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Remarks added in proof:

1) The conjecture in 3.1 is wrong as Dr. Werner Meyer pointed out:

Take arrangements A; and As of k; and ky lines respectively which
are in general position to each other. Consider the combined arrangement
Aj; U Ay. Then the numerical characteristics ¢, are additive except for iy
which satisfies

t2(A1 U Az) = tg(A]_) + tg(Ag) + kiks
Let Fy, Fy, F be the quadratic polynomials for A;, A3, A; U As. Then
F(.’E) = Fl(:ll) + Fz(m) + k1k2$2

If we take for Ay a pencil with ko large with respect to ki, then F(z)
becomes indefinite. Maybe the conjecture remains true if one assumes that
the arragement “does not contain large pencils”.

2) The inequality (3) in 3.1 can be improved by using results of F. Sakai
(Semi-Stable Curves on Algebraic Surfaces and Logarithmic Pluricanonical

Maps, Math. Ann 254, p. 89-120 (1980)). We have
3
t2+zt3 > k+ts+2tg + 3ty + -

This is sharp for A;(6), A1(9), AY(3), A3(4) and the arrangements with S—T
numbers 24 and 25.

3) B. Griinbaum has written to me that the arrangements A2(17) and
A7(17) of his list are isomorphic.
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§0. Introduction

In the paper [18], we began a detailed study of the “smallest” group
G associated to a Kac-Moody algebra §(A) and of the (in general infinite-
dimensional) flag varieties PV, associated to G. In the present paper we
introduce and study the algebra F[G] of “strongly regular” functions on
G. We establish a Peter-Weyl-type decomposition of ¥[G] with respect to
the natural action of G X G (Theorem 1) and prove that F[G] is a unique
factorization domain (Theorem 3).

These considerations are intimately related to the study of the algebra
F[V4] of polynomial functions on the variety Vo (Theorem 2) and the so-
called Bruhat and Birkhoff decompositions of V4.

The group G is a (possibly infinite-dimentional) algebraic group in the
sense of Shafarevich [20], and belongs to one of the following three classes
(we assume A to be indecomposable):

1) Finite type groups. These are connected simply-connected split simple
finite-dimensional algebraic groups. In this case almost all the results of
the paper are well-known.

2) Affine type groups. Such a G is an F*-extension of the group of
regular maps from F* to a group of finite type, or a “twisted” analogue.
The simplest flag variety may be regarded as the space of based polynomial
loops on a compact Lie group (in the case F = C).

3) “Wild” type groups. No “concrete” realization of these groups or their
flag varieties is known.

The study of the groups G and the varieties V, in the affine case is of
particular importance because of applications to topology [2], [8], analysis
(1], [9], soliton equations [4], etec.

Throughout the paper the base field F is of characteristic zero.

We thank M. Hochster for numerous consultations in commutative al-
gebra.
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§1. Kac-Moody Algebras and Associated Groups. Integrable
Representations

1A) A symmetrizable generalized Cartan matriz A — (aij)i,jer indexed
by a nonempty finite set I is a matrix of integers satislying:
a;; = 2 for all 75 a;; < 0if 4 # j; DA is symmetric for some nondegenerate
diagonal matrix D. We fix such a matrix A, assumed for simplicity to be
indecomposable.

Choose a triple (h,II, IIV), unique up to isomorphism, where §) is a vector
space over F of dimension |I| + corank A, and II = {a;};e;r C b*, IV =
{hi}ier C b are linearly independent indexed sets satisfying aj(hi) = a4j.

The Kac-Moody algebra § = g(A) is the Lie algebra over F generated by
b and symbols e; and fi(¢ € I) with defining relations:

b,b] = (0); les, f5] = 6ijhi;
[h, ei] = ai(h)ei, [h, fi] = —cu(h)f; (R E€D);

(1.2) (ade:) ~%9(e)) =0, (ad fi)'%3(f;) =0 (i # ).
We have the canonical embedding ) C g and linearly independent Chevalley

generators e;, fi(1 € I) for the derived algebra o' of §. The center t of g
lies in := bNo = Y Fh;. Every ideal of @ contains I or is contained
in t [7].

Define an involution w of § by requiring: w(e;) = —f;, w(fi) = —e;,
w(h) = —h(h € D). Let i, be the subalgebra of § generated by the e;(z € I),
and put _ = w(iiy). We have the vector space decomposition § = n_ @
hpn,.

We have the root space decomposition § = @aeb. Oy, where
8, = {z € 0| [h,z] = a(h)z for all h € §}. Put Q = EieIZai, Q. =
Yicr Zyo; (where Z = {0,1,...}), and define a partial order on h* by:
N2> pif A—p € Q4. A root (resp. positive root) is an element of A:=
{a €h | a5 0,8, 5% (0)} (resp. A= AN Q@+). We have: § = g,
Ny =@,en, Yo For a =Y kia; € A, we write ht o = Y k;.

Define fundamental reflections r; € Autg(h), ¢ € I, by r(h) =
h — a;(h)h;. They generate the Weyl group W, which is a Coxeter group
on {r;}ic1, with length function w + I(w). W preserves the root system
A. A real root is an element of A™¢ := {w(a) |w € W,a € II}. If a € A€,
then dim @, = 1. Put A% = A"*NA_,. For a € A", write a = w(c;) for
some w € W and ¢ € I; then r, := wr;w™' depends only on a.

(1.1)

REGULAR FUNCTIONS ON CERTAIN INFINITE-DIMENSIONAL GROUPS 143

We choose a nondegenerate g-invariant symmetric F-bilinear form (.|.)
on §such that (h; | h;) is positive rational for all ¢ € I. (.|.) is nondegenerate
and W-invariant on ), and hence induces an isomorphism »: h— h* and a

form (.|.) on h* [10, Chapter II].

1B) Consider a @'-module V, or (V, ), where m: § — Endp(V). Let
Viin = {v € V| for every oo € A" there exists N such that n(f,)" (v) = 0}
(o € £IT suffices). Vjyy, is a @'-submodule of V; the f-module V is called
integrable it V. = Vy;,. (4, ad) is an integrable §’-module.

Remark 1.1. We feel that the functor V + Vy;, from the category of
all f-modules to the category of integrable y'-modules is important.

Lemma 1.1. Let (V,n) be a locally-finite sls(F)-module and let
{e, f, h} be the standard basis of sly(F). Let z € Endp(V) satisfy

(1.3) [7(f), z] = 0 and [x(h), z] = az, where —a € Z,.
Then (adﬂ(e))l_am = 0.

Proof. The slg(F)—moduie V' decomposes into a direct sum of finite-
dimensional submodules: V' = @, V;. Then z has a “block decomposition”:
Ei,j z;;, where z;; € Homp(V3, V;). (1.3) holds for each z;;, and hence we

have (ad w(e))l-a:c,-j = 0 for all 7, j by the finite-dimensional representation
theory of sls. ' Q.E.D.

