = S(I − A) = I.

Proof of Theorem 6.4. 1) Let λ0 ∈ ρ(A). Then A−λ0 is invertible and c := ∥(A−λ0)−1∥ <
∞. Let λ ∈ C such that |λ− λ0| < 1/c. Then,

A− λ = A− λ0 + (λ0 − λ) = (A− λ0)(I + (λ0 − λ)(A− λ0)
−1)

Since A−λ0I is invertible, we have that A−λI is invertible if B = I+(λ0−λ)(A−λ0)−1

is invertible. But B is invertible by Lemma 6.5 because |λ0 − λ| ∥(A − λ0I)
−1∥ < 1. In

particular, from Lemma 6.5 we have that

(A− λ)−1 =
∞∑
n=0

(λ0 − λ)n((A− λ0)
−1)n+1

which shows 2).
For 3) we first note that for |λ| > ∥A∥ we have that (A − λ) = λ(λ−1A − I) is

invertible in BL(H) by Lemma 6.5. Hence, σ(A) is closed and bounded (i.e. compact)
and in addition σ(A) ⊂ {λ ∈ C : |λ| ≤ ∥A∥}.
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It remains to show that the spectrum is non-empty. For a contradiction, assume
that ρ(A) = C. Then, the map C → BL(X) : λ 7→ Rλ(A) is analytic on C as it can
be written locally as a power series. Consider now a functional f ∈ (BL(X))∗. Then,
f(Rλ(A)) : C → C is entire because it can be locally written as

f(Rλ(A)) =
∞∑
n=0

(λ0 − λ)nf
(
Rλ0(A)

n+1
)
.

Moreover, it is bounded because for |λ| > 2∥A∥ we have, using (A − λ) = λ(λ−1A − I)
that

|f(Rλ(A))| ≤ ∥f∥|λ|−1

∞∑
n=0

(
∥A∥
|λ|

)n

≤ 2∥f∥|λ|−1 (19)

and for |λ| ≤ 2∥A∥, it is bounded because it is a compact set. Hence, by Liouville’s
theorem, f(Rλ(A)) is constant in λ for all f . Thus, by the Hahn–Banach theorem,
(A− I)−1 = A−1 but this gives a contradiction.

Definition 6.6. We define the spectral radius of a bounded operator A ∈ BL(X) as

r(A) := inf
n∈N

∥An∥
1
n = lim

n→∞
∥An∥

1
n .

The above limit exists due to the following

Lemma 6.7. Let (an)n be a sequence of real numbers and assume that 0 ≤ an+m ≤ anam

for all n,m ∈ N. Then limn→∞ a
1
n
n = infn∈N a

1
n
n .

Proof. Clearly we have ≤ so it suffices to show ≥. Set a
.
= infn∈N a

1
n
n . For ε > 0 choose

N ∈ N such that a
1
N
N < a + ε and set b := max{a1, . . . aN}. For a natural number n we

write n = kN + r for 1 ≤ r ≤ N . Then,

a
1
n
n = a

1
n
kN+r ≤ (akNar)

1
n ≤ (a+ ε)kN/nb

1
n = (a+ ε)1−r/nb

1
n → a+ ε

as n→ ∞.

The following theorem justifies the name spectral radius for r(A).

Theorem 6.8. Let A ∈ BL(X) and λ ∈ σ(A). Then

r(A) = max{|λ| : λ ∈ σ(A)}.

Proof. “≥”: We will first show that |λ| ≤ r(A) for all λ ∈ σ(A). To this end we have to
show that for |λ| > r(A), A − λ = λ(λ−1A − 1) is invertible. Similar to the argument
before, it suffices to show that

∑∞
n=1

(
A
λ

)n
converges. But this converges because for all n

sufficiently large q|λ| > ∥An∥ 1
n for some q < 1, i.e. ∥

(
A
λ

)n ∥ ≤ qn for n sufficiently large,
which shows that the series converges.
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“≤”: Let r0 = max{|λ| : λ ∈ σ(A)} (which is attained by compactness of the spec-
trum). Let |µ| > r0. We will then show that |µ| ≥ r(A) which shows that r0 ≥ r(A), i.e.
r0 = r(A). For f ∈ (BL(X))∗, consider in the set {λ : |λ| > r0} the analytic function

Ff (λ) = f((A− λ)−1).

For |λ| > r(T ) we have

Ff (λ) = −
∞∑
n=0

f(An)λ−n−1.

This Laurent series converges in the largest open annulus in which Ff is analytic. In
particular, it converges uniformly at µ. In particular limn→∞ f(An/µn+1) = 0. Since f
was arbitrary, we have that An/µn+1 converges weakly to zero. Thus, it is bounded. In
particular, there is a C > 0 such that

∥An∥1/n ≤ C1/n|µ|1+1/n → |µ|

which shows that r(A) ≤ |µ|.

Corollary 6.9. IfH is a Hilbert space andA ∈ BL(H) is normal. Then limn→∞ ∥An∥1/n =
∥A∥ and thus r(A) = ∥A∥.

Proof. We have ||A∥2 = ∥AA∗∥ and ∥A2∥2 = ∥A2(A2)∗∥ = ∥AA∗(AA∗)∗∥ = ∥AA∗∥2 =
∥A∥4, i.e. ∥A2∥ = ∥A∥2. By induction, we have ∥A2k∥ = ∥A∥2k and thus limn→∞ ∥An∥1/n =
limk→∞ ∥A2k∥1/2k = ∥A∥.

6.2 Compact operators

Throughout this section, X, Y are Banach spaces and H is a Hilbert space

Definition 6.10. Let K ∈ BL(X, Y ). We say that K is compact if for every bounded
subset B ⊂ X, the closure of the image K(B) is compact, i.e. K(B) is relatively compact.
We define the set of compact operators as K(X, Y ) ⊂ BL(X, Y ).

Proposition 6.11. An operator K ∈ BL(X, Y ) is compact if and only if for every
bounded sequence (xn)n ⊂ X, the image K(xn) has a convergent subsequence.

