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§0. Introduction.

0.1. The remarkable link between the soliton theory and the group G L, was discovered
in the early 1980s by Sato [S] and developed, making use of the spinor formalism, by Date,
Jimbo, Kashiwara and Miwa [DJKM1,2,3], [JM]. The basic object that they considered is
the KP hierarchy of partial differential equations, which they study through a sequence
of equivalent formulations that we describe below. The first formulation is a deformation
(or Lax) equation of a formal pseudo-differential operator L = 8 + u187 + w2872 + ...,
introduced in [S] and [W1]:

(0.1.1) :—f; =[Bn,L], n=1,2,....

Here u; are unknown functions in the indeterminates z,z2,..., and B, = (L")4 stands
for the differential part of L". The second formulation is given by the following zero
curvature (or Zakharov-Shabat) equations:

8Bn 0B, _ _
o = e = [Bu Bl mn=12,....

(0.1.2)
These equations are compatibility conditions for the following linear system

(0.1.3) Lw(z,z) = zw(z, z), a%w(a:,z) = Bp,w(z,z), n=1,2,...

on the wave function
(0.1.4) w(z,z) = (14 wi(z)z™! +wa(z)z2 +... e 7225+

Provided that (0.1.2) holds, the system (0.1.3) has a unique solution of the form (0.1.4)
up to multiplication by an element from 1 + z~!C[[z™!]]. Introduce the wave operator

(0.1.5) P=1+w ()07 +wy(z)0~2 +...,

so that w(z,z) = Pe*1#+#2:"+- Then the existence of a solution of (0.1.3) is equivalent
to the existence of a solution of the form (0.1.5) of the following Sato equation, which is
the third formulation of the KP hierarchy [S], [W1]:

(0.1.6) ?—}::—(PoaoP'l)_oP, k=1,2,...,
Oz
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where the formal pseudo-differential operators P and L are related by
(0.1.7) L=PodoP?,
Let P* =1+ (-98)"! ow; +(—8) 2 owy +... be the formal adjoint of P and let

w:(x’z) = (Pt)—l e-zlz—zzzz—...

be the adjoint wave function. Then the fourth formulation of the KP hierarchy is the
following bilinear identity

(0.1.8) Res.=ow(z, z)w*(z',z)dz = 0 for any r and z'.

Next, this bilinear identity can be rewritten in terms of Hirota bilinear operators defined
for an arbitary polynomial @ as follows:

(0.1.9) QAD)f(z) - 9(z) &* Q(%)(f(z +9)(z = y))ly=o-

Towards this end, introduce the famous r-function 7(z) by the formulas:

(0.1.10) w(z,z) = (2)r /7, w*(z,2) = T~ (2)r/.

Here I'*(2) are the vertex operators defined by

(0'1.11) r:b(z) - e:t(nz+zzz’+...)eq:(z'lé/az;+z‘2¢'§/8z7+...),
where 3% stands for %;;:—i. The 7-function exists and is uniquely determined by the

wave function up to a constant factor., Substituting the 7-function in the bilinear identity
(0.1.8) we obtain the fifth formulation of the KP hierarchy as the following system of Hirota
bilinear equations:

(0.1.12) > Si(=2)Sj1(D)eXr=a ¥ Prr .1 = 0,
j=0

Here y = (y1,y2,...) are arbitrary parameters and the elementary Schur polynomials S;
are defined by the generating series

o0
(0.1.13) ZSj(z)zj = expzzkzk.
JEZ k=1
The 7-function formulation of the KP hierarchy allows one to construct easily its N-
soliton solutions. For that introduce the vertex operator [DJKM2,3):
(0.1.14) D(z1,22) =: TH(2))T 7 (22) :

(where the sign of normal ordering : : means that partial derivatives are always moved to
the right), and show using the bilinear identity (0.1.8) that if 7 is a solution of (0.1.12),
then (14 al'(z1, 22)), where a, 21,22 € C*, is a solution as well. Since 7 = 1 is a solution,

the function
(0.1.15) fn =1 +alE,zM)... 1+ anD(@™, 2M)) .1

is a solution of (0.1.12) too. This is the 7-function of the N-soliton solution.
The first application of the KP hierarchy, as well as its name, comes from the fact that
the simplest non-trivial Zakharov-Shabat equation, namely (0.1.2) with m =2 and n = 3,
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i2s equivalent to the Kadomtsev-Petviashvili equation if welet z; =z, z, =y, z3 =t, u =
Uy

2
(0.1.16) 30%x 0 (6u 3 Ou 16314)

19y "z \ot 2'9c 40s°

Recall also that the celebrated KdV and Boussinesq equations are simple reductions of
(0.1.16). Since the functions u and 7 are related by

52
(0.1.17) u= 2@ log T,

the functions 23‘% log fn are solutions of (0.1.16), called the N-soliton solutions.

