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SOME REMARKS ON REPRESENTATIONS OF QUIVERS AND INFINITE
ROOT SYSTEMS
VICTOR G. KA

This is an addendum to my paper [4]. The purpose
of it is to give simpler proofs of the main results of
[4] in a more general situation. In [4] properties of
the infinite root systems are used in the representation
theory of quivers. Here properties of the root systems
(and their existence, which in [4] is deduced from the
theory of the Kac-Moody Lie algebras) are obtained in
the framework of the representation theory of quivers.
We do not exclude edges-loops from our consideration.,
This makes us introduce a more general notion of infinite
root system than the one in [4].

In the remainder of the article some remarks on
related topics are made and some open problems are dis-
cussed. They include:

a) an "abstract" definition of an infinite root
system (i.e., a definition which does not
depend on the basis);

b) multiplicities of roots and t=functions of qui-

vers;



c) a connection with the problem of classification
of prehomogeneous linear groups.
We keep the notations of [4]. The base field [F is
arbitrary unless otherwise stated,
I am grateful to P. Gabriel for the remark that my
pProof can be extended to the quivers with edges-loops and
to C.M. Ringel for giving me some interesting examples of

representations of quivers.

1. (Generalized) infinite root systems.

An (n X n) square matrix A = (aij) with integral
entries is called a (generalized) Cartan matrix if
< .
(c1) a, . < 2 and even;
2 . -
(c2) aij <0 for i # j;

(C3) a;4 = 0 implies aj; =0, 1,3 = 1,...,m.

Notice that Lemmas 1.2 and 1.3 of [4] hold in this
more general situation. The lists of Cartan matrices of
positive and zero type is almost the same as Tables P and
Z in [4]: one should only add to Table Z the (1 x1)

zero matrix which we denote by Aglo The Dynkin diagram

of a Cartan matrix A is defined in the same way as in
[4] with additional +(2 - aii) edges-loops to a vertex
Py

Let A be a (generalized) Cartan (n x n)-matrix,
let T be a free abelian group with free generators
ul,g.q,an and let F+ be the set of all non-zero elements
in T of the form o = ky0y + ... + knan with ki > Dy
L® 1ousista Forosg kiui € I' we call the support of
G the subdiagram of the Dynkin diagram of A, consisting
of those vertices P> for which ki # 0, and all the edges

2 Jjoining these vertices.



The set II = {aifaii = 2} is called the set of sim-

ple roots. We define the positive root system

A+ = A+(A), associated with A, by the properties:
(R1) {ou,“.,,an} €A erT; 20, ¢ T if a, € II;
(R2) if g = ijaj € A+, a, € II and o # s then

o + kai € A+ if and only if -p <k<gq,
k € Z, where p and q are some non-negative

.PL} L[_ ol kigiﬁﬁ*:=* integers satisfying p - q = ZaleJ
J
(R55 if o e A+, o ¢ II and the vertex P is

\
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joined by an edge with a vertex from the
support of 0, then o + a; € A
The set A = A U(—A ) is called the EEQE_EZEEEE-

For a € II we define a reflection r by

1) =0y - A, 3= 1,

and call the group generated by all these reflections

the Weyl group. We call the fundamental set the fol-

lowing subset in F+:

K={a=2%ka, eT |Za, k. < 0 if o, e T;
jJ33 Ty A - i
support ¢ is connected}.

Notice that properties (R1) - (R3) define A
uniquely; the existence and other properties of A will
be deduced from the representation theory of quivers.

We call o € A a nil root if the support of o is one
of the diagrams of zero type and o = kZa 1% a; 's being
the labels of the Dynkin diagram (a l for Ao), and
k € Z\{0}. o
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Note that the set A is W-invariant. The roots from

AT = ” g W w(ll) are called real roots and from Alm =

e . ;
MNAT® are called imaginary roots,

2. Dimensions of indecomposable representations of

quivers.