Proof. “⇒”: This follows from the equivalence of compactness and sequential compact-
ness. “⇐”: Assume that M is bounded. We want to show that T (M) is relatively
compact. Let (yn)n be a sequence in T (M). Then yn = Txn for a bounded sequence xn.
Thus, yn has a convergent subsequence. Since (yn)n was arbitrary, we have that T (M) is
relatively compact.

In order to present an important example of a compact operator, namely that of
certain integral operators, we will prove an important compactness criterion for elements
of the Banach space C(K) for a compact Hausdorff space K.

67



Theorem 6.12 (Arzelà–Ascoli). Let (K, d) be a compact metric space and M ⊂ C(K)
be a subset of continuous functions. Then M is compact if and only if M satisfies

1. M is closed,

2. M is uniformly equicontinuous, i.e. for all ε > 0, there is an δ > 0 such that for all
x, y ∈ K, d(x, y) < δ implies |f(x)− f(y)| ≤ ε for all f ∈M .

3. M is pointwise bounded, i.e. supf∈M |f(x)| <∞, for all x ∈ K.

Proof. “⇐” This is an application of a Cantor diagonal argument. Since C(K) is a metric
space, it suffices to show sequential compactness. We let (fn)n be a sequence of functions
in M . Since K is a compact metric space, it is separable. We let (xm)m be a countable
dense set in K. We will show that (fn)n has a subsequence which is a Cauchy sequence.
For m = 1 we consider the sequence (fn(x1))n. This sequence is a bounded sequence
in K and thus has a convergent subsequence (fnk1

(x1))k1 . For m = 2 we consider the
sequence (fnk1

(x2))k1 in K. Again, this has a convergent subsequence which we denote
by (fnk2

(x2))k2 . We continue inductively to construct subsequences (fnki
)ki for i ≥ 1. We

then choose the diagonal sequence (fn{k1=1} , fn{k2=2} , . . . ) which we denote by (fnj
)j. By

construction, the diagonal sequence (fnj
)j converges for all xm.

We will now show that the diagonal sequence is a Cauchy sequence. Let ε > 0 and let
δ > 0 be as in the statement of the uniform equicontinuity. Consider the coverings Bδ(xm)
of δ-balls around the dense set (xm)m. By compactness of K, we can extract a finite
subcover with δ balls centered at (xm1 , . . . xmr). Since fnj

(xm1), . . . fnj
(xmr) are a Cauchy

sequences, there exists a j0(ε) such that |fnj
(xm1)−fnl

(xm1)|, . . . , |fnj
(xmr)−fnl

(xmr)| < ε
for all j, l ≥ j0(ε).

Let x ∈ K, and let an xmo , o = 1, . . . , r such that d(x, xm0) < δ. Then,

|fnj
(x)− fni

(x)| ≤ |fnj
(x)− fnj

(xm0)|+ |fnj
(xm0)− fni

(xm0)|+ |fni
(xm0)− fni

(x)| ≤ 3ε

for all i, j ≥ j0(ε). Hence, fnj
is a Cauchy sequence and thus convergent as C(K) is

complete.
“⇒” Since M is compact, then it is closed because C(K) is Hausdorff and moreover

bounded as C(K) is a metric space. It remains to show the uniform equicontinuity. Let
ε > 0. Since K is compact, we have that every f ∈ M is uniformly continuous. Thus,
for every f ∈ M , there exists a δ > 0 such that d(x, y) < δ implies |f(x) − f(y)| < ε.
Now cover M by (Bε(f))f∈M and extract a finite subcover with center at f1, . . . fn. Then,
choose δ > 0 sufficiently small such that |fj(x) − fj(y)| ≤ ε whenever d(x, y) < δ and
j = 1, . . . n. Then, let x, y ∈ K with d(x, y) < δ and f ∈ M . Choose fj ∈ M such that
∥f − fj∥ ≤ ε.. Then,

|f(x)− f(y)| ≤ |f(x)− fj(x)|+ |fj(x)− fj(y)|+ |fj(y)− f(y)| ≤ 3ε.

This shows that M is equicontinuous.
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Example. • Let k : [0, 1]2 → R be continuous. Define an operator Tk : L2([0, 1]) →
L2([0, 1]) as

f 7→ (Tkf)(x) :=

∫ 1

0

f(y)k(x, y)dy.

You will show in the problem set that Tk is a compact operator.

• Similarly, Tk : C[0, 1] → C[0, 1] as defined above is also compact, which follows from
the Arzelà–Ascoli theorem.

• Let T ∈ BL(X, Y ). Then T is compact if T has finite rank, i.e. if dim(range(T )) <
∞.

A feature of compact operators is that they map weakly convergent sequences to
strongly convergent sequences.

Proposition 6.13. Let K ∈ BL(X, Y ) be a compact operator. If xn ⇀ x as n → ∞
then K(xn) → K(x) as n→ ∞.

Proof. Let xn ⇀ x. We want to show that K(xn) → K(x) as n → ∞. It suffices to
show that every subsequence of K(xn) has a subsequence which converges to K(x). Let
(xnk

)k be a subsequence. Since (xnk
)k is weakly convergent, we have by the compactness

of K that K(xnkj
) → y for some subsequence (xnkj

)j. Let f ∈ Y ∗. Then, f ◦ K ∈ X∗

so f(K(xnkj
)) → f(K(x)) but also f(K(xnkj

)) → f(y) so K(x) = y. This shows that

K(xn)n → K(x) for the original sequence.

Theorem 6.14. The set K(X, Y ) ⊂ BL(X, Y ) is a closed subspace.

Proof. Clearly, K(X, Y ) is a subspace. The proof of the closedness of K(X, Y ) requires
a diagonal argument. Let T ∈ BL(X, Y ) and Tn → T where Tn ∈ K(X, Y ). Let (xm)m
be a bounded sequence and assume WLOG that ∥xm∥ ≤ 1. Since T1 is compact, we have
that (T1(xm))m has a convergent subsequence which we denote with (T1xm1)m1 . Since T2
is compact, we can again extract a further subsequence (xm2)m2 . We continue inductively
and will denote the diagonal sequence by (xmj

)j. In particular, we have that (Tnxmj
)j

converges for all n. Thus, for ε > 0 let N ∈ N such that ∥T − TN∥ ≤ ε/3. Then

∥Txmj
− Txmi

∥ ≤ ∥Txmj
− TNxmj

∥+ ∥TNxmj
− TNxmi

∥+ ∥TNxmi
− Txmi

∥ ≤ ε

for i, j sufficiently large only depending on ε. Thus, (Txmj
)j is Cauchy and thus conver-

gent.