One immediately deduces the following corollary, which allows us to
“differentiate” integrable G-modules (i.e., modules such that the
Uqs(o € A7¢) act locally unipotently).

Corollary 1.1. Let § be the Lie algebra on generators e;, fi, h;
(¢ € I) with defining relations (1.1), with b replaced by 3" Fh;. Let (V, =) be
a & -module such that all n(es), n(f;) are locally nilpotent. Then w(e;) and
n(f:) satisfy relations (1.2), so that we may regard (V,n) as an integrable
o -module.

1C) We now recall the construction of the group G associated to the Lie
algebra ' [18].
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Let G* be the free product of the additive groups Q,, @ € A", with
canonical inclusions 74: §o — G*. For any integrable §'-module (V,n),
define a homomorphism 7*: G* — Autr(V) by 7*(ia(e)) = expm(e). Let
N* be the intersection of all Ker(n*), put G = G*/N*, and let q: G* — G
be the canonical homomorphism. For e € §.(a € A™®), put expe = q(ia(e)),
so that U, := expll, is an additive one-parameter subgroup of G. The
Ux(oe € £I1) generate G, and G is its own derived group. Denote by U,
(resp. U-) the subgroup of G gencrated by the U, (resp. U_,), a € AT,

Ezample 1.1. a) Let A be the Cartan matrix of a split simple finite-
" dimensional Lie algebra g over F. Then the group G associated to §== '(A)
is the group G(T") of F-valued points of the connected simply-connected al-
gebraic group G associated to §, and U, aU(F) for some maximal unipotent
subgroup U of G. These groups G are called groups of finite type.

b) Let § be as in a), and let A be the extended Cartan matrix of §. Then
the group @ associated to /(A) is a central extension by F* of G(F'[z, z71]),
and

Uy = {9 € G(F[2]) | gl.=0 € U(F)}.

These groups G and their twisted analogues are called groups of affine type.

To any integrable §-module (V,n) we associate the homomorphism
(again denoted by) m: G— Autp(V) satisfying w(expe) = expm(e) for
e € Bu(a € A7¢). The homomorphism associated to (8, ad), denoted Ad,
maps G into Autp(g). The kernel of Ad is the center C of G, and Ad(G)
acts faithfully on §'/t. We have n(Ad(g)z) = n(g)r(x)n(g)~" for any in-
tegrable &'-module (V,x) and all g € G, z € . It follows that if (V,x) is
an integrable §’-module with Ker# C t, then (on G) Kerw C C.

For each ¢ € I we have a unique homomorphism ¢;: SLe(F)— G satis-
fying:

ol Y metes el O=eors @em)
Let G; = pi(SLg(F)), H; = p;({diag(t,t1) | t € F*}), and let N; be the
normalizer of H; in G;. Let H (resp. N) be the subgroup of G generated
by the H; (resp. N;); H is an abelian normal subgroup of N. The ;
are monomorphisms and H is the direct product of the H;. We have an
isomorphism ¢: W— N/H such that o(r;) is the coset N;H \ H. We
identify W and N /II using ¢; this gives sense to expressions such as wH
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and wU w™! occurring in the sequel. If h € h, w € W and n € wH, then
Ad(n)h = w(h). We put By = HU,, B_ = HU_.

1D) Choose A; € b*(i € I) satisfying Ai(h;) = 6;5(7 € I). Put
Py (resp. Pyy)= {3 ;kihi | ki € Z and k; > 0 (resp. > 0)}. Given
A € P, (or more gencrally, A € b* such that all A(k;) € Z), there exists
an irreducible g-module (L{A), 7A), unique up to isomorphism, containing a
vp 5% 0 satisfying: wa(y )va = (0); wa(h)va = A(R)va(k € b). L(A) is an ab-
solutely irreducible integrable §’-module, and we have L(A) = WA(U(II_))’UA,
Endg (L(A)) = FI,). The module L(A) is called an integrable module with
highest weight A [11]. Recall that @,c; L(A;) is a faithful G-module [18].

We have the weight space decomposition L(A) = @xeb_ L(A)y,

where L(A)y = {v € L(A) | h(v) = X(h)v for all A € b}. Elements of
P(A):= {\ € b* | L(A)x 5~ (0)} are called weights of L(A). We have Fvy =
L(A)as = {v € L(A) | ny(v) = (0)}; elements of F*v, are called highest
weight vectors. We have P(A) C A — @, and dim L(A),n) = dim L(A)» if
X €b*, w € W; in particular, dim L(A)y(a) = 1.

Regarded as a §-module under 7} := mp ow, L(A) is denoted L*(A) and vy
is denoted v}. There exists a unique Q-invariant bilinear form on
L(A) X L*(A) satisfying (vp,v}3) = 1; it is nondegenerate. Using (, ) we
regard L*(A) as a subspace of L{A)*, the algebraic dual of L(A).

Note that if a statement holds for 1wy, U, or L(A), then a similar state-
ment holds for i, U_ or L*(A) using w. We keep this observation in mind
in the sequel.

§2. A Peter-Weyl-Type Theorem

2A) Tor every real root «, we fix a non-zero element e, of §,, and
coordinatize U, by putting z,(t) = exptes(t € F). Furthermore, for
B8 =(B1,---,Bk) € (AT, define a map Tt F*¥— G by

Iﬁ(tl, ooy tk) == mpl(tl) .. -zﬁk(tk);

and denote by UE the image of T5

We call a function f: G— F weakly regular if f o T F* —F is a poly-

" nomial function for all B € (A7) and k € Z4 (B € (—II U I)* suffices).

Denote by F[G]y.,. the algebra of all weakly regular functions.
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Lelzt V be a §'-module; given v* € V* and v € Viin, we get a weakly
x";gu ar fu.nctlon f,,'-,,, on G, called a matriz coefficient: f,» »(9) = (g9(v), v*).
e matrix coefficients §, := Jv3,0s are especially important.

Lemma 2.1.  a) The ring F[Gl,,.,. is an integral domain.

b) I f € F[Clu.r. is such that s o F*F[Glu.,.  (0), then f € F*.
¢) Every unit of F|Q]w.,. lies in F*. ‘

d) Any f € F|G]y., is determined by its restriction to U_HU,.

P?'oof: a) holds since any gy, g, € G lie in some Uz. b) and c) hold by
cc?nmdermg pullbacks under z5. d) holds, using a), since for A € P, the
Birkhoff decomposition [18] gives: '

U_HU, = {g € G | 6u(g) # O} Q.ED.

