SOME REMARKS ON REPRESENTATIONS OF QUIVERS AND INFINITE ROOT SYSTEMS VICTOR G. KAČ

This is an addendum to my paper [4]. The purpose of it is to give simpler proofs of the main results of [4] in a more general situation. In [4] properties of the infinite root systems are used in the representation theory of quivers. Here properties of the root systems (and their existence, which in [4] is deduced from the theory of the Kac-Moody Lie algebras) are obtained in the framework of the representation theory of quivers. We do not exclude edges-loops from our consideration. This makes us introduce a more general notion of infinite root system than the one in [4].

In the remainder of the article some remarks on related topics are made and some open problems are discussed. They include:

- a) an "abstract" definition of an infinite root system (i.e., a definition which does not depend on the basis);
- b) multiplicities of roots and ζ -functions of quivers;

c) a connection with the problem of classification of prehomogeneous linear groups.

We keep the notations of [4]. The base field **F** is arbitrary unless otherwise stated.

I am grateful to P. Gabriel for the remark that my proof can be extended to the quivers with edges-loops and to C.M. Ringel for giving me some interesting examples of representations of quivers.

(Generalized) infinite root systems.

An $(n \times n)$ square matrix $A = (a_{ij})$ with integral entries is called a (generalized) Cartan matrix if

- (C1) $a_{ii} \leq 2$ and even;
- (C2) $a_{ij} \leq 0$ for $i \neq j$;
- (C3) $a_{ij} = 0$ implies $a_{ji} = 0$, i,j = 1,...,n. Notice that Lemmas 1.2 and 1.3 of [4] hold in this more general situation. The lists of Cartan matrices of positive and zero type is almost the same as Tables P and Z in [4]: one should only add to Table Z the (1 x 1) zero matrix which we denote by $A_0^{(1)}$. The Dynkin diagram of a Cartan matrix A is defined in the same way as in [4] with additional $\frac{1}{2}(2-a_{ij})$ edges-loops to a vertex P_i .

Let A be a (generalized) Cartan (n x n)-matrix, let Γ be a free abelian group with free generators $\alpha_1, \dots, \alpha_n$ and let Γ_+ be the set of all non-zero elements in Γ of the form $\alpha = k_1\alpha_1 + \dots + k_n\alpha_n$ with $k_i \geq 0$, $i = 1, \dots, n$. For $\alpha = \sum k_i\alpha_i \in \Gamma$ we call the support of α the subdiagram of the Dynkin diagram of A, consisting of those vertices p_i , for which $k_i \neq 0$, and all the edges 2 joining these vertices.

The set $\Pi = \{\alpha_i | \alpha_{ii} = 2\}$ is called the set of sim-We define the positive root system $\Delta_{+} = \Delta_{+}(A)$, associated with A, by the properties:

(R1) $\{\alpha_1, \dots, \alpha_n\} \subset \Delta_+ \subset \Gamma_+; 2\alpha_i \notin \Gamma_+ \text{ if } \alpha_i \in \Pi;$

(R2) if $\alpha = \sum k_i \alpha_i \in \Delta_+$, $\alpha_i \in \mathbb{I}$ and $\alpha \neq \alpha_i$, then $\alpha + k\alpha_i \in \Delta_+$ if and only if $-p \le k \le q$, $k \, \epsilon \, \mathbb{Z}$, where p and q are some non-negative k $\in \mathbb{Z}$, where p and q are some non-negal integers satisfying $p - q = \sum_{i=1}^{n} i_{i} k_{i}$; if $\alpha \in \Delta_{+}$, $\alpha_{i} \notin \mathbb{I}$ and the vertex p_{i} is joined by an edge with a vertex from the support of α_{-} then $\alpha_$ joined by an edge with a vertex from the support of α , then $\alpha + \alpha_i \in \Delta_+$.

The set $\Delta = \Delta_+ U(-\Delta_+)$ is called the <u>root system</u>. For α_i ϵ Π we define a reflection r_i by

$$r_{i}(\alpha_{j}) = \alpha_{j} - a_{ij}\alpha_{i}, j = 1,...,n,$$

and call the group generated by all these reflections the Weyl group. We call the fundamental set the following subset in Γ_{\perp} :

$$K = \{\alpha = \sum_{j=1}^{k} \alpha_{j} \in \Gamma_{+} | \sum_{j=1}^{k} \alpha_{j} \leq 0 \text{ if } \alpha_{j} \in \Pi;$$

support α is connected}.