Corollary 6.15. The limit of a sequence of finite rank operators is a compact operator.

Remark 6.16. The converse to the above corollary also holds true in the case of Hilbert
spaces and has been a long-standing open problem for Banach spaces. Enflo showed in
1973 that this property is false in general Banach spaces. He received a living goose as an
award from Mazur. Banach spaces with that property are said to have the approximation
property.
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Proposition 6.17. If K ∈ K(X) and T ∈ BL(X), then KT, TK ∈ K(X, Y ). In
particular, this makes K(X) ⊂ BL(X) a closed, 2-sided ideal.

Proof. If xn is a bounded sequence, then so is Txn and thus KTxn has a convergent
subsequence. Furthermore, Kxn has a convergent subsequence but then also TKxn has
a convergent subsequence.

Theorem 6.18 (Schauder’s theorem). An operator T ∈ BL(X, Y ) is compact if and only
if T ′ ∈ BL(Y ∗, X∗) is compact.

Proof. “⇒”: Let fn be a bounded sequence in Y ∗. Since T is compact we have that
Z := T (BX

1 (0)) is a compact set. Consider the sequence fn|Z restricted to Z and note
that fn is bounded and equicontinuous |fn(z) − fn(z̃)| ≤ supn ∥fn∥∥z − z̃∥ ≤ C∥z − z̃∥.
Thus, the closure of {fn : n ∈ N} is compact and hence, fn has a convergent subsequence
(fnk

) by Arzelà–Ascoli. Hence,

∥T ′fnk
− T ′fnl

∥ = sup
∥x∥=1}

∥fnk
(T (x))− fnl

(T (x))∥ ≤ ∥fnk
− fnl

∥∞ → 0

as k, l → ∞. Hence, T ′ is compact.
“⇐”: If T ′ is compact so is T ′′ and thus also T ′′ ◦ iX , where iX : X → X∗∗ is the

canonical embedding. By a direct computation, we observe that T ′′ ◦ iX = iY ◦ T . Thus,
the operator iY ◦ T : X → Y ′′ is compact. Since Y is closed within Y ′′ we have that
T : X → Y is compact.

Corollary 6.19. The set of compact operators K(H) ⊂ BL(H) on a Hilbert space is a
closed, ∗-closed, 2-sided ideal in the set of bounded operators.

Proof. If K ∈ K(H) is compact, then so it K ′. But then also K∗ = AT ′A−1 is compact
which follows from the same argument as in the proof of Proposition 6.17.

Example. Let T be a diagonal operator on a separable Hilbert space, i.e. there exists
an orthonormal basis (ei)i∈N such that Tei = αiei. Assume that αi → 0 as i → ∞. T is
compact because it is the uniform limit of Tn which is defined as Tnei = αiei for i ≤ n
and zero otherwise. Indeed, ∥T − Tn∥ ≤ supj≥n |αj| → 0 as n→ ∞.

6.3 Spectral theorem for compact self-adjoint operators

In the following, we will focus on compact self-adjoint operators on Hilbert spaces. We
let H be a Hilbert space.

Definition 6.20. For T ∈ BL(H) we define the numerical range as W (T ) = {⟨x, Tx⟩ :
∥x∥ = 1}.

Theorem 6.21. For T ∈ BL(H) we have σ(T ) ⊂ W (T ).
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Proof. Let λ /∈ W (T ). Thus, there exists d > 0 such that for all ∥x∥ = 1 we have

d ≤ |λ− ⟨x, Tx⟩| ≤ ∥(λ− T )x∥.

Thus λ− T is injective and an isomorphism onto its image with the norm of the inverse
bounded by 1/d. Thus, range(λ − T ) is closed (check it!). It suffices to show that the
range of λ − T has trivial orthogonal complement. Indeed, if x ⊥ range(λ − T ), then
⟨x, (λ− T )y⟩ for all y ∈ H. Thus, for y = x we have

λ⟨x, x⟩ = ⟨x, Tx⟩,

but this can only happen if x = 0 by definition of the numerical range of T .

Corollary 6.22. Let T ∈ BL(H) be self-adjoint. Then, σ(T ) ⊂ R.

Theorem 6.23. Let T ∈ BL(H) be a compact self-adjoint operator. Then at least one
of −∥T∥ and ∥T∥ is an eigenvalue of T .

Proof. WLOG T ̸= 0. From Proposition 5.38 we can find unit vectors (xn)n such that
∥T∥ = limn→∞ |⟨xn, Txn⟩|. After passing to a subsequence and since T is self-adjoint, we
have that ⟨xn, Txn⟩ → λ, where λ = ∥T∥ or λ = −∥T∥. We compute

∥Txn − λxn∥2 = ∥Txn∥2 − 2λ⟨xn, Txn⟩+ λ2 ≤ 2λ2 − 2λ⟨xn, Txn⟩ → 0

as n→ ∞. Since T is compact, Txn has a convergent subsequence to say y, and thus λxn
also has a convergent subsequence to y. Then, Txnk

= λ−1Tλxnk
→ λ−1Ty. But then

y = λ−1Ty or Ty = λy. To conclude that y ̸= 0 we note that ∥y∥ = limn→∞ ∥λxnk
∥ =

|λ| ≠ 0.

Theorem 6.24. Let T ∈ BL(H) be self-adjoint. Then, the eigenvectors for distinct
eigenvalues are orthogonal.