0.2. The connection of the KP hierarchy to the representation theory of the group GLo,
is achieved via the spinor formalism. Consider the Clifford algebra C¢ on generators 1/);-"

and ¥; (j € 1+2) and the following defining relations (i.e. ¥ are free charged fermions):

(0.2.1) Yy + o5 vF =62, vEvE +yfpE =0

The algebra C¢ has a unique irreducible representation in a vector space F' (resp. F*)
which is a left (resp. right) module admitting a non-zero vector |0) (resp. (0|) satisfying

(0.2.2) $F10) = 0 (resp. (0[y%; = 0) for j > 0.
These representations are dual to each other with respect to the pairing
((0la, ]0)) = (0]ab]0)

normalized by the condition (0]1]0) = 1.
The Lie algebra gf,, embeds in CZ¢ by letting

(0.2.3) r(Ei;) = v 95
Exponentiating gives a representation R of the group GL on F and F*. Let for n € Z:

(0.2.4) an= Y Y forn#0, ao=Y phip; =Y yivd,

JEI+Z i>0 j<0
and consider the following operator on F:

(0.2.5) H(z) = znan.

n=1

For a positive integer m let

(km|= (O} ...¥%_, € F* and |£m)=y*

_m+%...¢f§|0)€F.

Then the Fock space is realized on the vector space of polynomials B = Clz1, 22, ... ; Q,Q 7]
via the isomorphism ¢ : F =5 B defined by

(0.2.6) o(al0)) = E (m|ef@al0)Q™.

meZ

This remarkable isomorphism is called the boson-fermion correspondence and goes back to
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the work of Skyrme [Sk] and many other physicists; this beautiful form of it is an important
part of the work of Date, Jimbo, Kashiwara and Miwa [DJKM2,3], [IM].
Using that

(0.2.7) [am,an] = mam,—n,

(i.e that the a, are free bosons), it is not difficult to show that the isomorphism o is
characterized by the following two properties [KP2]:

(0.2.8) o(jm)) = Q™, cayo~! = o and ca_no~! = nz, if n > 0.

" Ozn

Using (0.2.8), it is easy to recover the following well-known properties of the boson-fermion
correspondence [DJKM2,3], [KP2]. Introduce the fermionic fields

vEz) = ) gFaA

JEIHZ
Then one has:
(0.2.9) opE(2)o7! = QFzE0TE(2),
i-3 —j—-3 _ 1
(0.2.10) o Y r(Ey)e i he = —T(=)

i,JEIH+Z

Hence I'(z1, 22) lies in a “completion” of the Lie algebra gl acting on B via the boson-
fermion correspondence. Therefore, the group GLo, and its “completion” act on B and
Date, Jimbo, Kashiwara and Miwa show that all elements of the orbit O = GL, - 1 and
its completions satisfy the bilinear identity (0.1.12). Since I'(21, 22)? = 0 and I'(z, 22 lies
in a completion of gf.., we see that exp al'(z1,22) = 1 + al'(21, 22) leaves a completion of
the orbit O invariant, which explains why (0.1.15) are solutions of the KP hierarchy.

Since the orbit GLs|0) (which is the image of O in the fermionic picture) can be natu-
rally identified with the cone over a Grassmannian, we arrive at the remarkable discovery
of Sato that solutions of the KP hierarchy are parameterized by an infinite-dimensional
Grassmannian [S].

0.3. It was subsequently pointed out in [KP2] and [KR] that the bilinear equation
(0.1.8) (in the bosonic picture) corresponds to the following remarkably simple equation
on the 7-function in the fermionic picture:

(0.3.1) > freyr=0.

kei+z

This is the fermionic formulation of the KP hierarchy. Since (0.3.1) is equivalent to

(0.3.2) Res;=oy™ (2)r @ ¥~ (2)7 =0,

it is clear from (0.1.10 and 11) that equations (0.1.8) and (0.3.2) are equivalent. Since 7 =
|0) obviously satisfies (0.3.1) and R® R(G L) commutes with the operator °, ¥ ® ¥7,,
we see why any element of R(GL)|0) satisfies (0.3.1). Thus, the most natural approach
to the KP hierarchy is to start with the fermonic formulation (0.3.1), go over to the bilinear
identity (0.1.8) and then to all other formulations (see [KP2], [KR], [K]). This approach
was generalized in [KW).

0.4. Our basic idea is to start once again with the fermonic formulation of KP, but
then use the n-component boson-fermion correspondence, also considered by Date, Jimbo,
Kashiwara and Miwa [DJKM1,2], [JM]. This leads to a bilinear equation on a matrix
wave function, which in turn leads to a deformation equation for a matrix formal pseudo-
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differential operator, to matrix Sato equations and to matrix Zakharov-Shabat type equa-
tions.

The corresponding linear problem has been already formulated in Sato’s paper [S] and
Date, Jimbo, Kashiwara and Miwa [DJKM1] have written the corresponding bilinear equa-
tion for the wave function, but the connection between these formulations remained some-
what obscure.

It is the aim of the present paper to give all formulations of the n-component KP
hierarchy and clarify connections between them. The generalization to the n-component
KP is important because it contains many of the most popular systems of soliton equations,
like the Davey-Stewartson system (for n = 2), the 2-dimensional Toda lattice (for n = 2),
the n-wave system (for n > 3). It also allows us to construct natural generalizations of the
Davey-Stewartson and Toda lattice systems. Of course, the inclusion of all these systems
in the n-component KP hierarchy allows us to construct their solutions by making use of
vertex operators.

Hirota’s direct method [H] requires some guesswork to introduce a new function (the
7-function) for which the equations in question take a bilinear form. The inclusion of the
equations in the n-component KP hierarchy provides a systematic way of construction of
the 7-functions, the corresponding bilinear equations and a large family of their solutions.