Notice that properties (R1) - (R3) define Δ_+ uniquely; the existence and other properties of $\boldsymbol{\Delta}_{+}$ will be deduced from the representation theory of quivers.

We call $\alpha \in \Delta$ a <u>nil root</u> if the support of α is one of the diagrams of zero type and $\alpha = k \sum a_i \alpha_i$, a_i 's being the labels of the Dynkin diagram $(a_1 = 1 \text{ for } A_0^{\mathfrak{D}})$, and k ε Z \{0}.

1) In [4], p. 63 and 69, I missed (R3). I am grateful to J. Morita, who pointed out on this. Note that the set Δ is W-invariant. The roots from $\Delta^{\mathbf{re}} = \bigcup_{\mathbf{w} \in \mathbf{W}} \mathbf{w}(\mathbf{H})$ are called <u>real roots</u> and from $\Delta^{\mathbf{im}} = \Delta \mathbf{W}^{\mathbf{re}}$ are called <u>imaginary roots</u>.

Dimensions of indecomposable representations of quivers.

We recall that a <u>quiver</u> is an oriented graph (S,Ω) (we admit edges-loops), where S is a connected graph with n vertices $S_0 = \{p_1, \ldots, p_n\}$ and Ω is an orientation of S. Denote by S_1 the set of edges of S. We associate with S a symmetric Cartan matrix $A = (a_{ij})$ as follows:

- a_{ij} is the number of edges, connecting p_i and p_j in S if $i \neq j$ and $a_{ii} = 2 - 2\#$ (loops-edges in p_i), $i,j = 1,\ldots,n$. This is a bijection between the finite connected graphs and the indecomposable symmetric (generalized) Cartan matrices, S being the Dynkin diagram of A. We define a bilinear form $(\ ,\)$ on Γ by $(\alpha_i,\alpha_j) = \frac{1}{2}a_{ij}$. This form is W-invariant. It is also clear that $(\alpha,\alpha) \leq 0$ for $\alpha \in K$.

We recall the definition of the category $\mathcal{M}(S,\Omega)$. An object is a collection (U,\P) of finite-dimensional vector spaces U_p , $p \in S_0$, and linear maps $\P_{\ell} \colon U_{\mathbf{i}(\ell)} \to U_{\mathbf{f}(\ell)}$ for any size $\ell \in S_1$ (i(ℓ) and f(ℓ) denote the initial and finite vertices of the oriented edge ℓ). A morphism $\Psi \colon (U,\P) \to (U',\P')$ is a collection of linear maps $\Psi \colon U \to U'$, $P \in S_0$, such that $\Psi_{\mathbf{f}(\ell)} = \Psi_{\ell} \Psi_{\mathbf{i}(\ell)} \to A$ class of equivalence of isomorphic objects of $\mathcal{M}(S,\Omega)$ is called a representation of the quiver (S,Ω) . The element Σ (dim $U_{\mathbf{p}_i}$) $\alpha_i \in \Gamma_+$ is called the dimension of the representation.

Denote by $d(S,\Omega)$ the set of dimensions of indecomposable representations of the quiver (S,Ω) . The problem we are concerned with is to describe this set.

The following lemma is trivial.

Lemma 1. The set $d(S,\Omega)$ satisfies the properties (R1) and (R3) of a positive root system. Any $\alpha \in d(S,\Omega)$ has a connected support.

Lemma 2. Suppose that \mathbf{F} is infinite. Then the set $d(S,\Omega)$ contains the fundamental set K. Moreover, if $\alpha \in K$ is not a nil root and U is a representation of dimension α with minimal possible dimension of End U, then U is absolutely indecomposable; if char $\mathbf{F} = 0$, then End U = \mathbf{F} . In particular, $\mu_{\alpha} \geq 1 - (\alpha, \alpha)$.

Proof is exactly the same as that of Lemmas 2.5 and 2.7 in [4]. The only additional remark we need is that $\sum_{j=1}^{n} i_{j}^{k} k_{j}^{k} \leq 0$ if $\alpha_{i} \notin \mathbb{I}$ and $\alpha = \sum_{j=1}^{n} k_{j}^{k} \alpha_{j} \in \Gamma_{+}$.