Proof. Let x, y be unit eigenvectors for different eigenvalues λ, µ, i.e. Tx = λx and
Ty = µy. Then,

µ⟨x, y⟩ = ⟨x, µy⟩ = ⟨x, Ty⟩ = ⟨Tx, y⟩ = λ⟨x, y⟩
and hence (µ− λ)⟨x, y⟩ = 0 from which we obtain the claim.

Theorem 6.25. Let T ∈ BL(H) be a compact self-adjoint operator. Then, the set of
eigenvalues of T is a finite or countably infinite set of real numbers. If it is infinite, then
the eigenvalues form a sequence that converges to zero.

Proof. Assume that the set of eigenvalues is infinite. Let ε > 0 and we will show that
at most finitely many eigenvalues exists with absolute value larger than ε. Assume for a
contradiction that this is not the case and there exists an infinite sequence (λi)i of distinct
eigenvalues with |λi| ≥ ε. Let xi be a corresponding sequence of unit eigenvectors. Then,
using the orthogonality of the eigenvectors, we have

∥Txi − Txj∥2 = ∥λixi − λjxj∥2 = |λi|2∥xi∥2 + |λj|2∥xj∥2 ≥ 2ε2.

However, this cannot happen as Txi has a convergent subsequence by compactness of T .
Clearly, this also shows that {λ : λ is an eigenvalue} is countable.

71



Proposition 6.26. Let T ∈ BL(H) and M ⊂ H be a closed subspace. If M is an
invariant subspace of T (i.e. Tm ∈M for all m ∈M), then M⊥ is an invariant subspace
for T ∗. Conversely, ifM⊥ is an invariant subspace for T ∗, thenM is an invariant subspace
for T . In particular, if T is self-adjoint and M is an invariant subspace of T , then M⊥ is
also an invariant subspace of T .

Proof. Let x ∈M⊥. Let m ∈M . Then,

⟨m,T ∗x⟩ = ⟨Tm, x⟩ = 0

because Tm ∈ M and x ∈ M⊥. Hence, T ∗x ∈ M⊥. The second statement follows from
T ∗∗ = T and M⊥⊥ =M .

Remark 6.27. The question of whether every bounded linear operator on a Banach space
admits a non-trivial invariant subspace has sparked interest. It is known as the invariant
subspace problem. Counterexamples to this statement have been constructed for Banach
spaces by Enflo. Whether the statement is true for Hilbert spaces is still open; however,
a recent preprint of Enflo suggests an affirmative answer: arXiv:2305.15442.

Theorem 6.28 (Spectral theorem for compact self-adjoint operators). Let T ∈ BL(H)
be a compact, self-adjoint operator. There exist a countable orthonormal sequence (en)n
of eigenvectors of T and sequence (λn)n in C \ {0} which converges to zero such that

Tx =
∑
n

λn⟨en, x⟩en

and
H = ker(T )⊕ span(e1, e2, . . . ).

In particular, the λi are the non-zero eigenvalues and the ei are the corresponding eigen-
vectors. Moreover, ∥T∥ = supn |λn|.

Proof. Let (λn)n be the sequence of non-zero eigenvalues counted by multiplicities, e.g.
λ1 = λ2 = · · · = λd1 , where d1 is the dimension of ker(T − λ1), i.e. the geometric
multiplicity of λ1. Note that d1, is indeed finite because if (xn)n is a sequence in the
unit ball of ker(T − λ1), then xn = 1

λ1
Txn has a convergent subsequence because T is

compact. Hence, then unit ball of ker(T − λ1) is compact and thus ker(T − λ1) is finite
dimensional (Theorem 2.10). The same argument also extends to d2, . . . . For each di-
dimensional subspace we choose an orthonormal basis which we gather as a sequence as
(en)n = (e11, . . . , e

1
d1
, e21 . . . ). By Theorem 6.24 this sequence defines an orthonormal set

and moreover
Tek = λkek

for all k ∈ N. Moreover, ker(T ) ⊥ ek for all k ∈ N and thusH1 := ker(T )⊕span(e1, e2, . . . )
is a closed subspace of H which is an invariant subspace of T . It remains to show that
H = H1. Define H2 = H⊥

1 . By Proposition 6.26 we have that H2 is an invariant subspace
of T because H1 is an invariant subspace of T . Hence, T |H2 is a compact operator on H2.
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If T |H2 = 0 then, H2 ⊂ ker(T ) ⊂ H1. If T |H2 ̸= 0, then, by Theorem 6.23, there exist
x ∈ H2 such that x is an eigenvector to a non-zero eigenvalue with magnitude ∥T |H2∥.
But then x ∈ H1 ∩H2 and thus x = 0, giving a contradiction. Hence H = H1 and every
x ∈ H can be decomposed into

x = y +
∑
k

⟨ek, x⟩ek,

where y ∈ ker(T ). Since T is continuous, we obtain

Tx =
∑
k

λk⟨ek, x⟩ek.

The claim about the norm follows from Theorem 6.23 and Theorem 6.4.

6.4 Fredholm alternative

In this section, we will study operators of the form T − I, where T is a compact operator
on a Hilbert space H. Here, we will not assume that T is self-adjoint. We will set

S := T − I.

Proposition 6.29. We have that the operator S as defined above satisfies:

1. ker(S) is finite dimensional.

2. S has closed range and dim(range(S)⊥) <∞.

Proof. Note that ker(S) has a compact unit ball because for any sequence (xn)n in the unit
ball of ker(S) we have xn = Txn, which has a convergent subsequence as T is compact.
Thus, ker(S) is finite-dimensional by Theorem 2.10.

In order to show that S has closed range we consider S̃ : H/ ker(S) → H which is an
injective bounded linear operator. The range of S is the same as the range S̃. We note
that an injective operator has closed range if and only if it is bounded from below.

Assume not, then there exists a sequence ([xn])n in H/ ker(S) such that ∥[xn]∥ = 1
and such that S̃[xn] → 0. Thus, there exist a yn ∈ ker(S) such that ∥xn + yn∥ ≤ 2 and
S(xn+ yn) → 0. Since T is compact, xn+ yn = T (xn+ yn) has a convergent subsequence.
Thus, (upon relabeling the sequence) xn + yn → y and y = Ty, hence, y ∈ ker(S). This
however is a contradiction because 0 = ∥[y]∥ = limn→∞ ∥[xn + yn]∥ = limn→∞ ∥[xn]∥ = 1,
where we used that the projection map is continuous. This shows that S has closed range.