2B) Put H = Hom(Q,F*), and d

' : s A efine a homomorphism

%d. H— Autljﬂ(g) by Ad(h)z = h(a)z if = € §,. Ad induces an action of
on @G, deﬁn.mg H X G, to which Ad extends in the obvious way. We

extend the action of G on L(A) to H X @ by requiring H to fix vp. .
Subgroups U’ of U,. and U’ of U_ are called’ large if there exist

g1,---,9m € G such that n;'"=1 gJ-U:,:gj—1 cu,.

" Lemr.n.a 21.2.. a) A subgroup U’ of U, is large of and only of it contains
e stabilizer! in G of some finite-dimensional subspace of Drep, L(A)
. ;

b) Let U’ be a large subgroup of U,. Then:

(1) for every a € A™¢, the subgroup Nuev, wU'v™1 of Uy is large;
(ii) the subgroup ﬂhe‘,} RU'h™Y of U, is large;
(ili) there exists B such that UgU' =U,.

Proof. a) holds since U, = { )

: = {9 € G | g(va,) = vy, for all : € I} [18
;nd since L(A), A € P,, is spanned by G(vp). b (i) and (ii) hold iy[ a%f
To prove b '(m), ‘We may assume that U’ is the stabilizer in U, of a U,-
invariant finite-dimensional subspace V of @L(A). Let my be the restriction

1
We define the stabilizer (resp. normalizer) i
. in G of a subset M of -
Erotp (o6 G slel s v (e b i 4 of a G-set to be the
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of the action of U, to V. U; acts as a finite-dimensional unipotent group
U := ny(Uy) on V. The one-parameter subgroups 7v(Uq) (0 € AY)
generate U, hence ny(Uz) = U for some B € (A7), k € Z,. Hence
Uy = UgU". QED.

2C) We call a weakly regular function f strongly regular if there exist
large subgroups U’ of Uy such that f(u_guy) = f(g) for all ¢ € G and
uy € U',. Note that the matrix cocflicients fy- o, where v* € L*(A) and
v € L(A), are strongly regular functions. We denote by F[Gls.r., or F[G]
for short, the algebra of all strongly regular functions on G. F[G] is a
G X G-module under 7,4, where (w,eg(gl, gg)f)(g) = flg1"992)-

Now we can prove the following analogue of the Peter-Weyl theorem.

Theorem 1.  The linear map ¢: P pcp, L*(A)® L(A) — F[G] defined
by $(v* @ v) = fue, is an isomorphism of G X G-modules.

Proof. From Lemmas 2.1d and 2.2b (i and iii) it follows that every
Uy X Up(a, B € A7) acts locally unipotently on F|[G]. Hence there ex-
ist unique locally nilpotent elements of Endy F|[G], which we denote by
n(es, 0), 7(0, e:), 7(fs,0), ©(0, fi), such that Treg(exp tei, 1) = exp t (e, 0),
etc. Then Corollary 1.1 shows that there exists a unique homomorphism
7: % X o — Endp F[G] with the given values on (e;, 0), ete. Using Lemmas
2.1d and 2.2b (i and iii), there exists a Q-gradation F[G] = @Ra, where
R, ={f € F[Q]| f(h™gh) = h(a)[(g) for all h € H}.

Thus, (F[G], =) is an integrable @ X §’-module and (F[G],myeq) is the
associated G X G-module. Using Lemma 2.2b (iii), U— X U4 acts locally-
finitely on F[G]. Hence, N X Ny acts locally-finitely, and therefore, us-
ing the Q-gradation, locally-nilpotently. Using the complete reducibility
theorem [14, Proposition 2.9]), we deduce that the G X G-module F[G] is
isomorphic to a direct sum of modules of the form L*(A\)® L{p) (\, p € pPy).

Now, regarding v* @ v as an operator on L()X), we have: fy+.(g) =
tr(v* @ v)m(g), so that ¢ is a well-defined G X G-module homomor-
phism. ¢ is injective since the L*(X\) ® L()\) are irreducible and inequiv-
alent G X G-modules, and (v ® vx) = 65 7% 0. On the other hand, let
¥: L*(\) @ L(u)— F[G] be a G X G-module homomorphism. Considering
the action of B_ X Uy on (v @ v,) and using Lemma 2.1d, we obtain
that ¥(vi @ v,) € Foy. Hence, ¢ is surjective. Q.E.D.
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2D) Later we will need the following corollary of the proof of Theorem 1.

Corollarz 2.1.  Let fq, fo € F|G], f1 5% 0, and suppose that for each
k€ Zy and B € (A™°)* there ezists a polynomial function a5t FE—T such

that qﬁ(fl o ‘E,Ta) = fy0 zg. Then Frigs Fract F[G] lies in F[G].

Proof is that of Theorem 1, replacing F[G] by the subalgebra of
FractF[G] consisting of all f1 fo, where fy, fo satisfy the hypothesis of the
corollary. Q.E.D.

For a subgroup P of G, let F[G]” = {f € F[G] | f(g9p) = f(g) for all
g € G and p € P}. This is a subalgebra of F[G], and G acts on it by left
multiplication: (9-f)Ng')= f(g~'g'). For A € Py, put:

Sx =S € F[G] | f(gb) = Oa(b)f(g) for allg € G and b € B, }.

This is a G-submodule of F[G]VU+.

Corollary 2.2. a) F[G]Y+ = Drcr, Sa-

b) The map L*(A) — Sa defined by v fo., is a G-module isomor-
phism.

c) SxSm = SaymMm-

onof immediate by Theorem 1 and the following facts:
L{A)"+ = Fup; 0000 = Op4 ar; multiplication is G-equivariant,. Q.E.D.

Remark 2.1. a) The algebra F[G]U+ can be constructed without
reference to the group G. Indeed, for A, M € P, we have the Cartan
product L*(A) ® L*(M) 2, L*(A + M), defined by the properties that ¢ is
a §-module homomorphism and ¢(v} ® vj,) = viyar- Under the Cartan
product, the space EBA€P+ L*(A) becomes an algebra, isomorphic to F[G]V+
by Corollary 2.2.

b) Corollary 2.2 can be viewed as a Borel-Weil-type theorem. (A special
case of this is considered in [13]). It should not be difficult, using the method
of [5], to extend it to a Borel-Weil-Bott-type theorem.
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Corollary 2.3. Let A€ P\ {0} and let By = {b€ B, | 0A(b) = 1}.
Then, provided that I is algebraically closed, one has:

F[G]Pr» = P L*(nA),

n>0
where L*(nA)L*(mA) = L*((n + m)A) under the Cartan product.