The difficulty of the 7-function approach lies in the fact that the hierarchy contains too
many Hirota bilinear equations. To deal with this difficulty we introduce the notion of an
energy of a Hirota bilinear equation. We observe that the most interesting equations are
those of lowest energy. For example, in the n = 1 case the lowest energy (= 4) non-trivial
equation is the classical KP equation in the Hirota bilinear form, in the n = 2 case the
lowest energy (= 2) equations form the 2-dimensional Toda chain and the energy 2 and 3
equations form the Davey-Stewartson system in the bilinear form, and in the n > 3 case
the lowest energy (= 2) bilinear equations form the n-wave system in the bilinear form.

There is a new phenomenon in the n-component case, which does not occur in the 1-
component case: the T-function and the wave function is a collection of functions {74}
and {W,} parameterized by the elements of the root lattice M of type A,—;. The set
supp T = {& € M|r4 # 0} is called the support of the 7-function 7. We show that supp
is a convex polyhedron whose edges are parallel to roots; in particular, supp 7 is connected,
which allows us to relate the behaviour of the n-component KP hierarchy at different points
of the lattice M. It is interesting to note that the “matching conditions” which relate the
functions W, and Wp, a,8 € M, involve elements from the subgroup of translations of
the Weyl group [K, Chapter 6] of the loop group GL(C|z, 2~!]) and are intimately related
to the Bruhat decomposition of this loop group (see [PK]). We are planning to study this
in a future publication.

The behaviour of solutions obtained via vertex operators in the n-component case is
much more complicated than for the ordinary KP hiearchy. In particular, they are not
necessarily multisoliton solutions (i.e. a collection of waves that preserve their form af-
ter interaction). For that reason we call them the multisolitary solutions. Some of the
multisolitary solutions turn out to be the so called dromion solutions, that have become
very popular recently [BLMP], [FS], [HH], [HMM]. This solutions decay exponentially in
all directions (and they are not soliton solutions; in particular, they exist only for n > 1).
It is a very interesting problem for which values of parameters the multisolitary solutions
are soliton or dromion solutions.

Note also that the Krichever method for construction of the quasiperiodic solutions of
the KP hierarchy as developed in [SW] and [Sh] applies to the n-component KP.

As shown in [S], [DJKM2], the m-th reduction of the KP hiearchy, i.e. the requirement
that L™ is a differential operator, leads to the classical formulation of the celebrated KdV
hierarchy for m = 2, Boussinesq for m = 3 and all the Gelfand-Dickey hierarchies for
m > 3. The totality of 7-functions for the m-th reduced KP hierarchy turns out to be the
orbit of the vacuum under the loop group of SL,.

We define in a similar way the m-th reduction of the n-component KP and show that
the totality of 7-functions is the orbit of the vacuum vector under the loop group of SL,p.
Even the case m = 1 turns out to be extremely interesting (it is trivial if n = 1), as it
gives the 1 + 1 n-wave system for n > 3 and the decoupled non-linear Schrédinger (or
AKNS) system for n = 2. We note that the 1-reduced n-component KP, which we call the
n-component NLS hierarchy, admits a natural generalization to the case of an arbitrary
simple Lie group G (the n-component NLS corresponding to GL;). These hierarchies
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which might be called the GNLS hierarchies, contain the systems studied by many authors
[Di], [W1 and 2], [KW],... .

0.5. The paper is set out as follows. In §1 we explain the construction of the semi-infinite
wedge representation F' of the group GL, and write down the equation of the G L. -orbit
O of the vacuum |0) (Proposition 1.3). This equation is called the KP hierarchy in the
fermionic picture. As usual, the Plicker map makes O a C*-bundle over an infinite-
dimensional Grassmannian. We describe the “support” of 7 € O (Proposition 1.4).

In §2 we introduce the n-component bosonisation and write down the fermionic fields
in terms of bosonic ones via vertex operators (Theorem 2.1). This allows us to transport
the KP hierarchy from the fermionic picture to the bosonic one (2.3.3) and write down the
n-component KP hierarchy as a system of Hirota bilinear equations (2.3.7). We describe
the support of a 7-function in the bosonic picture (Proposition 2.3). At the end of the
section we list all Hirota bilinear equations of lowest energy (2.4.3-9).

We start §3 with an exposition of the theory of matrix formal pseudo-differential oper-
ators, and prove the crucial Lemma 3.2. This allows us to reformulate the n-component
KP hierarchy (2.3.3) in terms of formal pseudo-differential operators (see (3.3.4 and 12)).
Using the crucial lemma we show that the bilinear equation (2.3.3) is equivalent to the
Sato equation (3.4.2) and matching conditions (3.3.16) on the wave operators P*(a). We
show that Sato equation is the compatibility condition of Sato’s linear problem (3.5.5) on
the wave function (Proposition 3.5), and that compatibility of Sato equation implies the
equivalent Lax and Zakharov-Shabat equations (Lemma 3.6). We prove that compatibil-
ity conditions completely determine the wave operators P*(a) once one of them is given
(Proposition 3.3). At the end of the section we write down explicitly the first Sato and
Lax equations and relations between them.