We recall that a quiver is an oriented graph (S,R)
(we admit edges-loops), where S is a connected graph
with n vertices SO = {pI,ouc,pn} and ! is an orientation
of S. Denote by S; the set of edges of S. We associate
with S a symmetric Cartan matrix A = (aij) as follows:
—aij is the number of edges, connecting Py and pj in 8
if i # j and a;, = 2 - 2# (loops-edges in pi), ij =
1,...,0. This is a bijection between the finite con-
nected graphs and the indecomposable symmetric (general-
ized) Cartan matrices, S being the Dynkin diagram of A.
We define a bilinear form (, ) on T by (ai,aj) = &aijo
This form is W-invariant. It is also clear that
(a,a) < 0 for o € K,

We recall the definition of the category M (S,0).
An object is a collection. (U,¥) of finite-dimensional
vector spaces Up’ P € So’ and linear maps'PR: Ui(£)+ Uf(g)
for any size £ € Sy (i(2) and £(2) denote the initial
and finite vertices of the oriented edge ). A morphism
¥: (U,P) > (W',¥) is a collection of linear maps
¥: U, > U, p e S , such that \Pf(g)?’ﬂ = Vﬁ'wi(l)' A
class of equivalence of isomorphic objects of M (S,R)

is called a representation of the quiver (5,0). The

element ¥ (dim U, )a, € ', is called the dimension of
7 Py’%i 4+ SimeReian
4 the representation.



Denote by d(S,R) the set of dimensions of indecom-
posable representations of the quiver (S,2). The problem
we are concerned with is to describe this set.

The following lemma is trivial.

Lemma 1. The set d(S,0) satisfies the properties

(R1) and (R3) of a positive root system. Any a € d(S,R)

has a connected support,

Lemma 2. Suppose that [F is infinite., Then the set

d(5,2) contains the fundamental set K, Moreover, if

& € K is not a nil root and U is a representation of

dimension o with minimal possible dimension of End U,

then U is absolutely indecomposable; if char [ = 0,

1
then End U = [F. 1In particular, ua > 1= (u,0),

Proof is exactly the same as that of Lemmas 2.5 and
2,7 in [4]. The only additional remark we need is that
Ea..k.<0ifo¢_¢Handa:2k,o¢_ef.
S B 1 3373 +
The following lemma follows from the existence of a
reflection functor in the case of an admissible vertex
Py of (5,0) (i.e., a source or a sink).

Lemma 3. Eﬁ_pi is an admissible vertex of the qui-

ver (S,0) and a = d(s,Q), a # ai, then?

ri(a) £ d(S,ri(Q))u Moreover, B = Uri(a) and in the

case of a finite base field [F the numbers of indecompo-

sable (or absolutely indecomposable) representations of

dimensions o and ri(u)-are equal,
Sat EdUas

1

H, 1s the "number of parameters" of the set of indecom-
posable representations of dimension o of the quiver
(S,0) (see [4] for a precise definition).
2

T.(R) is an orientation of the graph S obtained from Q
by reversing the direction of arrows along all the edges
containing pj.



Lemma 4. Provided that (f is algebraically closed,

the set d(S,Q) does not depend on the orientation of

the greph S; moreover, My, does not dzpend on . In the

case of a finite base field [ the number of indecomposa-

ble (or absolutely indecomposable) representations of

dimension o does not depend on the orientation 0.

n
Proof. Leta = y ko, €T, and V,,...,V_ be vector
— $at 11 + 1 n

spaces of dimensions kl,“o,kno Recall that the classi-
fication of the representations of a quiver (S,0) is
equivalent to the classification of the orbits of the

GLkI([F)x oowie GG GLk ([F) operating
n

linear group G*([F)
in the space

(1) M%(s,9) = & Hom
ResI

E Vi Veay
The reversing of the direction of an arrow of the quiver
(5,0) gives a new quiver ($,2;) and is equivalent to the
replacement of the corresponding summand in (1) by a
contragredient representation of the group Gu.

Suppose now that [F is a finite field. Recall that
by a theorem of Brauer, for any linear finite group G
operating in a vector space V =~ [Fk the numbers of orbits
in V and V¥ are equal (see [4], Lemma 2.10 for the proof).
This implies that if U = [Fm is the space of another
representation of G, then the numbers of orbits in U & V
and U & V* are equal (one should apply the Brauer
theorem to all the linear groups Gx’ x € U, operating in
V and V%), .

These two remarks imply immediately that the number

of all representations of dimension o does not depend on

6 the orientation of the quiver.



Now we obtain immediately by induction on the height
0. that the number of indecomposable (over the finite
field [F) representations of dimension o does not depend
on I (we use the uniqueness of the decomposition of a
representation into direct sum of indecomposable repre-
sentations).