Example 2.1. a) If G is of finite type, then F[G] = F[G]y.,. is the
coordinate ring of the finite-dimensional afline variety G.

b) Let G be of affine type as in Example 1.1b. Then the only strongly
regular functions f such that f(cg) = f(g) for all ¢ € F* C C and
g € G are constants (by Theorem 1). On the other hand, glven a rational
N-dimensional representation 7 of G, let 7(g) = (32, a%(9)z*);—; for
g € G(F[2,271]); then the pullback of each function g — af;(g) is a weakly
regular function on G. .

2F) We introduce the Zariski topology on G defined by strongly regular
functions, i.e., a closed subset is the set of zeros of an ideal of F[G].

Note that the sta.bilizer or normalizer of a finite-dimensional subspace
of D,cp ) or @D,¢ P, L*(A) is a closed subgroup of G. It follows that
U, and éi are closed subgroups and hence H = B4 N B_ is a closed sub-
group. Similarly, the G;U. are closed subgroups and hence the subgroups
G: = (G:U)N(G;U-) are closed. It is easy to show that ©;: SLy(F)— G;
is a Zariski homeomorphism. One can also show that H is homeomorphic

o (") and Uy N (wU_w™1) to FI¥),
For B8 € (A™)*, let F[G]S, = {f € F[Glws. | f vanishes on Ug}.

Taking the F[G]ﬁ for a basis of neighborhoods of 0 makes F[G|,.,. into

W.T.
a Hausdorff complete topological ring.

Remark 2.2.  We have the canonical inclusion G — Specm F[G] (= set
of all closed ideals of codimension 1). Let G be of infinite type (i.e., dim § =
00). Then nt:= ¢(®A6P+\{o} L*(A)®L(A)) is a closed ideal of codlmensmn
1 in F[G] (this follows from the well-known fact that (Q+|b N (P+|b,) =
{0} in the infinite type case). Since M is G X G-invariant, we deduce that
m € (Speem F[G]) \ G.
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§3. The Varieties Vi

3A) Given a decomposition of a vector space V into a direct sum of finite-
dimensional subspaces, V = @, Va, we denote by F[V] the symmetric
algebra over @ Vi C V*. We call elements of F[V] strongly regular
Junctions on V. The algebra F[V] is a polynomial algebra on a basis
of @V (it may be viewed as the coordinate ring of [, Va). It is a
subalgebra of the algebra F[V], of regular functions, i.e., F-valued functions
on V whose restriction to any finite-dimensional subspace is a polynomial
function. Taking the ideals of finite-dimensional subspaces of V' for a basis
of neighborhoods of zero makes F[V], into a complete topological ring.

We introduce the Zariski topology on V defined by strongly regular
functions. For a closed subset V of V' (resp. the zero set V of an ideal
of F[V],), we denote by F[V] (resp. F[V] ) the restriction of F[V] (resp.
F[V],) to V.

These definitions will be applied in this scction to the vector spaces L(A)
and L*(A) with the weight space decompositions and g with the root space
decomposition. Here F[L(A)] = Sym L*(A) and F[L*(A)] = Sym L(A).2

Remark 8.1. It is easy to see that the canonical map V' — Specm F[V]
is a bijection (cf. Remark 2.2); more geénerally, we have a bijection
V — Specm F[V] for every closed subset V of V. :

3B) For each a € A U {0}, choose dual bases {e()} of g, and {f{)} of
0 .. Let A € P,. Denote by V, the set of all v € L{A) which satisfy the
following equation in L{A) @ L(A):

(3.1) AN @v= > > fOw) e )

a€AU{0} ¢
Note that the sum on the right-hand side is finite. (3.1) is equivalent
to a (possibly infinite) system of equations of the form P = 0, where

P € Sym®L*(A). We call these polynomials P (and their analogues in
Sym? L(A)) Plicker polynomials.
We have shown in [18] that:

32 | Vi = G(Fuy).

2Here and further on, SymV = @k>0 Symk V denotes the symmetric algebra over a
vector space V. -
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By the compche reducibility theorem ([12], [14]), we have: Sym* I(A) =
L(kA) @ Jx, Sym* L*(A) = L*(kA) @ J;, where L(kA) (resp. L*(kA)) is
the U(g)-submodule generated by v§ (resp. (v})*) and Ji (rebp J3) is the
(unique) complementary submodule. Set J = @55 Ik, J* = Dj5o Ji-
Note that the restriction map ¢: F[L(A)]— F[V4] is a G-module homomor-
phism by (3.2); it is surjective by definition. Note also that: (v3)*(tva) =
tk and Ji(tvy) = 0. Hence, J* is the ideal of G(Fv,) in F[L(A)], so that
by (3.2) and Remark 2.1a we have:

Lemma 3.1.  F[V] = F[L{A)]/J* is isomorphic to Do L*(kA)
with the Cartan product.

Theorem 2. a) The ideals J and J* are generated by the Plicker

polynomsials.
b) The algebra F[G|U+ is the associative commutative F-algebra with

unity on generators @,; L*(A;) with defining relations
A [Ajyuo = > >~ FEu)eld)(v)
a€eAU{0} s

where 5,5 € I, u € L*(A;), v € L*(A;).

The proof of Theorem 2 uses the Casimir operator introduced in [11] (cf.

[14]):
Q=21 )+Zf 2 Y S rlel),

aEAy s
where p = 3, A;. Recall that ) acts on L{A) as a scalar cp:= (A +2p | A)

(1], [12)).

Lemma 3.2. Let A, A’ € h* satisfy A(h;), N(h;) € Z. for allic 1. If
A >N, then cp —car > 0.

Proof. cy —ca = (A+ A +2p|[A—A") > 0. Q.E.D.

Proof of Theorem 2. To prove a), it suffices to consider J. Usmg
Lemma 3.2 and the complete reducibility theorem applied to Sym* L(A)
we have:

(3.3) Jp = (ﬂ — ckA) Syka(A).
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It follows from (3.1) and (3.3) that Jy is the space of Pliicker polynomials.
Furthermore, we have by an easy calculation in Sym* L(A), k> 2

Q- ckA)vk = —;—k‘(k = 1)((Q — czA)vz)'vk_2,

which shows that Jo generates the ideal J.
The proof of b) is similar, using the identity

O(zyz) = Qzy)z + Wyz)z + Q(zz)y — Q(z)yz — Ny)zz — Q(2)zy.
| Q.ED.

Ezample 8.1. a) Let G = SL,(F); then L{Ay) is the G-module A¥F"
and Vy, is the set of all decomposable k-vectors, so that PV,, is the
Grassmann variety of k-dimensional subspaces of F™. The ideal of Vy,
is generated by the classical Plicker rclations; this result is due to Pliicker.
Theorem 2 in the finite-dimensional case is due to Kostant. Qur proof is
essentially the same as Kostant’s (presented in [16]).

b) Let G be a group of affine type and L(Ag) its basic representation
(see [12], [15]). Then the Pliicker relations are equivalent to the hierarchy
of Hirota bilinear equations studied in [4], the simplest case A(ll) being
cquivalent to the celebrated K dV hierarchy. Theorem 2a shows that the
ideal of equations satisfied by all polynomial solutions of these hierarchies
is generated by Hirota bilinear equations.