The following lemma follows from the existence of a reflection functor in the case of an admissible vertex $\mathbf{p_i}$ of (\mathbf{S},Ω) (i.e., a source or a sink).

Lemma 3. If p_i is an admissible vertex of the quiver (S,Ω) and $\alpha \in d(S,\Omega)$, $\alpha \neq \alpha_i$, then $r_i(\alpha) \in d(S,r_i(\Omega))$. Moreover, $\mu_{\alpha} = \mu_{r_i(\alpha)}$ and in the case of a finite base field F the numbers of indecomposable (or absolutely indecomposable) representations of dimensions α and $r_i(\alpha)$ are equal.

 $[\]mu_{\alpha}$ is the "number of parameters" of the set of indecomposable representations of dimension α of the quiver (S,Ω) (see [4] for a precise definition).

 $[\]boldsymbol{\tilde{r}_i}(\Omega)$ is an orientation of the graph S obtained from Ω by reversing the direction of arrows along all the edges containing p_i .

Lemma 4. Provided that $\[F\]$ is algebraically closed, the set $d(S,\Omega)$ does not depend on the orientation Ω of the graph S; moreover, μ_{α} does not depend on Ω . In the case of a finite base field $\[F\]$ the number of indecomposable (or absolutely indecomposable) representations of dimension α does not depend on the orientation Ω .

<u>Proof.</u> Let $\alpha = \sum_{i=1}^{n} k_i \alpha_i \in \Gamma_+$ and V_1, \dots, V_n be vector

spaces of dimensions k_1, \dots, k_n . Recall that the classification of the representations of a quiver (S,Ω) is equivalent to the classification of the orbits of the linear group $G^{\alpha}(\mathbf{F}) = \operatorname{GL}_{k_1}(\mathbf{F}) \times \dots \times \operatorname{GL}_k$ (\mathbf{F}) operating in the space

(1)
$$\mathcal{M}^{\alpha}(S,\Omega) = \bigoplus_{\substack{\ell \in S_1}}^{\mathfrak{H}om} \mathbb{F}^{(V_{i(\ell)}, V_{f(\ell)})}.$$

The reversing of the direction of an arrow of the quiver (S,Ω) gives a new quiver (S,Ω_1) and is equivalent to the replacement of the corresponding summand in (1) by a contragredient representation of the group G^{α} .

Suppose now that \mathbf{F} is a finite field. Recall that by a theorem of Brauer, for any linear finite group G operating in a vector space $V \simeq \mathbf{F}^k$ the numbers of orbits in V and V^* are equal (see [4], Lemma 2.10 for the proof). This implies that if $U \simeq \mathbf{F}^m$ is the space of another representation of G, then the numbers of orbits in $U \oplus V$ and $U \oplus V^*$ are equal (one should apply the Brauer theorem to all the linear groups $G_{\mathbf{x}}$, $\mathbf{x} \in U$, operating in V and V^*).

These two remarks imply immediately that the number of all representations of dimension α does not depend on 6 the orientation of the quiver.

Now we obtain immediately by induction on the height α that the number of indecomposable (over the finite field \mathbf{F}) representations of dimension α does not depend on Ω (we use the uniqueness of the decomposition of a representation into direct sum of indecomposable representations).

The fact that the number of absolutely indecomposable representations of dimension α does not depend on Ω is also proven by induction on height α for any finite field \mathbf{F} . The proof is more delicate. It uses the fact that any indecomposable representation over \mathbf{F} is an essentially unique absolutely indecomposable representation over a bigger finite field $\mathbf{F}' \supset \mathbf{F}$, considered over \mathbf{F} . The details can be found in Appendix to [4].