In §4 we show that many well-known 2 + 1 soliton equations are the simplest equations
of the n-component KP hierarchy, and deduce from §3 expressions for their 7-functions
and the corresponding Hirota bilinear equations.

Using vertex operators we write down in §5 the N-solitary solutions (5.1.11) of the n-
component KP and hence of all its relatives. We discuss briefly the relation of this general
solution to the known solutions to the relatives.

In §6 we discuss the m-reductions of the n-component KP hierarchy. They reduce the
2+ 1 soliton equations to 1+ 1 soliton equations. We show that at the group theoretic level
it corresponds to a reduction from GLo (or rather a completion of it) to the subgroup
SLmn(C[t,t71]) (Proposition 6.1). We discuss in more detail the 1-reduced n-component
KP, which is a generalization of the NLS system and which admits further generalization
to any simple Lie group.

We would like to thank A.S. Fokas for asking one of us to write a paper for this volume.
We are grateful to E. Medina for calling our attention to the paper [HMM]. The second
named author would like to thank MIT for the kind hospitality.

§1. The semi-infinite wedge representation of the group GL,, and the KP
hierarchy in the fermionic picture.

1.1. Consider the infinite complex matrix group

GLoo = {A = (aij); jez+ 4 |4 is invertible and all but a finite number of a;; — 6;; are 0}
and its Lie algebra

9loo = {a = (aij); jez+ 4| all but a finite number of a;; are 0}

with bracket [a,b] = ab — ba. The Lie algebra gl has a basis consisting of matrices
Eij, i, € Z + %, where E;; is the matrix with a 1 on the (i,7)-th entry and zeros

elsewhere.
Let C° = ez 3 Cv; be an infinite dimensional complex vector space with fixed basis

{vj}jezt 3~ Both the group GLos and its Lie algebra glo, act linearly on C* via the usual
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formula:
E;j(vk) = §xvi.

The well-known semi-infinite wedge representation is constructed as follows [KP2]. The

semi-infinite wedge space F = A3°°C™ is the vector space with a basis consisting of all
semi-infinite monomials of the form v;, A vi, A vi;..., where i; > iz > i3 > ... and

te41 = iy — 1 for £ >> 0. We can now define representations R of GLo, and r of gl on
F by

(1.1.1) R(A)(vi, A Vi, Avig A---) = Av;, A Avi, NAvig A=+,

(1.1.2) r(a)(vi, Avi, Avig A++-) = Zv,-l Aviyg Av-- Aviy_y Aavi, Aviyy A-e- .
k

These equations are related by the usual formula:

exp(r(a)) = R(expa) for a € gloo.

1.2. The representation r of glo, can be described in terms of a Clifford algebra. Define
the wedging and contracting operators x/;f andy; (jE€Z+ 3) on F by

0 if j = i,for some s
(=1)%v;, A Vi Avi, ANv—j A, A--- ifig > —j > is41
0 if j #1i, for all s
(—-1)"“1),', ANvig A= Avi,_ Avj,y A-ee if j =1i,.

Hursn=
"/’j_(v‘n Avip Aver) = {
These operators satisfy the following relations (i,5 € Z + %, Ap=+,-)

(1.2.1) $Io5 + el = 6a—ubii,

hence they generate a Clifford algebra, which we denote by C£.
Introduce the following elements of F' (m € Z):

|m) = V- AUy AV g Acee
It is clear that F is an irreducible C¢-module such that
(1.2.2) %¥10) = 0 for j > 0.

It is straightforward that the representation r is given by the following formula:

(1.2.3) r(Eij) =y 5.
Define the charge decomposition
(1.2.4) F=@Frm™
meZ
by letting
(1.2.5) charge(vi, Avi, A...)=mifir+k=4+mfor k>>0.
Note that
(1.2.6) charge(|m)) = m and charge(:/,-;-t) =+1.
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It is clear that the charge decomposition is invariant with respect to r(g€) (and hence
with respect to R(GL)). Moreover, it is easy to see that each F' (m) is irreducible with
respect to g€oo (and GLs). Note that |m) is its highest weight vector, i.e.

r(E;ij)lm) =0 for i < j,
r(Eii)|m) = 0 (resp. = |m))if i > m (resp. if i < m).

1.3. The main object of our study is the GLo-orbit
O = R(GLo)|0) c F©

of the vacuum vector |0).

Proposition 1.3 ([KP2]). A non-zero element 7 of F© lies in O if and only if the
following equation holds in FF @ F':

(1.3.1) > $freyr=0.

kezZ+}

Proof. 1t is clear that 3}, ¢:|0) ® ¥_,|0) = 0 and it is easy to see that the operator
>k d::' ® ¥, € End(F ® F) commutes with R(g) ® R(g) for any g € GL. It follows that
R(g)|0) satisfies (1.3.1). For the proof of the converse statement (which is not important
for our purposes) see [KP2] or [KR]. O

Equation (1.3.1) is called the KP hierarchy in the fermionic picture.
Note that any non-zero element 7 from the orbit O is of the form:

(1.3.2) T=u_4 Au_g Au_gA... ,where uj € C* and u_j = v_ for k > 0.

This allows us to construct a canonical map ¢ : O — Gr by (1) = };Cu_; C C,
where Gr consists of the subspaces of C* containing Z;’ik Cu_j_1/2 for k > 0 as a

subspace of codimension k. It is clear that the map ¢ is surjective with fibers C*.