¢) Let K be a connected compact Lie group of type X (= An, By, - .., Es).

Let o be an automorphism of K of finite order m. Let k& be the minimal
positive integer such that o* is an inner automorphism of K and let Kj
be the fixed point set of 0. Let S! = {z € C||2z| = 1} be the unit circle;
denote by 1,(K) the space of all o-equivariant polynomial loops on K, i.e.,
polynomial maps ¢g: S'— K such that o(g(z)) = g(zexp 2Z). Then K
operates by right multiplication on (1,(K) and we may consider the space
0,(K)/Ko. Let A be the generalized Cartan matrix of type X (¥) [12] and
G the associated group. Then we have a homeomorphism of topological
spaces (15(K)/Ko = PV, for a suitable A (cf. [18]). Note that (K )/K
is the space of based loops; in this case A is of type Xgl) and we have:
N1 (K)/K = PV,. This allows one to compute the homology of certain
loop spaces (cf. [2] and Theorem 4e in §4).

3C) In this subsection we use some elements of the theory of Coxeter
groups, which can be found e.g. in [3]. Let A € Py; consider the orbit
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W(A). Recall the definition of the Bruhat order > on the set W(A) [18]. -
This is the partial order generated by: 74(\) = X if o € A7 and ro(X) > A,

If A € Py, we may identify W with the set W(A) by w & w(A). We write
w' < wif w'(A) = w(A). It is easy to see that this definition is independent
of the choice of A € Py, and coincides with the usual definition of the
Bruhat order on W as the partial order generated by:

Ty oesTiy_ g Tigyy Ty <w (1 <8 <K,
where w = r;, ...7;, is a reduced expression; or, equivalently, generated
by: wiws < wyir;ws if wi{e;) > 0 and wz—l(a,-) > 0.
Note that w(A;) < A; if and only if w contains r; in one (and hence
every) reduced expression. Therefore, we have:

(3.4) w(Ai) < A; ff < w.

The following lemma summarizes some of the results of [18, Theorem 1
and Corollaries 2 and 5].

Lemma 3.3. a) For A€ P, and X\ € W(A) let
Va(N)x = U(L(A)x \ {0}).
Then3
@ a0} =11, o) VAP

(i) Va(3)+\ {0} = Hu:x Va(p)+5
(i) VaB)-\ {0} =1, ., Vale)--

b) Given a subset X of I, let Wx = (r; | 2 € X) C W and
Px = B,WxB, C G. Then:

i) G= HwEW/Wx B,wPx (Bruhat decomposition);

3Here and further on, M denotes the Zariski closure of M unless otherwise specified.
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(i) G = HwEW/Wx B_wPx (Birkhoff decomposition);
(i) ¢ = Uy wB_By.

Remark 3.2.  a) If G is of finite type, then Lemma 3.3b (i) and (ii)
give equivalent decompositions of G. This decomposition is due to Gauss,
Gelfand-Naimark, Bruhat and Harish-Chandra.

b) Let G be a group of affine type from Example 1.1b, so that
G/F* = (G(F[z,2z7']). Let H be a Cartan subgroup of G. Then
W = Wx X T is the affine Weyl group of G, where Wx is the
Weyl group of G and T is the group of “translations”, which is isomor-
phic to H(F[z,2z7'])/H(F). Furthermore, Px/F* = G(F[z]) and
B_/F* C G(F[z"']). Then Lemma 3.3b (ii) gives:

G(F[z,z7")) = G(F[e " )H(F 2,z "]) G(F [2]),

a result usually attributed to Grothendieck [8]. A special case of this is the
decomposition:

SLa(Flz, 27 )= [ SLa(F[z7Y)) diag (s, ..., 25*)SL.(F|2)).

D ki=o.

This is due to Dedekind-Weber and Birkhoff [1].

Lemma 3.4. Let T be a G-bitnvariant topology on G such that
(i) Zariski-closed subsets are T -closed, and (i) G; lies in the T -closure
of U_o; H;Uy, for alli € I. Then for all w € W, we have:

(a) H Byw'B, s the T-closure of BywB,
w<w

)] [I B-w'B, is the T-closure of B_wB,..
w<w!

Proof. Fix A € P, and consider the map ¢: G— V) defined by
g — g(va). The map ¢ is Zariski-continuous and [18]:

¢ (UL(L(A)w(n))) = BirwB,.

REGULAR FUNCTIONS ON CERTAIN INFINITE-DIMENSIONAL GROUPS 155

Hence, by (i) and Lemma 3.3 a, the T-closure of By wB, is contained in -

the union in question. ‘
In order to prove the reverse inclusion in a), suppose that w = wyr;ws,

where wy(;) > 0, wy *(e;) > 0. Then we have:

BywB; = Biwriws B, = B+(w1r,'U__a‘,r,-wl_l)wlriwz(wé’lUaiwg)B+
= B+’LU17',’U_Q’.H1:UQ‘-U)2B+.

Since T is biinvariant we get (here M denotes the T-closure of M):

B+'U)B+ D) B_{.wlT,'(U_aifIan‘. )UI2B+.

Since, by (ii), N; C U_q,H;U,,, we deduce that BywBy D BiwjwsBy.
Similarly, we have:

B_wiywe By = B-(wlU_aiwl_l)wlwg(wglUmwz)B+
== B_'wlU_a'.H.-Ua,.wgB+

and hence
—B—_wl’l,U2B+ D) B_’wlU__a‘.fIan'.'U)gB_{_ D B_wirywe By = B_wB,,
proving the reverse-inclusion in b). Q.E.D.
Remark 8.3 The Zariski topology on G satisfies the hypothesis of
Lemma 3.4.
Let T'; = {g € G | 04,(g9) = 0}. We deduce from (3.4) and Remark 3.3:
Corollary 8.1. a)I';=B_rB;(i € I.
b) U_HU;y = G\ U; I'; is open in G, and therefore G =

Uwew wU-HU, is a covering of G by open sets.

Remark 8.4. One can show that w’ < w if and only if

B+wB+ n B_'IUIB+ 7é ¢.
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§4. The Structure of the Algebra F[G]

4A) Recall that the Lie algebra § carries the principal gradation
0= @jez g, defined by dege; = —deg f; = 1, degh = 0; let 8 =
@1’21’ ; be the associated filtration. Let U;(j > 1) be the descending
central series of Uy: Uy = Uy, Ujyy = (U4, Uj) for 7 > 1.