In order to show that dim(range(S)⊥) is finite, we note that range(S)⊥ = ker(S∗) by
Proposition 5.35 and that ker(S∗) = ker(T ∗ − I) is finite dimensional by the previous
argument.

Proposition 6.30. Define Mj = range((T − I)j) for j ∈ N. Then, there exists a positive
integer j0 such that Mj0 =Mj for all j ≥ j0.
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Proof. By expanding (T −I)j we observe that (T −I)j satisfies the assumptions of Propo-
sition 6.29. Thus, Mj is closed for all j ≥ 1. Clearly, Mj ⊃Mj+1. Suppose that for every
step, the containment is strict. Then, the quotients Mj/Mj+1 have dimensions greater
or equal to one. In particular, we can find an xj ∈ Mj such that ∥[xj]∥Mj/Mj+1

= 1 and
we can assume without loss of generality that ∥xj∥ ≤ 2 for each j. We will show that
∥Txj − Txl∥ ≥ 1 for j ̸= l contradicting the fact that T is compact. Let j < k, then
xk ∈Mk ⊂Mj+1, (T − I)xj ∈Mj+1 and (T − I)xk ∈Mk+1 ⊂Mj+1. But then

Txj − Txk = (T − I)xj − xk − (T − I)xk + xj

Since (T − I)xj − xk − (T − I)xk ∈ Mj+1 and xj ∈ Mj we have that ∥Txj − Txl∥ ≥ 1.
This gives a contradiction and concludes the proof.

Theorem 6.31 (Fredholm alternative). Let T ∈ BL(H) be a compact operator and
λ ∈ C \ {0}. Then:

1. If T − λ is injective, then T − λ is invertible with (T − λ)−1 ∈ BL(H).

2. If T − λ is surjective, then T − λ is invertible with (T − λ)−1 ∈ BL(H).

Proof. We will prove the first statement first. By dividing by λ we can assumeWLOG that
λ = 1. If T −I is injective, then ker(T −I) = {0}. We note that T −I has closed range by
Proposition 6.29. If the range of T−I was not all of H, we have that range(T−I) ⊂ H is a
closed proper subspace. But this then means that range((T −I)2) ⊂ range(T −I) is again
a closed proper subspace. Continuing inductively, however, contradicts Proposition 6.30.
Thus, T − I is surjective and by the inverse mapping theorem, we have that T − I is
invertible.

For the second statement we note that if T − λ is surjective, then (T − λ)∗ = T ∗ − λ̄
is injective. But this also means that T − λ is invertible.

Remark 6.32. • The statements can be interpreted as follows. If we consider the
equation (T − λ)x = y for an unknown x, then 1) says that “uniqueness” implies
“existence” and 2) says that “existence” implies “uniqueness”.

• It is called “alternative” because by 1), either λ is an eigenvalue or T−λ is invertible
in BL(H).

• Moreover, the results can be extended to Banach spaces.

Remark 6.33. One can extend the result and show that dimker(T−λ) = dim(range(T−
λ))⊥. An operator S satisfying

1. ker(S) is finite dimensional.

2. S has closed range and codim(range(S)) := dim(X/range(S)) <∞.

is called a Fredholm operator and the number ind(S) = dim(ker(S))− codim(range(S)) is
called the Fredholm index. Thus, according to Remark 6.32, the operator S = T − I for
T compact is a Fredholm operator with index 0. For such an operator with index zero,
we have that injectivity is equivalent to surjectivity.

If you have questions or find mistakes/typos please email me: kehle@mit.edu.
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18.102 Introduction to Functional Analysis

Problem set 1

Due date: 2/14/2025

1. Let X be a topological space and A ⊂ X. Prove the following:

(a) int(A) = A \ ∂A.
(b) int(A) is the largest open set contained in A.

(c) A is the smallest closed set containing A.

(d) A closed ⇔ A = A.

(e) ∂A = Ā \ int(A) and deduce that ∂A is closed.

(f) If X is Hausdorff, then limits are unique, i.e. limn→∞ xn = x and limn→∞ xn = y implies x = y.
Is it still true if the Hausdorff assumption is dropped?

(g) A collection of setsA ⊂ P(X) is said to have the finite intersection property (FIP) if ∩1≤j≤nUj ̸= ∅
for any finite subfamily {Uj}1≤j≤n ⊂ A. Prove that X is compact if and only if every family of
closed sets having the FIP has non-empty intersection.

2. Let X, Y be topological spaces and f : X → Y be a function. Prove the following:

(a) If X is Hausdorff and K ⊂ X compact, then K is closed.

(b) If f is continuous and K ⊂ X is compact, then f(K) is compact.

(c) If X is compact, Y is Hausdorff and f continuous and bijective, then f is a homeomorphism.

(d) X is Hausdorff if and only if the diagonal ∆ = {(x, x) : x ∈ X} ⊂ X ×X is closed.

(e) The projection πX : X × Y → X is an open map, i.e. it maps open sets to open sets.

(f) If Y is Hausdorff and f is continuous, then the graph graph(f) = {(x, f(x)) : x ∈ X} ⊂ X × Y is
closed in the product topology.

(g) If X and Y are compact Hausdorff spaces and f has a closed graph, then f is continuous.
Note: The statement even holds true if X is merely a topological space. It is known as the
topological closed graph theorem.

3. Let (X, d) be a metric space. Recall that Bε(x) = {y : d(x, y) < ε} and B̄ε(x) = {y : d(x, y) ≤ ε}.

(a) Show that there exists another metric d′ on X which satisfies d′(x, y) ≤ 1 for all x, y ∈ X and
which induces the same topology as (X, d).

(b) Construct two different metrics d1 and d2 on X = R such that (X, d1) and (X, d2) induce the
same topology but such that (X, d1) is complete, whereas (X, d2) is not.