The fact that d(S, Ω) and μ_{Ω} do not depend on Ω follows from the preceding result by the following

Proposition 1. Let A be a finite dimensional algebra and α be an element from the Grotendique ring $K_0(A)$. If the base field is \mathbf{F}_q , $q=p^S$, then the number $m_t^{\alpha}(A)$ of absolutely indecomposable representations of A of "dimension" α over field \mathbf{F}_q is given by the following formula:

(2)
$$m_t^{\alpha}(A) = rq^{Nt} + \lambda_2^t + ... + \lambda_k^t - \mu_1^t - ... - \mu_s^t$$

where r and N are positive integers and λ_2, \ldots, μ_s are complex numbers (not depending on t) such that $|\lambda_i|, |\mu_j|$ are non-negative half-integral powers of q smaller than q. The number N is equal to the number of parameters and r to the number of irreducible components of maximal dimension of the set of indecomposable representations of A over an algebraically closed field of characteristic p.

If the base field **F** is algebraically closed and of characteristic 0, then for all but a finite number of primes p for a reduction mod P the numbers N and r are again the number of parameters and number of irreducible components of maximal dimension of the set of indecomposable representations of A.

<u>Proof.</u> The set of representations of A of dimension α is the set of orbits of an algebraic group G operating on an algebraic variety M, the subset of absolutely indecomposable representations being a constructible G-invariant subset X \subset M.

By Rosenblicht's theorem, we can represent X as a union of G-invariant algebraic varieties $X = \bigcup_{i=1}^{S} X_i$, such that each X_i/G is again an algebraic variety.

Since G_X is connected for any $x \in M$ (as the group of units in the endomorphism ring), we obtain bijections between the set of $G(\mathbb{F}_q)$ -rational orbits on $M(\mathbb{F}_q)$, the set of \mathbb{F}_q -rational points on U X_1/G and the set of absolutely indecomposable representations defined over \mathbb{F}_q (see Appendix to [4] for details).

Recent general results of Deligne [9] give now formula (2). A standard reduction mod P argument proves the last statement.

An immediate consequence of Lemmas 3 and 4 is:

Lemma 5. Suppose that the base field F is finite or algebraically closed. Then the set $d(S,\Omega)\setminus\{\alpha_i\}$ is r_i -invariant (and, therefore, $d(S,\Omega)$) U (- $d(S,\Omega)$) is W-invariant). Moreover, over a finite base field the numbers of indecomposable (or absolutely indecomposable) representations of dimension α and $w(\alpha)$, $w \in W$, are equal;

over an algebraically closed field one has: $\mu_{\alpha} = \mu_{w(\alpha)}$, $w \in W$.

Now we are able to prove the final:

Lemma 6. For an algebraically closed base field, the set $d(S,\Omega)$ is exactly the set of positive roots $\Delta_+(A)$, where A is the Cartan matrix of the graph S.

<u>Proof.</u> We will prove that the set $d = d(S,\Omega)$ satisfies properties (R1)-(R3) of $\Delta_+ = \Delta_+(A)$. The properties (R1) and (R3) of Δ_+ are satisfied by Lemma 1. By Lemma 5, Δ_+^{re} d and since the support of any $\alpha \in d$ is connected we obtain that $d = \Delta_+^{re} \bigcup (\bigcup_{w \in W} w(K))$, where K is the fundamental set (since for any $\alpha \in d \setminus (K \cup \{\alpha_1, \ldots, \alpha_n\})$) there is a reflection r_i such that height $r_i(\alpha)$ < height α).

Now we prove (R2) for any $\alpha \in d$. If $\alpha = \alpha_j$, this property obviously holds. Therefore, this property holds also for any root $\alpha \in \Delta_+^{re} \subset d$. If $\alpha \in d \setminus \Delta_+^{re}$, then $\alpha \in M = \bigcup_{w \in W} w(K)$. I claim that the set M is convex (i.e., if $\beta, \gamma \in M$, then any $\delta \in [\beta, \gamma] \cap \Gamma$ also lies in M). Indeed, let M and K be the open kernels of the convex hulls of M and K in the space $V = \Gamma \otimes_{Z} R$; M is a convex cone. We introduce the canonical Riemanian metric on M (see e.g. [10]). This metric is W-invariant and W operates discretely on the Riemanian manifold M since W is a discrete subgroup in GL(V)). Therefore, any segment $[\alpha, w(\alpha)]$, $\alpha \in M$, $w \in W$, intersects only a finite number of hyperplanes of reflections, say, $r_{\beta_1}, \ldots, r_{\beta_s} \in W$. But then $[\alpha, w(\alpha)] \subset U r_{\beta_1}, \ldots, r_{\beta_1} \hat{K}$. Clearly, this implies that M is convex.