The fact that the number of absolutely indecomposa-
ble representations of dimension ¢ does not depend on 0
is also proven by induction on height & for any finite
field [F. The proof is more delicate. It uses the
fact that any indecomposable representation over [ is
an essentially unique absolutely indecomposable repre-
sentation over a bigger finite field [F' > (F, considered
over . The details can be found in Appendix to [4].

The fact that d(S,Q) and M, do not depend on §i fol-
lows from the preceding result by the following

Proposition 1. Let A be a finite dimensional alge-

bra and o be an element from the Grotendique ring X, (4).

If the base field is Eg, q = ps, then the number mi(A) of

absolutely indecomposable representations of A of '"dimen-

sion" o over field G:t is given by the following formula:

q

Nt t t t
- AZ + ... + Ak - ul = sew = Ho;

(2) mOtL(A) = rq

where r and N are positive integers and Az,...,us are com—

plex numbers (not depending on t) such that ]ki|,|pjl are

non-negative half-integral powers of q smaller than qN

The number N is equal to the number of parameters and T

to the number of irreducible components of maximal dimen-

sion of the set of indecomposable representations of A

over am algebraically closed fiela of characteristic p.




1f the base field [F is algebraically closed and of

characteristic 0, then for all but a finite number of

Primes p for a reduction mod P the numbers N and r are

again the number of parameters and number of irreducible

components of maximal dimension of the set of indecom-

posable representations of A.

Proof. The set of representations of A of dimension
@ is the set of orbits of an algebraic croup G operating
on an algebraic variety M, the subset of absolutely inde-
composable representations being a constructible G-
invariant subset X G WM.

By Rosenblicht's theorem, we can represent X as a
union of G-invariant algebraic varieties X = iilxi’ such
that each Xi/G is again an algebraic variety.

Since Gx is connected for any x € M (as the group of
units in the endomnfphism ring), we obtain bijections
between the set of G(ﬂ: ) rational orbits on h(ﬂ: ), the
set of ur -rational 001nts on U X, /G and the set of
absolutely indecomposable représentatlons defined over
G% (see Appendix to [4] for details).

Recent general results of Deligne [9] give now for-
mula (2). A standard reduction mod P argument proves
the last statement.

An immediate consequence of Lemmas 3 and 4 is:

Lemma 5. Suppose that the base field [F is finite

or algebraically closed. Then the set d(S,Q)\{ai}.ig
Ei—invariant (and, therefore, d(S,Q) U (-d(s,R)) is W-

invariant). toreover, over a finite base field the

numbers of indecomposable (or absolutely indecomposable)

representations of dimension o and w(@), w € W, are equal;




over an algebraically closed field one has: u

a - Mu)?
w E W.

Now we are able to prove the final:

Lemma 6. For an algebraically closed base field,

the set d(S,f)) is exactly the set of positive roots

A+(A), where A is the Cartan matrix of the graph S.

Proof. We will prove that the set d = d(§,Q)
satisfies properties (R1)-(R3) of A+ = A+(A). The
properties (R1) and (R3) of A+ are satisfied by Lemma 1.
By Lemma S,AieC: d and since the support of any o £ d
is comnected we obtain that & = Aie U (ngW(K)), where K
is the fundamental set (since for any
ae d\K | {al,...,an}) there is a reflection r; such
that height ri(a) < height o).

Now we prove (R2) for any o £ d. If o =‘uj, this
property obviously holds. Therefore, this property
holds also for any root ¢ € Aiec d. Ifa e d\Af_e,
then o.& M = Wgww(K). I claim that the set M is
convex (i.e.,, if 3,y € M, then any § € [B,y] N T
also lies in M). Indeed, let & and E be the open kernels
Ef the convex hulls of M and K in the space V=T e, R;
M is a convex cone. AWe introduce the canonical
Riemanian metric on I (see e.g. [10]). This metric is
W-invariant and W operates discretel& on thne Riemanian
manifold M since W is a discrete subgroup in GL(V)).
Therefore, any segment [o,w(a)], o € ﬁ, w € W, dintersects
only a finite number of hyperplanes of reflections, say,
rBI,...,rB € W. But then [oc,w(n)] & g rﬁi $5% rglﬁ.
Clearly, this implies that M is convex.