Lemma 4.1.  For any u € Uj(j > 1) there exists a unique element
¢;(u) of §; such that

(i) Adu)z —z = [¢j(u), z]mod §(j x4y for all z € Quy, k € Z;
moreover, we have:

(i) i(expte;) =te; (1€ 1), ¢i(exptes) =01if a€ AT\

(iii)  ;(un’) = ¢ (u) + 65(w');

(V) i ((w,w) = [b5(n), ¢ ()]s

(v) & (7 = 1) is surjective.

Proof. (i) for k = 0 gives uniqueness of ¢;(u). It is easy to check that
(1) implies (ii), (iii), (iv). We construct ¢;(u) satisfying (i) by induction on
J > 1 using (ii), (iii), (iv). Finally, (v) follows from (ii), (iii) and (iv). Q.E.D.

Corollary 4.1.  Let h € ) be such that a(h) # 0 for all a € A. Then
for allk > 1, Ad(U) acts transitively on (h +1;.)mod k).

4B) Given two sets B; and Bg, we have the canonical inclusion
F31 ®F32 _ FB1 X Bz

given by (¢1 Q@ #2)(b1,b2) = ¢1(b2)dp2(b2). Let P be a group, F[P] an
algebra of F-valued functions on P containing F. We say that F[P] is
naturally a Hopf algebra il for the multiplication map pu: P X P— P, we
have p*(F[P]) C F[P] ® F[P], and for the inversion map ¢: P— P, we
have 1*(F[P]) = F[P].

For any subgroup U of U4 or U_ considered in the sequel, we denote by
F[U] the restriction of I'[G] to U.
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Lemma 4.2. F[U.] and F[U_] are naturally Hopf algebras.

Proof. We prove the lemma for U;. By Theorem 1, every fEFU4]is
a linear combination of functions f,- , where v € L(A), v* € L*(A)(A € Py).
Since U, acts locally unipotently on L(A) and ma(u™1l) = exp( log wa(u)),
the lemma is clear. Q.E.D.

Remark 4.1. F[G] is naturally a Hopf algebra if and only if
dimg < oo. If dimg= oo, then p*(F[G]) ¢ F[G] ® F[G] and
i*(F[G]) Z F[G]. Note that i*(F[G]) = w*(F[G]).

4C) Lemma 4.3. a)let h € ) be such that a(hk) # 0 for all
a € A. Then the map : Uy — 1, defined by (u) = Ad(u)h — h induces
an isomorphism * : Fny] = F[U,].

b) Fiz A€ Pyy; F[U,] is a polynomial algebra on generators fys z.(vy)
(restricted to U ), where {z;} is a basis of N_.

Proof. b) follows from a) and the formula:
(a(vpa),v}) = (a | v™'(A)) foraem.

Indeed, by this formula, (Ad(u)r—(A) | a) = fvz’a(“')(u“l), and we apply
Lemma 4.2. A

To prove a), fix \ € P44; by [18, Lemma 5b], the map ¢: 1y — L*(\)
defined by ¢(n) = n(v}) is injective. Hence, we may identify 1} with its
image in L*(\) and F[n,] with the restriction of F[L*(\)] to ¢(1). Take
v € L(\). By Lemma 4.2, we may write: u'(v) = 3, fi(u)v; (finite
sum) for w € Uy, where f; € F[U4] and »; € L(\). Hence, the function
u > (v, %4d( w)h)v}) = — 3, fi(u)(u (h(vi)),v3) lies in F[U,], showing that
p*(F[ny]) C F[U4]. ¥* is injective by Corollary 4.1.

To show that +* is surjective, choose a basis em of I, for each a € A,
such that e(l) = ¢;. Then we have: Ad(u)h = h + Ea€A+ E p(J)(u)e(-’)
where ) € B:= ¢*(F[uy]). Choose k' € b such that a(h') # 0 for
all non-zero a € @+. Then from [Ad(u)h, Ad(u)h’] = 0 we deduce that
Ad(u)h! = h' + 3 en, > p(J)(u)e 7), where <p(]) € B by induction on
ht o. Using this, the equation [Ad(u)h’, Ad(u) fi] = —ai(h')Ad(u)f; gives:

Ad(w)fi = fi — os(W) Wi + Y Y pHw)ed,

€Ay J

where <p(:') € B, again by induction on ht a.
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. Now, fupctions of the form fy.,, where v = f;,...fi,(v.), v € Py,
i1,.-- 1k € I and v* € L*(p), generate F[U,]. But

Foe ulu) == ((Ad(u)fil). . .(Ad(u)fik)v“, 'u*>

so.that f,-, € B since the pgl € B. Q.E.D.

Remark 4.2. The map ¢: Uy — 1 is injective; however, 1 is surjective
only if dim g < oo.

4D) Put S = {0x\|\ € Py} C F[G]. This is a multiplicative set since
050, = Oxyu. We put 0; = 0, for short. Denote by F[F] the algebra of

functions on H generated by S and S~1. We have: F[H|=F[0;,0;'; i€ I]
the coordinate ring of (F*)I. : ’

Lemma 4.4. The map ¢: U_ X II X Uy — G defined by
$lu_, h,ui) = u_huy

indu_ces an somorphism ¢*: STIF[G] = F[U-] ® F[H] Q F[U,]. In
particular, (by Lemma /.8b), ST'F[G] is a unique factorization domain.

Proof. Using Theorem 1, one can easily check that
#(STF(G)) C FIU_| @ FIH] @ F[U,}

¢* is injective by Lemma 2.1d.
To prove surjectivity of ¢* we use the formulas:

$*(02) =1Q 0\u 1,
¢ (0 fo3,0) = 1@ 1® fog luy,
(05 foron) = for v 1@ 1,

and apply Lemma 4.3b. Q.E.D.
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Corollary 4.2. Let F be algebraically closed. Ifa is a finitely gener-
ated tdeal of ST'T'[G] and f € S~IF[G] vanishes on the zero set of & in

U_HU,, then f € V3.

Proof. Recall the map #: Uy — 1t defined in Lemma 4.3; similarly, we
define the map _: U_ —n_. Define a map o: U_HU, —1_ X H Xy
by o(u_huy) = (¥—(u-) b, Y(uy)). Then, by Lemmas 4.3 and 4.4, ¢
induces an isomorphism ¢*: F1_] @ F[H]® F[u,] = §~'F[G]. By Corol-
lary 4.1, given qi,...,4s € F_] ® F[H) @ Fny] and €t X H X1y,
there exists =’ € o(U_HU,) such that g;(z) = ¢:(2)(1 < ¢ < s). Now we
apply Hilbert’s Nullstellensatz to (6*)"'f and (o*)'a. Q.E.D.

