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§0. In [6] Serre asks the following question. Let C be a subgroup
of EB(Q) of order 31. Is it true that C acts on each fundamental module of EB by a
multiple of the regular representation? Same question with (E8,3l) replaced by

{E7,l9) and (F,,13).

4"
In these notes I show that the answer is "yes" for (E8,3l), (F4,l3) and (G2,7),
and "almost yes" for (E7,l9) and (E6,13) (the answzr is "no" only for the funda-
mental representations of E6 and E7 of minimal dimension).
The proof is very simple and goes as follows. ILet G be a complex simple con-
nected simply connected Lie group, and let h be *!e Coxeter number of G (recall

that h = 6,12,12, 18 and 30 for G¢.,F ,E_,E_ and EB' respectively), Then G has a
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unique,up to conjugation,reqgular element of order h+l, which we denote by JH.
It is easy to see that in the case when h+l is a prime number, Serre's gquestion
is equivalent to whether it is true that trF(OM) = 0 in any fundamental module F of
G. We write down a product formula for trF{UM) in any irreducible G-module F and
£
show that
= +

(1) trF(OM) =0 ior *I,
This together with the remark that

(2) tr_ (0 ) = dim F mod (h+l1),

F M

whenever h+l is a prime number, gives an effective way of computing the trp(oy) .

Remark that by the way we obtain the following curious statement:

(3) ~ dim F = J or *1 mod (h+l) for any irreducible module F,

provided that h+l is a prime number.



A statement similar to (1) has been proved by Kostant [4] for the "principal"

element and the "principal element of type p", which we denote by GK and oé '

respectively (see subsection 3 for their defirition). Our method gives a simpler
proof of these statements as well.

Let F be an irreducible G-module. Denote

E
()

We call the number the Legendre symbol of the G-module F. The name is Justi-

\

fied by the following formula which easily follows from (2):

F
(5) lazdp) |2
: SLp__l P

Here p is an odd prime, FA denotes the irreducible SL l-module with highest

weight A, p is the nalf-sum of positive roots, and (g— denotes the ordinary

al
P)
square mod p, respectively; e.g., see [7]).

Legendre symbol ( = 0, 1 or -1 according as p]a, p*a and a is or is not a

We shall see that the numbers tr o

tr o! a so t 5
g Ty nd also TV (see §5) are

K
also related to the Legendre symbol, and that Eisenstein's proof of the

guadratic recibrocity law is nothing else but an exercise in the Weyl

character formula.



81. 1In thisg section we expose the classification of the elements of finite
order of the adjoint group G of the group G and discuss some important examples.

Let zf be the Lie algebra of the group G, ( , ) the Killing form, af’a Cartan
subalgebré, A Cf* the root system, W the Weyl group, A+¢ A a subsystem of positive

. *
roots, Il = {ul,...,ai} the system of simple roots. For o £ A we denote by oY ¢ ?f

the dual root, i.e., o = Tﬁ 3) We denote by A: the set of positive dual roots.
2' r
Let ao = -Z aiai be the lowest root, so that setting a, = 1, we have:
i=1
2
(6) ' ) a.0, =0,

. i'i
i=0

where ai's are positive integers. One also has;:

&
(7) iZO aZaI = 0,

where aI are positive integers and a; = 1.

We fix some non-zero root vectors EO""’EE’ corresponding to the roots

ao'dl""’aﬁ' Consider a sequence of non-negative, relatively prime integers

= ¢

u

: 45

L

of order m defined by:

£
Sb’sl'"' ). Setm-= Z siai. Then there exists a unique element G[S] ¢ E,
i=0

ol ]Ek {exp 2Trlsk/m)Ek i k O s

Proposition 1.[1] Any element C € G of finite order m is a conjugate of an

element 0[5]. Two elements 0(S5,] and 0[5,] are conjugate in G if and only if 5, can

be transformed to 52 by an automorphism of the extended Dynkin diagram preservindg

1)

the orientation.

For the element 0 € G of finite order its conjugate element of the form O[S] is

called a canonical form of the element G.

N ;
)In [1] this is stated in a slightly different form (up to conjugation in Auti; )



"

Examples. 1) Let 5 = (1,1,,..,1); we denote O[S] by Jx. This is Kostant's
principal element [4] of al' Its order is the Coxeter number h.