1.4. Consider the free Z-module L with the basis {6i}jey+z, let A (resp. Ao) =
(6:— 6;li,j € 1 +Z (resp. i,—j € L +Zy4), i # j}, and let M C L (resp. My C L) be the
Z-span of A (resp. Ag). We define the weight of a semi-infinite monomial by

(1.4.1) weight(¥ ... ¥F 5 .. 9510) = b6oiy + ...+ boi, — 85 — ... = &,

Note that weights of semi-infinite monomials from F(®) lie in M,. Given 7 € F we denote
by fsupp, and call it the fermionic support of 7, the set of weights of semi-infinite
monomials that occur in 7 with a non-zero coefficient.

Proposition 1.4. If 7 € O, then fsupp 7 is the intersection of M, with a convez polyhe-
dron with vertices in My and edges in A,.

Proof. According to the general result [PK, Lemma 4], the edges of the convex hull of

fsupp 7 must be parallel to the elements of Ag. But if the difference of weights of two
semi-infinite monomials is a multiple of 6; — §;, then it is clearly equal to +(6; — ;). Hence

edges of the convex hull of fsupp 7 are elements of Ay, and the proposition follows. 0O

:§;2. The n-component bosonization and the KP hierarchy in the bosonic pic-
ure.

2.1. Using a bosonization one can rewrite (1.3.1) as a system of partial differential
equations. There are however many different bosonizations. In this paper we focus on the
n-component bosonizations, where n =1,2,....
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For that purpose we relabel the basis vectors v; and with them the corresponding
fermionic operators (the wedging and contracting operators). This relabeling can be done
in many different ways, see e.g. [TV], the simplest one is the following.

Fix n € Nand definefor j € Z, 1<j < n, k€Z+%:

) _
Vg = Unk—1(n—2j41)

and correspondingly:
$EO =y
k nktl(n—2j41)"
Notice that with this relabeling we have:

$E9|0) = 0 for k > 0.

The charge decomposition (1.2.5) can be further decomposed into a sum of partial charges
which are denoted by chargej, j = 1,...,n, defined for a semi-infinite monomial v =
vi, Avi, A... of weight 3, a;6; by

(2.1.1) charge;(v) = Zaknﬂ-_l/z,
kezZ

which is equivalent to

+(i)

charge; ¥y~ = +6;j, charge; |0) = 0.

Another important decomposition is the energy decomposition defined by
(2.1.2) energy |0) = 0, energy 1/)f(j) =—k.
Note that energy is a non-negative number which can be calculated by
(2.1.3) energy(v) = Z ar([k/n] + 1).
kE{+Z
Introduce the fermionic fields (z € C*):

(2.1.4) ,/,i(i)(z) def Z ¢’==t(j)z—k—§'
kezZ+}

Next we introduce bosonic fields (1 < 4,5 < n):

(2.1.5) a(z) = Zaiij)z—""’ &, POy~ 0)(2)
k€z

where : : stands for the normal ordered product defined in the usual way (A, = + or —):

i i) .
Lo erOypr@  ifps 0
:l/):(')'l);‘(n = { k ¢

2.1.6 A
(2.1.6) A )

One checks (using e.g. the Wick formula) that the operators afj ) satisfy the commutation

relations of the affine algebra gl,(C)" with central charge 1, i.e.:
(2.1.7) [af,‘j),a(q"‘)] = éjkaf,ii)q - Jgta;’fg + pbied;kbp,—q,

and that
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(2.1.8) ol |m) =0ifk>00r k=0andi < j.

The operators ag) = ag") satsify the canonical commutation relation of the associative
oscillator algebra, which we denote by a:

(2.1.9) [aii),agj)] = k&,‘j&k’_[,
and one has
(2.1.10) a{?m) =0 for k > 0.

It is easy to see that restricted to g€,(C)", F(©) is its basic highest weight representation
(see [K, Chapter 12]). The g€,(C)"-weight of a semi-infinite monomial v is as follows:

(2.1.11) Ao + Z charge;(v)6; — energy(v)é.
J=1

Here A is the highest weight of the basic representation, {6;} is the standard basis of the
weight lattice of g€,(C) and § is the primitive imaginary root ([K, Chapter 7]).

In order to express the fermionic fields ¥/*()(z) in terms of the bosonic fields a(¥)(z2),
we need some additional operators Qi, ¢ = 1,... ,n, on F. These operators are uniquely
defined by the following conditions:

(2112) Qil0) = p{10), QuEY = (-1 1y Q.
They satisfy the following commutation relations:

(2.1.13) QiQ; = —Q;Qi ifi # j, [al?,Q;] = 6ij6x0Q;.
Theorem 2.1. ([DJKM1], [IM])

i (i) 1 oy _ 1 &) -
(2.1.14) $O(z) = QF' 22 exp( ) 2oz M exp(F Y 1otz 7).
k<0 k>0

Proof. See [TV].

The operators on the right-hand side of (2.1.14) are called vertex operators. They made
their first appearance in string theory (cf. [FK]).
We shall use below the following notation

(2.1.15) k1, ka) = QP ... Qk»[0).

Remark 2.1. One easily checks the following relations:
[0, 2] = 85050,

They imply formula (2.1.14) for *()(z) except for the first two factors, which require
some additional analysis.