So (R2) is satisfied for any $\alpha \in M,$ which completes the proof of the Lemma.

We summarize the obtained results in the following two theorems (cf. [4]).

Theorem 1. Let (S,Ω) be a quiver and let the base field F be a finite field F_q . For $\alpha \in \Gamma_+$ let m_t^α (S,Ω) denote the number of absolutely indecomposable and m_t^α (S,Ω) denote the number of indecomposable representations of (S,Ω) of dimension α defined over F_q t. Then

- a) m_t^{α} (S, Ω) and m_t^{α} (S, Ω) do not depend on the orientation Ω of S and the action of W on α .
- b) For $\alpha \not\in \Delta_+$ there is no indecomposable representations of (S,Ω) of dimension α .
- c) For $\alpha \in \Delta_+^{re}$ there exists a unique indecomposable representation of (S,Ω) of dimension α which is absolutely indecomposable and is defined over the prime field.
- d) For $\alpha \in \Delta_+^{im}$ there exists complex numbers $\lambda_2, \ldots, \lambda_k, \mu_1, \ldots, \mu_s$ (depending on α but not on t) and positive integers N and r such that $|\lambda_i|, |\mu_j|$ are nonnegative half-integral powers of q smaller than q^N , $N \geq 1 (\alpha, \alpha)$ and
- (3) $m_t^{\alpha}(S,\Omega) = rq^{Nt} + \lambda_2^t + \ldots + \lambda_k^t \mu_1^t \ldots \mu_s^t$. Analogous formula takes place for $\overline{m}_t^{\alpha}(S,\Omega)$. One has: $m_t^{\alpha}(S,\Omega) = \overline{m}_t^{\alpha}(S,\Omega)$ for a non-divisible α .

Theorem 2. Let (S,Ω) be a quiver and let the base field F be algebraically closed. Let $\Delta_+ = \Delta_+(A)$ be the positive root system, where A is the Cartan matrix of the graph S. Then

a) For $\alpha \in \Gamma_+$, α is a dimension of an indecomposable representation of the quiver (S,Ω) if and only if $\alpha \in \Delta_+$.

- b) For $\alpha \in \Delta_+^{re}$ there exists a unique indecomposable representation of (S,Ω) of dimension α .
- c) For $\alpha \in \Delta_+^{\text{im}}$ there exists an infinite number of indecomposable representations of (S,Ω) of dimension α . Moreover, the number of parameters of the set of indecomposable representations of dimension α is at least $1 (\alpha, \alpha) > 0$ and does not depend on Ω and the action of W.

3. Further remarks.

a) <u>Infinite root systems.</u> An immediate consequence of the results of sec. 2 is

Proposition 2 (cf. [4]). Let A be a symmetric square matrix with integral entries, satisfying condition (C1)-(C3) of sec. 1. Then the associated positive root system Δ_+ (satisfying the properties (R1)-(R3)) exists.

Moreover, $\Delta_+ = \Delta_+^{\rm re} \bigcup \Delta_+^{\rm im}$, where $\Delta_+^{\rm re} = \bigcup (w(\Pi) \cap \Gamma_+)$ and $\Delta_+^{\rm im} = \bigcup w(K)$.

Remark. The statement that in the case of a Cartan matrix, associated with a graph without loops, any element from K is a root appears in [5] (see Theorem; however, it seems that there is a gap in the proof of the crucial Proposition 3 - in the case k = 1).

The results of sec. 2 can be extended to the case of species (see [2], [1] for definitions) when the base field is finite. In particular, this gives a generalization of Proposition 2 for a symmetrisable A. For an arbitrary field the reduction mod p argument does not work and I can extend the results of sec. 2 only modulo the following conjecture (cf. [4]).

Conjecture (*). Let G be a linear algebraic group operating in a vector space V defined over a field F of characteristic O. Then the cardinalities of the sets of the orbits with a unipotent stabilizer (or with a stabilizer such that its maximal split torus is trivial) of the group G in V and V* and the number of parameters of these sets are equal.