2) Let z? be one of the Lie algebras BE' CQ, F, and G2 and set d = 2,2,2 and 3,

4
respectively. Set $ .z (so,...,sg), where S = I if O is a short root and s, = d
if o is a long root. We denote O[S] by 6%. This is Kostant's principal element
of type p [4] of G . 1Its order is dg, where
i L,
(9) g : = (ao,ao) =1 + 'Z a;s-
i=1
3) Let §= (2,1,..,,1);: we denote o[s] by 3&. The order of this element is h+l.

This element appears in the paper by Macdonald [5].
From Proposition 1 and the fact that 0(S) is regular if and only if all Si >0
we obtain:

Corollary. a) [2] The conjugacy class of 6K cor.tains all reqular elements

of order h ig_al all elements of order < h are not regular.

b) [2] The conjugacy class of SM contains all regular elements of order h+l in G.

c) The conjugacy class of 5% contains all regular elements 0 of order dg in G such

that o9 centralizes the connected simple subgroup of 3, whose root system is the

system of long roots in A.




§2, 1In this section we define the action of the affine Weyl group in terms

convenient for us and prove the first lemma.
2+1

Let wO""'wﬁ be the standard basis of the lattice I': = % . Define
—g,...,&zE I' by
. v " .
= a_,o pus—— g -
OLj (< 0’ j)' ,(Otgfﬁj))
Define fundamental reflections X, i=20,...,% by:
-V
r.(w,) =w, - 6§, .a., j=0,...,2
i ij i

The group of automorphisms of I' generated by all fundamental reflections is denoted

by W. Clearly, the subgroup W of w generated by rl,...,rz is isomorphic to the Weyl
2
group of G. For an integer m set: I : = {S ¢ T' L ays, = m}. Introduce also
m fusp i
translations ti, s ) L T o,

_ - _v =
t.(s): =s +md., s§eT .
1 B

~
Proposition 2. a) Fm is W-invariant.

b) BAny W-orbit in Fm for m > 0 contains a unigue ‘element § with non-negative

coordinates.

A
c) The group W is a semidirect product of the subgroup W and the normal free

abelian subgroup T of rank  generated by t., i = 1,...,2.
- i

Proof is left to the reader (cf. e.g. [3]).

Corollary. Let § ¢ Fm be a sequence of relatively prime integers, and let o

denote the corresponding element of G defined by (8). Let §l be the element in

Wa(g} with non-negative coordinates. Then O[él] is a canonical form of o.

%
‘Let 0 €}£ (respectively, p') denote the half sum of the roots o £ A+ (respec-
PR Y j R I

tively dual roots aY ¢ A+.)

*

Lemma 1. a) Let r = 0 or 1 and let h be the Coxeter number of G. Let A E-g
— = ; R 0



be such that (A,a") €Z and (A,a ) Z 0 mod (h+r) for all a € A, Then the set

I

S {(A,0 ) mod (h+r), a & A}

A:

coincides with the set Sp,.

*
b) Let A E:%’ be such that ()},a) € dg(o,q)Z and {(A,a) Z O mod dg for all o & A.

Then the set

n
It

3 G {(X,0) mod dg, o e A}

coincides with the set S .
2dgp

bproof. (cf. [4]). We shall prove a); the proof of b) is the same. To any

# ' : g
A Eef such that (A,a) € %, o ¢ A, we associate A = (so,sl,...,sz) € Fh+r setting

2
s, = (R,ai) for i = l,vu:, % and Sp = (h+r) - I a;s. . By Proposition 2¢) it is
i=1
clear that SA = Sw(k) for w from the affine Weyl group. By Proposition 2¢) and a),
~ L
wo(h) has positive coordinates for scme Wy EW and lie in Fh+r' But I Ry = h,
i=0

hence, if r = 0, the only possibility is that w ) = 51, which proves the lemma in

(
0
this case. If r = 1, there are several possibilities for WO(X}' but all of them

are equivalent by an automorphism of the extended Dynkin diagram (since all oy for

which &, = l, are equivalent to ao). Hence again we obtain that SA = Sp"



§3. 1In this soction we consider the notion of a rational element of the
group G and discuss some important examples.

We will view G as the group of complex points of the connected simply connected
algebraic group G defined over Q. An element x € G(@) & G is called rational.

An element x € G is ralled conjugate-rational if its orbit is defined over @.

From the results of [8] one deduces:

Proposition 3. An orbit of a conjugate-rational regular element x € G contains

a rational element.