2.2. We can describe now the n-component boson-fermion correspondence. Let C[z] be
the space of polynomials in indeterminates z = {zi')}, k=1,2,...,1=1,2,...,n. Let
L be a lattice with a basis é1,... , 6, over Z and the symmetric bilinear form (6;]6;) = &;j,
where 6;; is the Kronecker symbol. Let
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-1 ifi>j
2.2.1 €is =
(221) ’ {1 ifi < j.

Define a bimultiplicative function € : L x L — {£1} by letting

(2.2.2) €(8i,6;) = €ij.

Let§=61+...4+6n, M={y € L|(8]7) =0}, A ={aij:=6: = §jli,j =1,...,n, i #j}.
Of course M is the root lattice of s€,(C), the set A being the root system.

Consider the vector space C[L] with basis e, v € L, and the following twisted group
algebra product:

(2.2.3) e®e? = ¢(a, B)ectP.

Let B = C[z] ®c C[L] be the tensor product of algebras. Then the n-component boson-
fermion correspondence is the vector space isomorphism

(2.2.4) o:F 5 B,
given by
(2.2.5) a(af_'.:,zl a(_‘;,),.lkl,. ey kp))=my... m,xf,",‘l) . ..:cf,';'.) @ ek1bitothnbn,

The transported charge and energy then will be as follows:

(2.2.6) charge(p(z) ® €7) = (é|y), charge;(p(z) ® e7) = (6;]7),
(2.2.7) energy(zg,’l) .. IS,';‘,) e)=my+...+ms + i(7]7)-

We denote the transported charge decomposition by

B=p B™.

me€EZ
The transported action of the operators o' and Q; looks as follows:

ca? o7 (p(z) ® e7) = mzPp(z) @ €7, if m > 0,
caP o (p(z) @ €7) = %’éﬁz ®e?, if m >0,
cal?o=(p(z) ® €7) = (§7)p(=) ® €7,
oQ;o~ (p(z) ® €7) = &(é;,7)p(z) ® V¥4

(2.2.8)

2.3. Using the isomorphism o we can reformulate the KP hierarchy (1.3.1) in the
bosonic picture as a hierarchy of Hirota bilinear equations.
We start by observing that (1.3.1) can be rewritten as follows:

(2.3.1) Res.=o dz()_ ¢ 0(2)r @y~ (2)r) =0, 7 € FO.

i=1

Here and further Res;=o dz }_; f;z? (where f; are independent of z) stands for f_;. Notice
that for 7 € F(, (1) = 3. ¢ 7+(2)e”. Here and further we write 7,(z)e” for 7, ® €.

Using Theorem 2.1, equation (2.3.1) turns under 0®0 : F®F — C[z',z"|®(C[L']®C[L"])
into the following equation:
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Res;=o0 dz(Y 3 e(6;,a — p)zt%i1eh)

j=1a,8eEM
2.3.2 o o .
( ) xexp(Z(zi") —1'2]) )zk)exp( E(a (J)/ - Oz (])u) k )
=]
Ta(z')(ea+6j )lTﬂ(zu)(eﬂ—Gi )u) =0.

Hence for all a, 8 € L such that (a]§) = —(8]|6) = 1 we have:

Res.=o(dz ) _ €(8j,a — B)z(i1x=#28)
Jj=1

(2.33) o z"k

oo
x exp(Y (2 — 2")z*) exp(- z(a o7 6—1(;)7)—,0")
k=1 k
Ta—t;(z')7p45;(z")) = 0.
Now making the change of variables
20 = 320 420"), yD = 3@ = 2O,

(2.3.3) becomes

Res,=o(dz Z e(bj,a — ﬂ)z(sila-ﬂ-ZGj)

j=1

(2.3.4)
xexp(EZy‘” *) exp(~ Z . (,) = Yty (& + U)rpas (2 ) =0,

We can rewrite (2.3.4) using the elementary Schur polynomials defined by (0.1.13):

(2:3.5) Ze(ﬁ,,a ﬂ)Zsk(zym)& “14(65la-p)(— a(,))ra—a (@ +y)7p45;(z —y) = 0.
J=1 k=0

Here and further we use the notation
S _(010 18
Oy~ "0y 20y:’ 30y’
Using Taylor’s formula we can rewrite (2.3.5) once more:

n ..

E e(6j,a — B) E Sk(2y9)Sk_14(5;1a-p)(— 6u(1) )
(2.3.6) i=1 k=0
NS DR
x c>:'"= T m?‘,,_gi (z 4+ u)rp4s;(z — u)|u=o = 0.

This last equation can be written as the following generating series of Hirota bilinear
equations:

(65,0 = 8) 3 S )Sk-r14510-p)(~DD)
(2.3.7) ,_2; kz_:

() pU)
x623-12r=19 Dy Ta— 5 Tﬁ+6;=0
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for all @, B € L such that (a|6) = —(f|6) = 1. Hirota’s dot notation used here and further
is explained in Introduction (see (0.1.9)).

Equation (2.3.7) is known (see [DJKM1,2], [JM]) as the n-component KP hierarchy of
Hirota bilinear equations. This equation still describes the group orbit: ¢(0) =
0Ro™Y(GL) - 1.