Lemma 4.5.. a) Let w € W and let Uy = Uy N wU_wl,
Us = Uy N wUiw™t.  Then the map : Uy X Up— Uy defined by
Y(uy, ug) = ugug induces an tsomorphism P*: F[U4] = FUL] Q@ F[Us].

b) Moreover, let a € II be such that w(a) € A4 and let
Us = Uy N (wre)U—(wre)™!. Then the map ¢: Uy X Uw(a)— Uz defined
by d(u,u’) = uu' induces an isomorphism ¢*: F[Us] = FU] Q@ FUy(q)l-

¢c) Let B € A™. Then F[Up] is a polynomial algebra over I in one
variable x, where z(expteg) = t.

Proof. By Lemma 4.2, v*(F[U4]) C F[U,]QF[Uz]. 4" is injecti\fe since
% is onto by [18, Corollary 5b]. To see that P*(F[U4]) D F[Uy] @ FUs],
fix \ € P44 and choose n € wH. Then, for v € L(\) and v* € L*(\), we
have:

"/J*(f'u',n(vx)) - fv‘,n(vx)lUl ® 1,
! 1/)*(fn('v;),v) =1 ® fn(v;),lez-

But the fu» n(wy)lv, (tesp. fn(vy)w|Us) generate F[U,] (resp. F[U]), as seen
by applying Lemmas 4.2 and 4.3b and conjugating by n. This proves a).
Since Uy(a) C Uz and U1Uy(a) = Us, b) is clear from a) by restriction.
¢) for B € II follows from the proof of a) in the case w = rp; the general
case then follows by conjugating by elements of N. Q.E.D.

4E) We proceed to prove the main result of this section:

Theorem 3. The ring F[G] is a unique factorization domain (UFD).
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The proof is based on the following simpl
. f ] . ) &
extracted from [17, p. 43].) g simple fact. (Its proof can be easily

Lerama 4.6. Let R be an integral domain and py,...,p,, prime ele-

ments R ¥ . . . . 8
that: s of B (p is called prime if p # 0 and (p) is a prime tdeal). Suppose

(1) Neei(pF) = 0 for all 4;
Y g—1p . .
» (i) STR 4s a UFD, where S is the multiplicative system generated by
1y+++yPm-

Then R is a UFD.

“We apply t,hisi lemma to B = F[G] and p; = 0;(¢ € I). Using Lemmas
2.1 a,b and 4.4, it suffices to show that the elements 0; are prime.
For f € F'[G] and n € G, we denote by ™f the strongly regular function

"f(9) = f(ng), g € G. We will deduce that 6; is prime from the followin,
lemma. ’

Lemma 4.7. Fori€ I andn € N, ™0; is etither a prime element or a

unit in S’"‘IF[G],

We may (and‘will) assume in the proof of Lemma 4.7 and the following
deduction from it that ; is prime that F is algebraically closed.

Assume that Lemma 4.7 holds. Suppose that 0; divides fyfa, where
fi,f2 € F[G]; we must show that 0; divides one of f; fz, B
Corollary 3.1a, ‘the set I'; of zeros of 6; on G is the rilos'ure o);'
B_riBy = r,U%DBy, where U% = U_ N rU_r;* (cf. (18]). By Lemmas
4.4 and 4.5a, the restriction of F[G] to U% B, is an integral domain. Hence
one of the fx, say fi, vanishes on I';. Lemma 4.7 and Corollary 4.2 nov‘;
imply that ("0:)""("f1) € STIF[G] for all n € N. Corollaries 3.1b and 2.1
now force 0; ' f, € F[G], proving Theorem 3. Q.E D

Proof of Lemma 4.7. We proceed by induction on l(w), where
n 611)111", w e W. If'l(w) = 0, i.e. n € H, then ™0; € F*S is a unit
m’ ST'F[G]. Otherwise, choose j € I such that {(rjw) < l(w). Put
w' = rjw, choose n; € r;H and put n’ = nj—ln. If j 54 4, then
0; = 0,(n;)(™0;) € F*(™6;) is prime or a unit in S™IF[G] by the in-

REGULAR FUNCTIONS ON CERTAIN INFINITE-DIMENSIONAL GROUPS 161

ductive assumption. If j = ¢, put Up = U_ N wlW_w, Uy = U_q,,
Uy = U_ N (w'~'U4w’), and define the map

'([t:(UoX U X Uz)XIIX U+——?G

by (ug, w1, v, hyuy) = ug(n'~tuyn')ushuy. Then Lemmas 4.2, 4.4 and
4.5 a,b show that ¢ induces an isomorphism

b*: S—IF(C]— F[Us] @ F[UL] @ F[U,] @ F[H] @ F[UL].

Put f = 071("0;), f' = 07 (" 0:), & = ™0;u,. Then x generates the
polynomial algebra F[U;] by Lemma 4.5¢ and we compute, using
nguytn;t(v],) = vi, + =(ui)ni(vi,), that:

(4.1) P)=101Q f'lu, ®1Q 1.

42) ¢(N=10:81.®1Q1+1Q1Q fln. ¥1X 1.

Suppose that ™0; is not prime or a unit in S—IF[G], so that ¥*(f) is not
prime or a unit. Since ST'F[G] is a UFD, (4.1) and (4.2) show that ¥*(f)
and %*(f’) have a nontrivial common factor. Hence, by the inductive as-
sumption, ¥*(f’) is prime. Now, the set P:= ((11)’)_1B_1',-B+) NU-HU,)
is non-empty by Corollary 4.2, since (w')~YB_r;B is the set of zeros of "9,
on G and U_IIU, is open (see Corollary 3.1). But ™6; vanishes nowhere
on P, since nP C U_HU,. Hence, (/') does not divide 9*(f). This

contradiction completes the proof of the lemma and of Theorem 3. QED.

Remark 4.8. Tt is easy to see that f € F[G] is divisible by 0; if it
vanishes on T';, even if F is not algebraically closed.

Corollary 4.3. a) F[G]|U* is a UFD.

b) F[G], F[G]Y* and F[V)], A € Py, are integrally closed.

¢) F[Val, A € Py, is a UFD if and only if A = A; for some i € I or
A=0

Proof. The group Uy acts by automorphisms locally unipotently on the
UFD F[G] with unit group F*; a) follows. Since a UFD is integrally closed,
and since the ring of invariants of a group acting by automorphisms on an
integrally closed domain is integrally closed, b) follows from Theorem 3,
using Corollary 2.3 and Lemma 3.1. ¢) is proved using the P.-gradation
F[G)Y+ = @, L*(A) (see Corollary 2.2) and Lemma 3.1. Q.E.D.
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Remark 4.4. a) The fact that the coordinate ring of a connected
simply-connected simple algebraic group is a UFD is well-known. The
earliest reference that we know is Voskresenskii [22] (see also [19]).

b) It is not difficult to see that the results of [21] can be extended to our
setup.