. *
Identifving 6! with a? by the Killing form, we have: p,p' & af. We introduce

the following elements in the group G:

e
o = exp == p' [4];
h
Ox = exp 4mip [4];

g = ex <l .3
M Pl P

\
One has the following characterisation of their conjugacy classes.

Proposition 4. a) The conjugacy class of OK(Eesp. GK‘) is precisely the pre-~

image of the conjugacy class GK € G (resp. 5&).

b) The conjugacy class of UM is precisely the set of all regular elements in G of

order h+l.

Proof. For a) see [4]. To prove b) recall that all regular elements in G of
order h+l are conjugate (Corollary b) of Propositicn 1). But since the order of the
centre of G and h+l are relatively prime, each such element of G has a unique pre-
image in G of order h+l, which proves b).

Proposition 4 together with Proposition 3 imply:



Lemma 2, There exists a rational element in G, which is a conjugate of o

(0!

k' Oy’ respectively) .

Proof. The orbit of GK (or Oé or GM) is invariant with respect to the action
of the Galois group, since these orbits are defined in group-theoretical terms
(by Proposition 4)." Hence this orbit is defined over © and we apply Proposition 3.

2)

An element x € G is called quasirational if the characteristic polynomial

of Adx has rational coefficients. It is clear that a conjugate rational element is
quasirational.

The following example has been computed together with B.G, Katz.
12 3

Example. G is the group of type G2. Its extended Dynkin diagram is O—OE%D '

where the labels are a This group has 1i conjugacy classes of conjugate-

073735
rational elements O[S 3,...,U[§ ] and 10 conjugacy classes of quasirational ele-
1 12 Y

ments, which are not conjugate-rational C{3 ]..--,G{§22] and form 5 conjugate by

13

the Galois group pairs, Here is the complete list of all 22 quasirational elements

of G2.
No, Order s=(so,sl,52) - No, Order s=(50,51,52)
1 1 1,0,0 13 8 5,0,1 0[513]"} oI5, ,]
2 2 0,1,0 14 8 Gk .2 g
3 3 1,1.,0 15 8 3,1,% 0{515} ~ 6[516]
K 3 0,0;1 I 16 8 1,2,1 5
5 4 2,1,0 17 13 1,3,2 0[518] ~ 0[517]
6 4 1.:0:1 18 13 6,2,1 7
7 6 1,1,4 19 24 4,1.,6 o[§20] ~ 6[519]
8 6 4,1,0 20 24 13:8,1 _ 5 .
9 6 3,0,1 57 24 T,1.5 08,17~ o15,,]
10 7 2.1 22 24 11,5,1
iz 12 ;4.1
12 12 33,1
= g L s ] S
Note that B 6[57], GK 6[512], GM U[Slo].
2)

In [2] these elements are called rational.



In general, there is only a finite number of conjugacy classes of quasi-

rational elements in G. Indeed, if G € G is a guasirational element of order

u’._

o O L
m = pll s pgn, then, clearly, pil - pil < dim G - 2. Together with B. Katz

we have found canonical forms of all of them in F4 and E6.
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§4. In this subsection we prove product formulae for the traces of some
elements of the group G.

For a non-negative integer r set

B = ex AL
r P her P

Recall that 60 =0 g, = OM. Remark also that Gr is a regular element.

K '"1

Lemma 3. Let FA denote an irreducible finite-dimensional G-module with highest

weight A, Then one has:

' sin T(lip,q)/htr
10 + = S ;
(10} rF}\er agﬂu sin m(p,e) /h+r
+
Vo sin 2m(A+p,q)
(11) trFAGK B wep  Sin 2m(p,7)
+

Proof. We shall prove (10); the proof of (11) is similar. Recall the Weyl

*
character formula. For U,u' € af = Bf set

A(u') = I (det w) exp 2mi(w(w),u ).
U
wEW

Then clearly:

12 'Y = a ;
(12) Au{u ) u'(u)

The Weyl character formula is:

trF)\ exp 2miy = A)\_f_p(u)/Ap(u).