Remark 2.3. Equation (2.3.7) is invariant under the transformations a—a+v, 8 +—
B+ 7, where v € M. Transformations of this type are called Schlessinger transformations.

Let 7= 3 1 7+(z)e” € B; the set supp 7 def {7 € L| 7y # 0} is called the support of
T.

Proposition 2.3. Let r € C[[z]] ® C[M] be a solution to the KP hierarchy (2.5.4). Then
supp T is the intersection of M with a convez polyhedron with vertices in M and edges
parallel to elements of A.

Proof. Consider the linear map o: L — L defined by G(6;) = 8(j+1/2) mod n, Where
a mod n stands for the element of the set {1,... ,n} congruent to a mod n. Then it is
easy to see that for 7 € F' we have:
supp o(7) = &(fsupp 7).
Now Proposition 2.3 follows from Proposition 1.4. 0O
2.4. The indeterminates yf‘j ) in (2.3.7) are free parameters, hence the coefficient of a

monomial yg')...y,(‘{‘) (ki €N, ky <k; <..., ji € {1,...,n}) in equation (2.3.7) gives
us a Hirota bilinear equation of the form

n

(24.1) Y D QE 4(D)rans - Tars =0,
i=l a,f
where Q), ; are polynomials in the D", k = (k1,... k), j = (j1,-.. ,js) and @, B € L

are such that (a|6) = —(B|6) = 1. Each of these equations is a PDE in the indeterminates
xs;') on functions 7.,, ¥ € M.

Recall that an expression Q(D)rq - 74 is identically zero if and only if a = § and
Q(D) = —Q(—D). The corresponding Hirota bilinear equation is then called irivial and
can be disregarded.

Let us point out now that the energy decomposition (2.2.7) induces the following energy
decomposition on the space of Hirota bilinear equations:

(24.2) energy(QY), 5(D)ra—s; - Tp45) = k1 + ... + ku + 3((ala) + (B18))

It is clear that the energy of a nontrivial Hirota bilinear equation is at least 2.
Below we list the Hirota bilinear equations of lowest energy for each n.

n = 1. In this case we may drop the superscript in Dil) and the subscript in 7 (Which
is 0). Each monomial yi,. .y, gives a Hirota bilinear equation of the form

Qx(D)r-7=0
of energy k1+...+k;+1. An easy calculation shows that the lowest energy of a non-trivial
equation is 4, and that there is a unique non-trivial equation of energy 4, the classical KP
equation in the Hirota bilinear form:
(2.4.3) (D} —4D;D;3 +3D2)r -7 =0.

n > 2. There is an equation of energy 2 for each unordered pair of distinct indices ¢ and
k (recall that a;x = é; — 6x are roots):

(2.4.4) DODM 1y . 10 = 20y Tas-
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Furthermore, for each ordered pair of distinct indices ¢ and j there are three equations of
energy 3:

(2.4.5) (DS 4+ D)1 - 7o, =0,
(2.4.6) (DY + D)rg,, 70 =0,
(2.4.7) DI DD 7y . 1 4 2D 17, - 7, = 0.

n > 3. There is an equation of energy 2 and an equation of energy 3 for each ordered
triple of distinct indices ¢, j, k:

(2.4.8) ng)‘fo *Tai; = €ik€kj€ijTainTonjs

(2.4.9) ng)ro CTay; = e.-jekje;kng)‘rau T+

(Note that (2.4.6) is a special case of (2.4.9) where k = j.)
n > 4. There is an algebraic equation of energy 2 for each ordered quadruple of distinct
indices i, j, k, £:

(2.4.10) EijERLTOTa+aje T Eit€ikTau Taje t Eik€jtTai Taje = 0.

Equations (2.4.4-10), together with an algebraic equation of energy 3 for each ordered
sixtuple of distinct indices similar to (2.4.10), form a complete list of non-trivial Hirota
bilinear equations of energy < 3 of the n-component KP hierarchy.

§3. The algebra of formal pseudo-differential operators and the n-component
KP hierarchy as a dynamical system.

3.0. The KP hierarchy and its n-component generalizations admit several formulations.
The one given in the previous section obtained by the field theoretical approach is the 7-
function formulation given by Date, Jimbo, Kashiwara and Miwa [DJKM1]. Another
well-known formulation, introduced by Sato [S], is given in the language of formal pseudo-
differential operators. We will show that this formulation follows from the 7-function
formulation given by equation (2.3.3).

3.1. We shall work over the algebra A of formal power series over C in indeterminates

z= (:cij)), where k = 1,2,... and j = 1,... ,n. The indeterminates 151), e ,xi") will be
viewed as variables and x;,’ ) with k > 2 as parameters. Let
L
PEORSEAPNO

A formal n x n matriz pseudo-differential operator is an expression of the form

(3.1.1) P(z,8) = ) Pi(z)®,

J<N

where Pj are n x n matrices over A. The largest N such that Py # 0 is called the
order of P(z,d) (write ord P(z,0) = N). Let ¥ denote the vector space over C of all
expressions (3.1.1). We have a linear isomorphism s : ¥ — Mat,(A((2))) given by
s(P(z,d)) = P(z,z). The matrix series P(z,2) in indeterminates z and z is called the
symbol of P(z,0).