Now I would like to give an "abstract" definition of an (ordinary) infinite root system. Let Γ be a full lattice in a real vector space V. We recall that a reflection in a vector α ϵ V is an automorphism Γ_{α} of V such that its fixed point set has codimension 1, $\Gamma_{\alpha}(\alpha) = -\alpha$ and $\Gamma_{\alpha}(\Gamma) = \Gamma$.

Let Δ be a subset in Γ { }; we denote by Δ^{re} the set of vectors from Δ in which there exists a reflection preserving Δ and by W the group generated by all the reflections in vectors from Δ . The set Δ is called a <u>root system</u> (in general infinite) if the following conditions are satisfied:

- (i) Γ is the \mathbb{Z} -span of Δ^{re} ;
- (ii) For any $\beta \in \Delta$ and $w \in W$ all the points of Γ which lie on the segment $[\beta, w(\beta)]$ belong to Δ ;
- (iii) For $\beta \in \Delta \backslash \Delta^{\text{re}}$ the set $W(\beta)$ lies in an open half-space.

This definition includes non-reduced root systems (i.e., some of $2\alpha_i$'s may lie in Δ) which naturally appear in Lie superalgebras (see [3]), but I do not know whether they are related to representations of graphs.

Note also that one can easily show that for a finite Δ this definition is equivalent to a usual definition of a finite root system [8].

For simplicity we excluded from the abstract definition of root systems the case when the graph contains an edge-loop (see sec. 1). One can see from sec. 1 and 2 that they are also important. One can define infinite dimensional Lie algebras % (A), associated with Cartan matrices introduced in sec. 1. The root system of % (A) is then the system A. One can also define highest weight representations for these Lie algebras and prove the character formula (cf. [3]). In the simplest new case of the (1 x 1) zero matrix A the Lie algebra % (A) is the infinite Heisenberg algebra.

b) Representations of quivers over non-closed fields.

As was mentioned in a), all the results of sec. 2
can be proven for an arbitrary base field F modulo conjecture (*).

The first open question is: for a root $\alpha \in \Delta_+^{re}$ is it true that the unique indecomposable representation of dimension α is defined over the prime field (this is proven in sec. 2 only in the case of fields of non-zero characteristic). It would be also interesting to give an explicit construction of these representations. Ringel has done it in [6] in the rank 2 case in terms of some generalized reflection functions.

It is easy to show that if there exists an indecomposable representation over F of dimension α , then either $\alpha \in \Delta_+^{\text{im}}$, or $\alpha = k\beta$, where $\beta \in \Delta_+^{\text{re}}$; if, moreover, the Brauer group of F is trivial, then $\alpha \in \Delta_+$.

Of course, all the results of sec. 2 would be extended to an arbitrary field F if one proves that the set $d(S,\Omega)$ does not depend on Ω over F.

c) ζ-function of a finite dimensional algebra.

Let A be a finite-dimensional algebra over \mathbf{F}_q and α be an element from $K_o(A)$. Denote by m_n^α (A) the number of absolutely indecomposable representations of A of "dimension" α defined over field \mathbf{F}_q n. We set

$$\Phi_{A,\alpha}(z) = \sum_{n\geq 1} \frac{1}{n} m_n^{\alpha}$$
 (A) z^n

and define a 5-function

$$\zeta_{A,\alpha}$$
 (z) = exp $\Phi_{A,\alpha}$ (z).

From (2) we obtain that

$$\zeta_{A,\alpha}(z) = \frac{\prod_{i=1}^{s} (1 - \mu_i z)}{(1 - q^N z)^r \prod_{i=2}^{k} (1 - \lambda_i z)}$$

In the case of a quiver S conjecture 1 from Appendix in [4] about the multiplicity \mathbf{m}_{α} of a root α can be stated as follows:

$$m_{\alpha} = \oint \Phi_{s,\alpha}$$
 (z) dz

where the contour of integration is any circle with the radius less than 1 and the center in 0. If Conjecture 3 from [4] is true, then Conjecture 1 can be stated as follows: m_{α} = multiplicity of the pole of $\zeta_{S,\alpha}(z)$ in z=1.

d) A connection with prehomogeneous linear groups.