(c) Let D ⊂ X be dense. Prove that if every Cauchy sequence (xn)n ⊂ D has a limit in X, then X
is complete.

(d) Prove that if X is separable, then it is second countable.
Note: This shows that for metric spaces separability and second countability are equivalent.
However, there exist topological spaces (e.g. the Sorgenfrey line) which are separable but not
second countable.

4. Consider the vector space of continuous functions on the unit interval X = C([0, 1]).

(a) Show that d(f, g) = supx∈[0,1] |f(x)− g(x)| defines a metric on X.

(b) Show that piecewise linear functions are dense in (X, d). Note that a function f ∈ X is piecewise
linear (or piecewise affine) if there exists 0 = x1 < x2 < · · ·xn = 1 such that f |(xi,xi+1) is affine
for all 1 ≤ i ≤ n− 1.

(c) Show that X is separable. Hint: Construct a countable family of piecewise linear functions which
are dense in X.

If you have questions or find mistakes/typos please email me: kehle@mit.edu.
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18.102 Introduction to Functional Analysis

Problem set 2

Due date: 2/24/2025

1. Recall the definition of ℓp, cc and c0 and the Hölder inequality from the lectures.

(a) Prove the Minkowski inequality: ∥x+ y∥p ≤ ∥x∥p + ∥y∥p for x, y ∈ ℓp, 1 ≤ p < ∞.

(b) Show that ℓp ⊊ ℓq for 1 ≤ p < q ≤ ∞. In particular, show that ∥x∥q ≤ ∥x∥p for all x ∈ ℓp.

(c) For which q ∈ (1,∞] is the following true:
⋃

p∈[1,q) ℓ
p = ℓq.

(d) Show that ℓ∞ and c0 are complete and that cc is not complete.

(e) Show that cc ⊊ ℓp for all 1 ≤ p ≤ ∞ and characterize the closure cc ⊂ ℓp in the respective metrics.

(f) Show that ℓp is separable if p ∈ [1,∞) and show that ℓ∞ is not separable.

(g) Is c0 = ∪p∈[1,∞)ℓ
p?

2. (a) Let (X, d) be a metric space. Prove that K ⊂ X is compact if and only if K is sequentially
compact.
Hint: For the direction “⇐” you may want to show the following intermediate steps:
(i) For any open covering (Ui)i∈I of K there exists a ε > 0 (depending only on K and (Ui)i∈I)
such that for all x ∈ K: Bε(x) ⊂ Uix for some ix ∈ I. (The number ε is also called the Lebesgue
number of the covering (Ui)i∈I .)
(ii) Finitely many of such Bε(x) balls already cover K.

(b) Let X be a non-empty, complete, and countable metric space. Show that there exist a x ∈ X and
ε > 0 such that {x} = Bε(x).

(c) Let f : [0,∞) → R be a continuous function such that for all x0 > 0: limn→∞ f(nx0) = 0. Prove
that limx→∞ f(x) = 0.

(d) Optional ungraded exercise: Let f ∈ C∞(R) have the property that for every x ∈ R there exists

a k ∈ N depending on x such that dkf
dxk (x) = 0. Show that f is a polynomial.

3. Prove that C1[0, 1] = {f ∈ C[0, 1] : f is continuously differentiable} is incomplete with respect to the
norm ∥f∥∞ = supx∈[0,1] |f(x)| but complete with respect to the norm ∥f∥∞ + ∥f ′∥∞.

4. (a) Construct a discontinuous linear map T : cc → cc.

(b) Let X be an infinite dimensional Banach space. Show that there exists a discontinuous linear
map T : X → X. Hint: Use a Hamel basis.

5. (a) Prove that a normed space X is complete if and only if
∑∞

n=1 ∥xn∥ < ∞ implies that the series

(
∑N

n=1 xn)N∈N is convergent in X.

(b) Let V be a normed space and U,W ⊂ V dense linear subspaces. Is U ∩W is dense in V ? Hint:
Recall problem 4 from problem set 1 and Weierstrass’s approximation theorem from 18.100.

Please provide an estimate of the time you spent on the problem set and list your collaborators.

If you have questions or find mistakes/typos please email me: kehle@mit.edu.



18.102 Introduction to Functional Analysis

Problem set 3

Due date: 3/10/2025

1. Let k : [0, 1]× [0, 1] → R be continuous. Define the operator Tk : C[0, 1] → C[0, 1], f 7→ Tkf , where

(Tkf)(x) =

∫ 1

0

k(x, y)f(y)dy.

(a) Prove that Tk is a well-defined operator, i.e. that Tkf ∈ C[0, 1] for all f ∈ C[0, 1].

(b) Prove that Tk is bounded.

(c) We now relax the assumption of continuity of k and define k(x, y) = |x − y|−α for x ̸= y and
k(x, x) = 0. Show that for α < 1, the operator Tk : C[0, 1] → C[0, 1] is well-defined and bounded.
Compute the operator norm ∥Tk∥.

2. (a) ConsiderX = C([0, 1]) and recall the unbounded differentiation operator with domain C1([0, 1]) ⊂
C([0, 1]) defined as TD : C1([0, 1]) → C([0, 1]), f 7→ f ′. Show that TD is closed.

(b) Let X be a Banach space and let A : X → X∗ be a linear operator such that (Ax)(y) = (Ay)(x)
for all x, y ∈ X. Prove that A is bounded.

(c) Let X be a normed space and assume that X∗ is separable. Show that X is separable.

(d) Optional ungraded exercise: Let X be a reflexive Banach space. Show that any closed subspace
of X is reflexive.

(e) Optional ungraded exercise: Let X be a Banach space. Show that X is reflexive if and only if X∗

is reflexive.

3. For x ∈ ℓp with p ∈ [1,∞] we define the map Fx : ℓq → R, where Fx(y) =
∑∞

n=1 xnyn and q is the
Hölder conjugate of p.

(a) Show that for each x ∈ ℓp, the map Fx is well-defined, linear and bounded, i.e. Fx ∈ (ℓq)∗.