If exp 27iu is regular, then Ap(u) # 0, which is clear from the Weyl denominator

identity:

(13) A (W) = T (2i) sin 7(y,q).
P aeA+



For the dual root system identity (13} is:

(14) a .= T 2i sin w(u,0)
P aaﬁi

Now we have;

o
Au( )

A
ht+r 1

—

©
-

—
I

o oy
(by (12}) = Ap ) = (by (14))

)
h+r

r

II (2i) sin
v
a€A+

which by the Weyl character formula gives (10).
Remark. Let 2 be a positive odd integer, and x a real number. Then

from (10) we obtain (cf. [7]):

}
= (2-1)

B E = 2 :
trF (exp 2mi x p') (-4) /ALA=LYRL, I I (sinzﬂ(plu)x - sin2 2%;0

(2-11p agd, 3=1 :

In particular, for G = Slﬁ, m odd, one has:
1
m-1 ‘2' (Q,—l)

1/4(2-1) (m-1) 2 2ijm'k

(X5} tr (exp 271 x p‘) = (-4) I I {sinzﬂkx - sin =
(4-1)p k=1 j=1
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§5. Now we can prove the central result of the notes.

Theorem 1. Let G be a complex connected simply connected simple Lie group,

and let h be the Coxeter number, Let FK be an irreducible finite-dimensional G-

module,

a) All regular elements of G of order h+l form a eingle non-empty conjugacy class

M. For 0 £ M one has;

(16) tr_. 0 =0 or *1
5

for any irreducible finite-dimensional G-module Fl'

b) [4] Property (16) holds for the elements

2mi :
Oy = exp —gi-p' and Gé = exp 4mip.

c¢) Suppose that h+l is a prime number. Then for ¢ £ M one has:

dim Fk = trFAG mod (h+1l) .

d) For the element Oy of G = Slb' P being a prime, one has:

i = =
dim FA ro Og mod p

Proof. To prove (16) we use formula (10) for r = 1. If (A+p,0) = 0 mod h+l,
then trFABr = 0. Otherwise we apply Lemma la) where r = 1, )\ is replaced by A+p and
A is replaced by AY, It follows that up to a sign, the numerator of (10) is equal
to the denominator, proving (16), This together wi:h Proposition 4b) gives a). The
proof of b) is similar,

To prove c) we consider G as the group of complex points in the algebraic group

G defined over Q. Then, by Lemma 2, there exists a regqular element x £ G(Q) of order



h+l. Let C be the cyclic group generated by x. Since, the G-module Fk i; definec
over @, it follows that as a C-module, FA is a direct sum of its irreducible repre-
sentations defined over . But a cyclic group C of prime order h+l has only two
irreducible representations over @ -- the trivial l-dimensional and the h-
dimensional -- and their direct sum is the regular representation of C. Also

tr x = 0 in the regular representatibn for any x € C, x # 1. c¢) now follows.

The proof of d) is similar.

6 E7 and E8 and let

Corollary 1. Let G be of one of the types G Fyr E

2'

p = 7,13,13,19 and 31, respectively. Then for any irreducible G-module FA one has:

dim F = 0 or *1 mod p.

Corollary 2. If h+l is a prime number, then for any irreducible G-module, thc

multiplicities of all eigenvalues # 1 of the element UM are egual, say, to n; the

multiplicity of 1 isnor n * 1,

Remark. Since h+l|dim G, it follows from Theorem 1, that the multiplicities
of all eigenvalues of oM in the adjoint representation are equal, provided that h+l
is a prime. It is also clear from (10) that always tr AdOM = 0. It happens that

the preceding statement holds when h+l is not a prime as well (see [5]).

Corollary 3. For an odd m and an integer a and G = SI. one has:
by el

tE a

) [El (m=-1) /2 P 213
Fla-np ©

T
= T (sin —32/sin 23y
mJ . m
j=1
Proof. By the Weyl formula,
dim F = (n + l}#A+ .
np

Hence, for G = 8L ,
m

_ g i/2m(m-1)

dim F(a—l)p -



14 A

and the corollary follows from theorem 1d) and formula (10), provided that m
is a prime. The general case is left to the rezder.

Remark. Formula (15) together with Corollary 3 give that for odd m and £

one has;
2-1 m-1
2 2

) ol _ "

(17) sin ~—= - sin
m m

=1 k=1 \

i

and we obtain as a consequence the gquadratic reciprocity law:

(&] = P%](—l)(ﬁhl)(m_l)/4 for any o.ld integers m and %.

m
Formula (17) was found by Eisenstein in 1845 (cf [71).
Remark. The symbol (%] used above for any pajr of odd integers a and b is
the so-called quadratic symbol, which is 0 if (a,b) # 1 and expressed by bimulti-
plicativity in terms of the Legendre symbol if (a,b) = 1. Note that

F
(a-l)p| _ (_1)1/2(a—l)

SL2

if a is odd and = 0 otherwise.