A <u>prehomogeneous</u> linear algebraic group G operating in a vector space V is a linear group, admitting dense orbit in V. For irreducible representations these groups have been classified in [7]. An essential (and the most difficult) part of the case of general reductive groups is to classify the linear groups $G^{\alpha} = GL_{k_1} \times \cdots \times GL_{k_n}$ operating in $\mathcal{M}^{\alpha}(S,\Omega) = \bigoplus_{k \in S_1} \operatorname{Hom} \mathcal{F}^{(V_i(k),V_f(k))}$, associated with a quiver (S,Ω) and $\alpha = \sum_{k \in S_1} \alpha_i \in \Gamma_+$, which are prehomogeneous. Of course, a necessary condition is that $(\alpha,\alpha) \geq 1$.

Let S be a connected graph. Let $\alpha \in \Gamma$ and let Ω be an orientation of S. Denote by (a) the following procedure: we take an admissible vertex $\mathbf{p_i} \in \mathbf{S_o}$ and replace α by $r_i(\alpha) + s\alpha_i$, where s is the minimal non-negative integer such that $r_i(\alpha) + s\alpha_i \in \Gamma_+$, and replace Ω by $\tilde{r}_i(\Omega)$. Denote by (b) the following procedure: we take $\ell_0 \in S_1$ such that for the "generic" stabilizer H of G^{α} in $\ell_{f,0}^{\oplus} = (V_{i(\ell)}, V_{f(\ell)})$ the maximal dimensions of H-orbits in $\text{Hom}_{\text{\bf F}}(\text{V}_{\text{i}}(\text{L}_{\text{O}}),\text{V}_{\text{f}}(\text{L}_{\text{O}})$ and the dual are equal, and reverse the direction of the edge ℓ_0 (one has this situation, for instance, when H is reductive). Denote by $D(S,\Omega)$ (or $D_1(S,\Omega)$) the subset of those $\alpha \in \Gamma_+$ which can be transformed to 0 by iteration of the procedures (a) and (b) (resp. (a)). Clearly, if $\alpha \in D(S,\Omega)$, then G^{α} has a dense orbit in $\gamma_{\alpha}^{\alpha}(S,\Omega)$. It seems that the following should be true.

Conjecture. G^{α} has a dense orbit in $\mathcal{M}^{\alpha}(S,\Omega)$ if and only if $\alpha \in D(S,\Omega)$.

Remark. I have conjectured in [4] that if G^{α} has a dense orbit in $\mathcal{M}^{\alpha}(S,\Omega)$, then $\alpha \in D_1(S,\Omega)$. Ringel has constructed a counterexample to this conjecture. His quiver is: $0 \Rightarrow 0 \Rightarrow 0$ and $\alpha = 3\alpha_1 + 6\alpha_2 + \alpha_3$. It is easy to see that $\alpha \in D(S,\Omega)$ but $\alpha \notin D_1(S,\Omega)$.

References

- [1] DLAB, V., RINGEL, C.M.: Indecomposable representations of graphs and algebras. Memoirs of Amer. Math. Soc. 6, 173, 1-57 (1976).
- [2] GABRIEL, P.: Indecomposable representations II. Symposia Math. Inst. Naz. Alta Mat. XI, 81-104 (1973).
- [3] KAC, V.G.: Infinite dimensional algebras, Dedekind's n-function, classical Mobius function and the very strange formula. Adv. in Math. 30, 85-136 (1978).
- [4] KAC, V.G.: Infinite root systems, representations of graphs and invariant theory. Inv. Math. 3(1939), 57-92.
- [5] OVSIENKO, S.A.: On the root systems for arbitrary graphs, Matrix Problems, 81-87 (1977).
- [6] RINGEL, C.M.: Reflection functors for hereditary algebras, preprint (1979).
- [7] SATO, M., KIMURA, T.: A classification of irreducible prehomogeneous vector spaces and their relative invariants. Nagoya Math. J. 65, 1-155 (1977).
- [8] SERRE, J.-P.: Algèbres de Lie semi-simples complexes, New York-Amsterdam: Benjamin 1966.
- [9] DELIGNE, P.: La conjecture de Weil II, Publ. Math. IHES, to appear.

[10] KOECHER, M.: Positivitätsbereiche im \mathbb{R}^n , Amer. J. Math. $\underline{79}$, $\underline{3}$, 575-596 (1957).

Massachusetts Institute of Technology Department of Mathematics Room 2-178 Cambridge, Massachusetts 02139 U.S.A.