(b) For p ∈ [1,∞], show that the linear map F : ℓp → (ℓq)∗, x 7→ Fx is a bounded isometry.

(c) Show that F is surjective if and only if p ∈ (1,∞] and conclude that

i. (ℓq)∗ ∼= ℓp if and only if p ∈ (1,∞],

ii. ℓp is reflexive if and only if p ∈ (1,∞).

(d) Show that (c0)
∗ ∼= ℓ1.

Remark: The dual space of ℓ∞ can be identified with the ba space ba(2N).

Please provide an estimate of the time you spent on the problem set and list your collaborators.

If you have questions or find mistakes/typos please email me: kehle@mit.edu.

https://en.wikipedia.org/wiki/Ba_space


18.102 Introduction to Functional Analysis

Problem set 4

Due date: 3/31/2025

1. (a) Show the downwards monotonicity of measures: Let E1 ⊃ E2 ⊃ . . . be a sequence of measurable
sets in a measure space and assume that there exist an i ∈ N such that µ(Ei) < ∞. Show that
µ(∩n∈NEn) = limn→∞ µ(En) = infn∈N µ(En).

(b) Let f : R → R be a C1-function and define A = {x ∈ R : f ′(x) = 0}. Show that λ(f(A)) = 0,
where λ is the Lebesgue measure.
Hint: Consider the sets An,ε = {x ∈ [−n, n] : |f ′(x)| < ε2−n}.

(c) Let Ω be a finite measure space. Show that Lp(Ω) ⊂ Lq(Ω) for 1 ≤ q ≤ p ≤ ∞ and show that the
inclusions are dense.

(d) Assume that there exist a constant C > 0 and p, q ∈ (1,∞) such that ∥fg∥L1(R) ≤ C∥f∥Lp(R)∥g∥Lq(R)
for all f ∈ Lp(R) and g ∈ Lq(R). Show that 1

p + 1
q = 1.

2. In this exercise, we will explore the different ways of losing mass. These examples show that the
assumptions in the dominated convergence and monotone convergence theorems are necessary.

(a) Construct a sequence of functions fn : R → R with pointwise limit limn→∞ fn = 0 such that
0 ≤ fn ≤ 1, λ(support(fn)) ≤ 1 and lim infn→∞

∫
fn(x)dx ̸= 0.

(b) Construct a sequence of functions fn : R → R with uniform limit limn→∞ supx∈R |fn(x)| → 0
such that 0 ≤ fn ≤ 1 and lim infn→∞

∫
fn(x)dx ̸= 0.

(c) Construct a sequence of functions fn : R → R with pointwise limit limn→∞ |fn(x)| → 0 such that
support(fn) ⊂ [0, 1] and lim infn→∞

∫
fn(x)dx ̸= 0.

(d) Construct a sequence of functions fn : [0, 1] → [0, 1] such that limn→∞
∫
fn(x)dx = 0 but such

that (fn)n does not converge pointwise almost everywhere.

3. In this exercise, we will explore the problem of Diophantine approximation, which deals with the
approximation of real numbers by rational numbers. We will define a set Dγ below which is the set
of reals which can be approximated by rationals with accuracy parameter γ. In this exercise we will
explore rather surprising facts about the genericity of Dγ .

(a) Let x ∈ [0, 1] and N ∈ N. Show that there exist m ∈ {0, 1, , . . . , N} and n ∈ {1, , . . . , N} such
that |x− m

n | < 1
Nn . Hint: Use the pigeonhole principle.

Remark: This can be improved to ≤ 1
(N+1)n instead of < 1

Nn on the right-hand side.

(b) Consider the set Dγ = {x ∈ [0, 1] : |x− p
q | < q−γ for infinitely many (p, q) ∈ N0 × N}.

i. If γ ≤ 2, show that Dγ = [0, 1], i.e. λ(Dγ) = 1.

ii. If γ > 2 show that λ(Dγ) = 0. Hint: Write Dγ =
⋂

n∈N
⋃

q≥n,p∈N0
{x ∈ [0, 1] : |x− p

q | < q−γ}.
iii. Show that Dγ is Baire-generic for any γ ∈ R.
iv. Is ∩γ∈RDγ = Q? If not, can you explicitly construct an element in ∩γ∈RDγ ∩Qc?

v. Optional (not so difficult) ungraded problem: Show that the Hausdorff dimension satisfies
dimH(Dγ) ≤ 2

γ .

vi. Optional (difficult) ungraded problem: Show that dimH(Dγ) =
2
γ if γ ≥ 2.

Remark: We just showed that the set Dγ ⊂ R is generic in the topological sense but exceptional
in the measure theoretical sense.

4. Optional ungraded problem: Let µ be a translation-invariant measure on (R,P(R)) such that µ((0, 1]) <
∞. Show that µ ≡ 0 and conclude that there exist subsets of R which are not Lebesgue measurable.
Hint: Use the axiom of choice to consider a set of representatives R ⊆ [0, 1] for [0, 1]/ ∼, where x ∼ y
if y − x ∈ Q. Then consider the disjoint sets An = qn +R, where (qn)n∈N is an enumeration of Q.
This construction goes back to work of Vitali in 1905.

If you have questions or find mistakes/typos please email me: kehle@mit.edu.

https://en.wikipedia.org/wiki/Vitali_set


18.102 Introduction to Functional Analysis

Problem set 5

Due date: 4/14/2025

1. For f ∈ L1(R) define the Fourier transform F(f) as

F(f)(ξ) =
1√
2π

∫
R
f(x)e−ixξdx.

(a) Show that F : L1(R) → L∞(R) is a bounded linear operator.

(b) Show that F(f)(ξ) is a continuous function of ξ.

(c) Show that span{1I : I is a bounded interval} is dense in L1(R).
(d) Show that limξ→±∞ F(f)(ξ) = 0 and thus F : L1 → C0(R), where C0(R) ⊂ L∞(R) is the set of

continuous functions which converge to zero at infinity.
Hint: Show it first for characteristic functions 1I and then use (c).

Remark: Using Fourier inversion, one can show that the map F : L1(R) → C0(R) is injective but
not surjective. It is an open problem to classify the image F(L1(R)) ⊂ C0(R).