Remark {.5.  Assume that F is algebraically closed. Let M be a subset
of G. A function f on M is called strongly regular if for every x € M there
exist a neighborhood U of z and functions fy, fs € F[G], such that fo does
not vanish on M N U, for which f = f;/f2 on M N U. Denote by F[M]
the ring of strongly regular functions on M. This definition coincides with
the original one when M = G, Uy NwU w ™ (w € W) or H.

Remark }.6. It is clear that F[G]|y is spanned by the characters
of H ~ (F*)! which appear as weights of the G-modules LA)A € Py).
But the union of the sets of weights of all L(A)(A € P, ), restricted to J,
coincides with ; ZAi]b, if and only if G is of finite type. It follows that

F[G]lg = F[H] if and only if G is of finite type. This phenomenon is
related to Remark 2.2.

4F) The inversion map i: G — @ clearly induces an automorphism
e F[G]w.r. — F[G]wr

However, i*(F[G]) 5% F[G] if G is of infinite type (cf. Remarks 4.1 and 4.6).
Let F[G], denote the closure in F[G],,.,. of the subalgebra generated by
F[G] and ¢*(F[G]). Elements of F[G], are called regular.

We now indicate how G may be viewed as an infinite-dimensional afline
group in the sense of Shafarevich [20] with coordinate ring F[G],. Let
A = @, F; be a direct sum, possibly infinite, of copies of F. Then we
can apply the terminology of subsection 3A. Let ¥V C A be the zero set
of an ideal of F[A],; closed subvarieties of intersections of V with finite-
dimensional subspaces of A are called finite subvarieties of V. Such a subset
V of A with a group structure is called an affine group of Shafarevich type
if the multiplication map p: V X V— ) and the inversion map 7: Y — Y
have the following property: for every finite subvariety M of V there exists
a finite subvariety IV of V such that u(M X M) C N, {(M) C N and the
induced maps u: M X M — N, i: M — N are morphisms.
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Now we construct an injection

¢: G — A= (D LK) ® (D L' (M),

i€l el

Let v = Y., va,, v* = J;v},, and define #(g) = g('u.—i— v*); ¢ is injec-
tive by [18,1Corollary 3a].£ Furthermore, ¢(G) C A is defined by the
following system of equatioms: = = Sx; + >z}, where z; € L(As),
z} € L*(A;), lies in ¢(G) if and only if

2 @ zj € L{A: + A7) C L(As) @ L(A5),
z} @ =) € L*(Ai +A5) C L*(A:) @ L*(Ay),

and (z;, z}) = 1 for all 4,5 € I. This follows easily from [18, Theorem 1b],

using the idea of the proof of Theorem 2. . .
Furthermore, one can show that ¢ induces an isomorphism

¢":F[(G)l. = F[G],

and that ¢(G) is an affine group of Shafarevich type with Lie algebra g’
One can show that G operates morphically on L{(A)(A € Py) and v; in
particular, the matrix coeflicients of G on L(A), L*(A) and & are regular.

4G) Let F be a non-discrete locally-compact topolo_gical ﬁfidl.c We call a
subset U of G open if :c—gl(U) C F* is open for all B € (A™®)*, k € Z,.
G is a Hausdorff o-compact topological group (and hence 15 parlacompa.ctz
in this topology. Similarly, we call a subset U of L(A) open it s~ (V) C F
is open for all z € Homp (FF, L(A),k € Z. Thfz 'followmg results will be
proved in a subsequent paper. (See [18] for definitions.)

Theorem 4. Let A€ Py andlet X = {1 € I]_A(h,-) = 0}. Th.en:
a) The multiplication map U_ X H X U, — U_HU, is a homeomorphism
and U_HU, 1s open in G.

b) The canonical map G — G[Px 1is a ﬁbra.tion, and the map
gPx > g(F*vy) of G/Px onto PV, 1s a homeomorphism. -

¢) IfF=C,thenGisa connected simply-connected topologzca.l group.

d) IfF =G, then Hy XUy 1s contractible and the multiplicalion map
K X Hy X Uy — G 1s a homcomorphism.
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e) IfF = C, then G/Px is a CW-complez with cells By wPx[Px,
where w € W/Wx, of dimension 2dx(w), where dx(w) ts the length of the
shortest element of wWx.

4H) Open problems.

. a) Is it true that the rings F'[Vo(X).] are integrally closed? (This would
imply ‘tha't; the closures of finite Schubert cells are normal (see [18,
Remark (iii)]), as is known for finite type groups [6].)

b) Compute Specm F[G]. (Recall that Specm F[G] is larger than G if G
is of infinite type, by Remark 2.2).

¢) Is it true that the sum of two closed ideals of F[G] (or F[G]y.,.) is

closed? In particular, is it true that every finitely-generated ideal of F[G]
is closed?

d) Let F be algebraically closed. Is it true that every proper finitely-
generated ideal of F'[G] vanishes at some point of G? (It is obviously true
for principal ideals.)

e) Is it true that F[G],.,., = F[G],?
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Examples of Surfaces of General Type
with Vector Fields

William E. Lang

o I.R. Shafarevich

The purpose of this paper is to introduce some new surfaces of general
type, called generalized Raynaud surfaces, and to prove that in many cases
these surfaces possess global vector fields, contradicting a guess of Rudakov-
Shafarevich [3].

In a lecture at M.LT. in October 1981, H. Kurke announced that he
and P. Russell had found surfaces of general type with vector fields. These
surfaces were of the form Y2, where Y is a ruled surface, and D is a p-closed
vector field with divisorial singularitics. While all details were not given, the
caleulations seemed rather involved. The structure of the resulting surface,
however, was quite simple. Inspired by Kurke’s talk (and by conversations
with M. Artin), I tried to generalize the eleméntary construction of Raynaud
surfaces in characteristic three studied in [1] to higher characteristic, and
finished the construction given here in November 1981. These surfaces are
also of the form Y'P, and I suspect that they are deformations of the Kurke-
Russell examples; however, both the construction of the surfaces and the
method used to prove that some of the surfaces have vector fields are quite
different from those of Kurke and Russell, and I hope more transparent.

1. Construction of Generalized Raynaud Surfaces

Let p be a prime number, and let » and d be positive integers, such that
if p £ 2, and d is odd, n is also odd. Let k be an algebraically closed field
of characteristic p.

Definition. A generalized Tango curve over k of type (p,n,d) is a triple
(C, L, dt), where C is a smooth curve over k, L is a line bundle on C of
degree d, and dt is a nowhere vanishing section of Kc® LOP (1=mp) which
is locally exact.