Hence, it is natural to define

al. _ {(—1)1/2(3‘1) if a is odd
2}° 0 otherwise

Now we can define [EJ, for any pair of integers a and b, as = 0 if (a,b) # 1,
and by bimultiplicativity otherwise. One can show that Corollary 2 holds
for any pair (a,b).

Remark. It is also easy to show that (see the introduction):

9]

I =
‘ \
-2 L

F(a-1)o] 2 . F? =2

A
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Proposition 5. Let h+tl be a prime number, let A. be a fundamental weight of G,
Fm MO 1O M &

and let a; > 1., Then

Proof follows easily from (10).

Definition. We call an element v € G fundameatal if
tro = 0 in any fundamental module F.

It is clear that all fundamental elements form a unique conjugacy class in G.

Proposition 6. a) UM is a fundamental element for 62, F4 and ES'

b) OK is a fundamental element for AQ and 0% for C,.

c) For the classical simple groups the fundamental element is defined by its

characteristic polynomial in the natural representation, which is given by

the following

. TABLE
G 2 det (1 - Av) G 2 det (1 - AV)
AQ even 1 - A2+l Dy even (1 - ki)z
A | ocad T i D, | odd 1+ 25?2
L 28+2
B even (1 - AE)(l + A£+l) C any L¥E
A ‘ '3 2
g 241 L=
BR odd (L + A7) (1 - X )

Proof. a) follows from Proposition 5. The proof of b) is similar. c¢) can

be checked directly. The answer for BA has been given to me by R. Stanley.
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pProposition 7. Let C be a subgroup of G(§) of order h+l and let h+l be a

prime number. Then C acts on each irreducible G-module as a multiple of the

regular representation plus € times of the trivial representation, where

€ =20 gg_il. For eacl. fundamental G-module, where G = G2,

F4 9£-E8' g = 0.
bProof follows from Theorem 1, Proposition 5 and the fact that each x € C,
x # 1, is regular [6].
The following statement and its proof has been communicated to me by

R. Stanley..

Proposition 8. Let d be a divisor of n, and let x € SLn have the charac-

teristic polynomial ‘L + ARy /1 % kd), where we take - or + according as n is

even or odd, respectively. Then trFx = 0 or *1 in any irreducible SL -module F.

proof follows from the Jacobi-Trudi identity (see, for example, [9]) and
the following theorem from the matrix theory: If all the entries of a matrix
A are 0 or 1 and for any pair of 1l's in a row, such that there are no l's
between themnm, the number of 0's is a fixed number, then det A = 0 or *1.

problem 1. Find all the elements of finite order in G such that their
trace is 0 or *1 in any irreducible module (such an element is clearly
conjugate-rational). Is it true that for G = SLn the answer is given by
Proposition 87?

Problem 2. Find a "reciprocity law" for the Legendre symbol Eﬂ,

generalizing the classical quadratic reciprocity law.

Problem 3. Find an explicit expression for trFO for o = OK, GM, 0%, V.

Problem 4. Is it true that for a fundamental element V one has trFU =0
or *1 in any irreducible module F? (By Proposition 6 it is true for G of

type An, Cn, G2, F4 and E8).
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Problem 5.. Find the fundamental element for G of type E6 and E7.

I would like to thank B. Kostant, G. Lusztig, J.-P. Serre and R. Stanley

for stimulating discr.ssions of the questions considered in these notes.

REFERENCES

1. 5. Helgasor, Differential Geometry, Lie Groups and Symmetric Spaces,

Chapter 10, §5, Academic Press, 1978.)

2. V.G. Kac, Infinite-dimensional algebras ... and the very strange
formula., Advances in Math., 30(1978), 85-136.

3. V.G. Kac, D.H. Peterson, Infinite-dimensional Lie algebras, classical
theta functions and modular forms, to appear.‘

4. B. Kostant, On Macdonald's n-function formula ..., Advances in Math.
401976} , 179=212,

5. I.G. Macdonald, Affine root systems and Dedekind's n-function, Invent.
Math. 15(1972), 91-143.

6. J.-P. Serre, Arithmetic Groups, in Homological Group Theory, London

Math. Soc. 36(1979), Cambridge University Press, Cambridge, England.

7. J.-P. Serre, "Cours d'arithmetique", Paris, 1970.

8. R. Steinberg, Regular elements of semisimple algebraic groups, Publ.
Math., IHES No. 25(1965), 281-312.

9. R.P. Stanley, Theory and application of plane partitions I, Stud. in
Appl. Math. L,2, 167-188,