So (R2) is satisfied for any o € M, which completes

the proof of the Lemna.
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We summarize the obtained results in the following
two theorems (cf. [4]).

Theorem 1. Let (S,R) be a quivar and let the base
field [F be_a finite field Ea. For o € T let m (5,8)

denote the number of absolutely indecomposable and

mg (5,2) denote the number of indecomposable representa-

tions of (S 1) of dlmen51on ¢ defined over E:t Then

a) (S »8) and m (8,2) do not depend on the

orientatlon 2 of S and the action of W on a.

b) For o ¢ A+ there is no indecomposable represen-—

tations of (S,02) of dimension a.

re ; . ,
c) Forace A+ there exists a unique indecomposable

representation of (5,0) of dimension o which is

absolutely indecomposable and is.defined over the prime
field.

im .
d) For o € A+ there exists complex numbers

lz,...,Kk,ul,...,u (depending on & but not on t) and
positive integers N and r such that Ik |, |u [ are non-
negative half-integral powers of g smaller than qq,

N>1- (a,0) and

() m 5,0 =rd" #2F+ o+

Q"

'Analogous formula takes place for m (S$,2). One has:

(S Q) = (S »i2) for a non- lelSlble o,

Theorem 2. Let (S,0) be a quiver and let the base
field [F be algebraically closed. Let A+ = A+(A) be the

positive root system, where A is the Cartan matrix of the

graph S. Then

a) For a e F+, & is a dimension of an indecomposable

representation of the quiver (S,0) if and only if o ¢ A+.



b) For a € Aie there exists a unique indecomposable

representation of (5,00) of dimension .

im : .
¢) For o ¢ A+ there exists ar infinite number of

indecomposable representations of (S,R) of dimension o.

Moreover, the number of parameters of the set of inde-

composable representations of dimension o is at least

1 - (x,a) > 0 and does not depend on 0 and the action

of W.

3. Further remarks.

a) Infinite root systems. An immediate conseguence

of the results of sec. 2 is

Proposition 2 (cf. [4]). Let A be a symmetric

Square matrix with integral entries, satisfving condition

(C1)-(C3) of sec. 1. Then the associated positive root

system A+ (satisfving the properties (R1)-(R3)) exists.

M(.::reoverl A+ = Aie ¥ Aim, where Aie = UW(W(H)I1 F+) and
AT =y w(K). e
welW

Remark. The statement that in the case of a Cartan
matrix, associated with a graph without loops, any ele-
ment from K is a root appears in [5] (see Theorem :
however, it seems that there is a gap in the proof of
the crucial Proposition 3 - in the case k = 1y

The results of sec. 2 can be extended to the case of
species (see [2], [1] for definitions) when the base
field is finite. 1In particular, this gives a generaliza-
tion of Proposition 2 for a symmetrisable A. TFor an
arbitrary field the reduction mod p argument does not
work and I can extend the results of sec. 2 only modulo

the following conjecture (cf. [4]).

13
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Conjecture (*). Let G be a linear alcebraic group

operating in a vector space V defined over a field [F of

characteristic 0. Then the cardinalities of the sets of

the orbits with a unipotent stabilizer (or with a sta-

bilizer such that its maximal split torus is trivial)

of the group G in V and V# and the number of parameters

of these sets are equal.

Now I would like to give an "abstract" definition
of an (ordinary) infinite root system. Let I' be a full

lattice in a real vector space V. We recall that a

reflection in a vector @ € V is an automorphism Fa of V
such that its fixed point set has codimension 1s
Fa(a) = -0, and Pa(F) =T,

Let A be a subset in I { }; we denote by A*® the set
of vectors from A in which there exists a reflection pre-
serving & and by W the group generated by all the reflec-
tions in vectors from A. The set A is called a root
system (in general infinite) if the following conditions
are satisfied:

(i) T is the Z-span of Are;

(ii) For any B € A and w € W all the points of T
which lie on the segment [B,w(B)] belong to Aj

(iii) For B e A\Are the set W(B) lies in an open
half-space.

This definition includes non-reduced root systems
(i.e., some of 2ui's may lie in A) which naturally appear
in Lie superalgebras (see [3]), but I do not know whether

they are related to representations of graphs.