2. (a) Let xn ⇀ x in a normed space X. Show that ∥x∥ ≤ lim infn→∞ ∥xn∥ ≤ supn∈N ∥xn∥ < ∞.

(b) Consider the space c0. Prove that there does not exist a normed space X such that X∗ = c0.
Hint: Use Banach–Alaoglu.

3. (a) Let 1 < p < ∞. Construct a sequence (xn)n ⊂ ℓp such that xn ⇀ x but xn ̸→ x as n → ∞.

(b) Let X be a separable normed space. Show that B̄X∗ equipped with the weak* topology is
metrizable (i.e. there exists a metric on B̄X∗ which induces the weak* topology).

(c) Optional ungraded exercise: Let (xn)n ⊂ ℓ1 be such that xn ⇀ x as n → ∞. Show that xn → x
as n → ∞.

If you have questions or find mistakes/typos please email me: kehle@mit.edu.



18.102 Introduction to Functional Analysis

Problem set 6

Due date: 4/28/2025

1. (a) Let H be a Hilbert space. Show that xn → x in H if and only if xn ⇀ x and ∥xn∥ → ∥x∥ in H.

(b) Let X be a uniformly convex Banach space. Show that xn → x in X if and only if xn ⇀ x and
∥xn∥ → ∥x∥ in X. In particular, the above conclusion holds for all Lp for 1 < p < ∞.

(c) Find an example in L1([0, 1]) such that fn ⇀ f and ∥fn∥ → ∥f∥ but ∥fn − f∥ ̸→ 0.

2. In this problem we will find an application of the duality of Hilbert space to solve the Dirichlet problem{
∆u = f on D

u = 0 on ∂D
(1)

on a bounded open domain D ⊂ Rn, where f ∈ L2(D) is a continuous real-valued function.

(a) Show that for all ϕ ∈ C∞
c (D), the following Poincaré inequality holds:∫

D

ϕ2dx ≤ 4d2
∫
D

n∑
i=1

(∂xi
ϕ)2dx, (2)

where d is such that D ⊂ [−d, d]n. Hint: Extend ϕ by trivially to [−d, d]n. Then, use the
fundamental theorem of calculus to show ϕ(x) =

∫ x

−d
∂x1

ϕdx1.

(b) Deduce that ⟨ϕ1, ϕ2⟩H1
0
=

∫
D

∑n
i=1 ∂xi

ϕ1∂xi
ϕ2dx defines an inner product on C∞

c (D). We denote

its completion by H1
0 (D).

(c) Let g ∈ H1
0 (D). Then, show that g ∈ L2(D) and that g has weak partial derivatives, denoted by

∂xj
g, 1 ≤ j ≤ n, which are defined by the conditions ∂xj

g ∈ L2(D) and ⟨ϕ, ∂xj
g⟩L2 = −⟨∂xj

ϕ, g⟩L2

for all ϕ ∈ C∞
c (D) and 1 ≤ j ≤ n.

(d) Show that there exists u ∈ H1
0 (D) such that

⟨f, v⟩L2 = −⟨u, v⟩H1
0

for all v ∈ H1
0 (D). Hint: Consider the functional F : H1

0 (D) → R, F (v) = −⟨f, v⟩L2 .

(e) Deduce that u ∈ H1
0 (D) is a weak solution to (1), i.e.∫

D

u∆ϕ =

∫
D

fϕ

for all ϕ ∈ C∞
c (D). Note that the boundary condition is encoded in the fact that u ∈ H1

0 (D).

3. Consider the sequence xn =
√
nen in ℓ2. Show that 0 is in the weak closure of {xn : n ∈ N} but there

is no subsequence of xn converging to zero.
Remark: Note that this is a manifestation of the fact that the weak topology on ℓ2 is not metrizable.

If you have questions or find mistakes/typos please email me: kehle@mit.edu.



18.102 Introduction to Functional Analysis

Problem set 7

Due date: 5/9/2025

1. Let X,Y be normed spaces and A ∈ BL(X,Y ).

(a) Let A be an isomorphism. Show that A′ : Y ∗ → X∗ is an isomorphism.

(b) Assume that X,Y are Banach spaces. Show that if A′ is an isomorphism, then so is A.

2. Let T : C[0, 1] → C[0, 1] defined as

Tf(x) =

∫ x

0

f(y)dy.

Prove that σ(T ) = σr(T ) = {0}.

3. Let k : [0, 1]2 → C be continuous. Consider the operator Tk : L2([0, 1]) → L2([0, 1]) defined as

(Tkf)(x) :=

∫ 1

0

k(x, y)f(y)dy.

(a) Show that Tk is compact.
Hint: Show first that Tk can be approximated by operators with finite rank.

(b) Assume that k(x, y) = k(y, x). Show that Tk : L2([0, 1]) → L2([0, 1]) is self-adjoint.

(c) Assume again that k(x, y) = k(y, x) and let λ ∈ ρ(T ) and g ∈ L2([0, 1]). Show that the solution
f ∈ L2([0, 1]) to the equation Tkf − λf = g, i.e. the unique solution to the integral equation∫ 1

0

k(x, y)f(y)dy − λf(x) = g(x)

can be written as

f =
∑
n

1

λn − λ
⟨en, g⟩en − 1

λ

∑
e∈O

⟨e, g⟩e,

where (en)n and (λn)n are as in the proof of the spectral theorem and O is an orthonormal basis
of kerTk.

4. Ungraded optional exercise: The goal of the exercise is to show that imposing the canonical com-
mutation relation [x̂, p̂] = iℏ on self-adjoint operators x̂, p̂ in quantum mechanics necessarily requires
unbounded operators.

(a) Let X,P be matrices on Cn. Show that [X,P ] = iℏ implies ℏ = 0.

(b) Let X,P be bounded linear operators on a Hilbert space H. Show that [X,P ] = iℏ implies ℏ = 0.
Hint : Show first that [Xn, P ] = inℏXn.

If you have questions or find mistakes/typos please email me: kehle@mit.edu.
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