Note also that one can easily show that for a finite
A this definition is equivalent to a usual definition of
a finite root system [8].
. For simplicity we excluded from the abstract defini-
tion of root systems the case when the graph contains an
edge-loop (see sec. 1), One can see from sec, 1 and 2
that they are also important. One can define infinite
dimensional Lie algebras ZF (A), associated with Cartan
matrices introduced in sec. 1. The root system of EF(A)
is then the system A. One can also define highest weight
representations for these Lie algebras and prove the
character formula (cf. [3]). 1In the simplest new case
of the (1 x 1) zero matrix A the Lie algebra az(A) is the

infinite Heisenberg algebra.

b) Representations of quivers over non-closed fields.

As was mentioned in a), all the results of sec., 2
can be proven for an arbitrary base field [F modulo con-
jecture (%),

The first open question is: for a root o € Aie is
it true that the unique indecomposable representation of
dimension @ is defined over the prime field (this is
proven in sec. 2 only in the case of fields of non-zero
characteristic). It would be also interesting to give
an explicit construction of these representations. Ringel
has done it in [6] in the rank 2 case in terms of some
generalized reflection functions.

It is easy to show that if there exists an indecom-

posable representation over [F of dimension o, then
re,
+ 3
tae Brauer group of [F is trivial, then o € A+.

E im ;
either o € A+ » or o = kB, where 8 € A if, moreover,

13
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O0f course, all the results of sec. 2 would be
extended to an arbitrary field [F if one proves that the

set d(S,0) does not depend on { over [F.

c) c-function of a finite dimensional algebra.

Let A be a flnlte—dlmen31onal algebra over 87 and
0 be an element from K (A). Denote by m (A) the number
of absolutely 1ndecomposable representatlons of A of

"dimension" o defined over field E;no We set

(z) = 1 (a) 2"
o nzl = m Z

and define a Z-function
a (z) = exp @A’a(z).

From (2) we obtain that

S
i @ -1y

g M) =

L]

N .r F
de i =
(. q z) i=2(l Aiz)
In the case of a quiver S conjecture 1 from Appendix

in [4] about the multiplicity o of a root O can be

stated as follows:

= jg@s,a (z) dz

where the contour of integration is any circle with the
radius less than 1 and the center in 0, If Conjecture 3
from [4] is true, then Conjecture 1 can be stated as
follows: m, = multiplicity of the pole of ¢ (z) in

S,0
z =1,



d) A connection with prehomogeneous linear groups.

A prehomogeneous linear algebraic group G operating

in a vector space V is a linear group, admitting dense
orbit in V. For irreducible representations these groups
have been classified in [7]. An essential (and the most
difficult) part of the case of general reductive groups
is to classify the linear groups Ga = GLkl X sse X GLkn
operating in WZ_OL(S,Q) = 2?51H0mﬂ=(vi(2)’vf(l))’ asso-
ciated with a quiver (S,) and o = T kiai = F+, which are
prehomogeneous. Of course, a necessary condition is
that (a,a) > 1,

Let S be a connected graph. Let o € F+ and let { be
an orientation of S. Denote by (a) the following pro-
cedure: we take an admissible vertex Py £ S0 and replace

o by ri(u) + sd,, where s 1s the minimal non-negative

i
integer such that ri(a) + sa, € F+, and replace { by ?i(Q).
Denote by (b) the following procedure: we take 20 € 51
such that for the "generic" stabilizer H of G in

RgioHomﬂz(Vi(l)’vf(l)) the maximal dimensions of H-orbits

in Homﬁfvi(io)’vf(ﬁl ) and the dual are equal, and
reverse the direction of the edge QO (one has this situa-
tion, for instance, when H is reductive). Denote by
D(S,R) (or D1(S,R)) the subset of those @ € F+ which can
be transformed to 0 by iteration of the procedures (a)
and (b) fresp. (a)). Clearly, if a € D(S,R), then ¢* has
a dense orbit in fﬁ?(s,ﬂ)q It seems that the following
should be true.

Conjecture. G has a dense orbit in M (S,2) if and

only if a € D(S,Q).

15
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Remark. I have conjectured in [4] that if % has a

dense orbit inﬁfﬂ?(s,ﬂ), then o € D, (5,0). Ringel has

constructed a counterexample to this conjecture. His

quiver is: 0 * 0 + 0 and o = 30, + 60, +a,. It is

easy to see that o € D(5,{) but o ¢ D, (5,R).
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