Now we may define a product o on ¥ making it an associative algebra:

s(PoQ)= Zﬂ % a':;z(f )9 5(Q).
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We shall often drop the multiplication sign o when no ambiguity may arise. Letting
U(m) = {P € Y|ord ¥ < m}, we get a Z-filtration of the algebra ¥:

(3.1.2) - ¥(m+1)D¥m)D¥(m—-1)D---

One defines the differential part of P(z,0) by Py(z,0) = Ef_’__o P;j(z)d7, and let P_ =
P — P,. We have the corresponding vector space decomposition:

(3.1.3) V=Vv_@VY,.
One defines a linear map * : ¥ — ¥ by the following formula:
(3.1.4) Q- Py =) (-8) o' P;.

j J

Here and further ‘P stands for the transpose of the matrix P. Note that * is an anti-
involution of the algebra ¥. In terms of symbols the anti-involution * can be written in
the following closed form:

(3.1.5) P*(z,z) = (exp 856;) tP(z,-z).

It is clear that the anti-involution * preserves the filtration (3.1.2) and the decomposition

(3.1.3).

3.2. Introduce the following notation
= (j )] ™
z- .’L‘(J) = Ezij)zkv ¥ % = diag(ez-z e ,erz )
k=1

The algebra ¥ acts on the space U, (resp. U-) of formal oscillating matrix functions of
the form

Z P;zie** (resp. Zszje""‘), where P; € Mat,(A),
J<N J<N

in the obvious way:

P(2)d7e*** = P(z)(+z) e**%.

We can now prove the following fundamental lemma.
Lemma 3.2. If P,Q € ¥ are such that
(3.2.1) Res,—o(P(z,0)e**) {(Q(z', 8 )e™** )dz = 0,
then (Po Q*)- =0.
Proof. Equation (3.2.1) is equivalent to
(3.2.2) Res—oP(z,2)e**~*) tQ(z', —z)dz = 0.
The (i,m)-th entry of the matrix equation (3.2.2) is

R88,=o Z -Pij(xy Z)Qmj(zly _z)ez-(z(f)_;'(i))dz =0.

=1

Letting y,(‘j) e zi" ) - z;(j ), this equation can be rewritten by applying Taylor’s formula to
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n n oo a
(3.2.3) Res;=o E P;j(z,z)exp Z Z yil)(&jzk - ﬁ)Qmj(z, —z)dz = 0.
j=1 £=1 k=1 k

Letting yit) =0for k> 1and ygl) = y for all £, we obtain from (3.2.3):
(—1)k kot k_yz
(3.2.4) Res.=oP(z,2) ) 0 (e, —2)yt e dz = 0.
k>0 :
k

Notice that y*e¥* = (e¥*)(¥). Here and further we write o(¥) for %;?. Using integration
by parts with respect to z, (3.2.4) becomes:

(3.2.5) Res,o ¥ %(P(z, 2)0*(1Q)(z, —2)) M e¥dz = 0.
k>0

Using Leibnitz formula, the left-hand side of (3.2.5) is equal to

k -
Ressco 33 170 P0Gz, 2) (0% 1)) *~° (5, —2)ev* s

Pevdrart (k- 2)!
1 = (—1)*
= Res;=o ) EP(‘)(z, 29> Tak( tQM)(z,—z) | e¥?dz
00 k=0 :
1 8'Q*(z, z)
—_ ~ p(o) ¥\ — * z
= Res:=o Z% Z!P (z,2) ( 2t e¥*dz = Res,=o(P o Q*)(z,2)e?*dz.

So we obtain that

(3.2.6) Res;—o(P o Q*)(z,2)e¥*dz = 0.

Now write (P 0 Q*)(z,2) = ¥;Aj(z)2’ and e¥* = 372, (‘l”!)l. Then from (3.2.6) we

deduce:

0o ¢ ) oo 4
0 = Res,—o EZAj(z)%zlﬂdz = ZA_I-l(z)!z—!.

j =0 =0
Hence Aj(z) =0for j < 0,ie. (PoQ*)-=0. O

3.3. We proceed now to rewrite the formulation (2.3.3) of the n-component KP hierar-
chy in terms of formal pseudo-differential operators.
Let 1 < a,b < n and recall formula (2.3.3) where « is replaced by a + 6, and 8 by
B — &
n

Res,=o(dz E e(bj o+ 80 — B+ 65)2(6" latba—p+68,~26;)

j=1

x exp(Y_ (2 — 2")F)exp(= Y (
k=1 k=1
Tatag; (II)TB—M,- (:t”)) =0 (O"ﬂ € M)

a 8 z7F

(3.3.1) )
azij)l 61:5;’.)" k

For each a € supp 7 we define the (matrix valued) functions
(3.3.2) VE(a,2,2) = (Vi(,2,2)) =
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as follows:
V,.Ji-(a, z,2) S (8, a + 6;)z i 1Fatais)

(3.3.3 0
) xexp(x Y 2z ")exP(=FZa o F ) Taztai; (2)/Ta(2).
k=1

It is easy to see that equation (3.3.1) is equivalent to the following bilinear identity:
(3.3.4) Res;=oV™*(a,z,2) 'V (B,2',2)dz = 0 for all a, 3 € M.

Define n x n matrices W*(™)(qa, z) by the following generating series (cf. (3.3.3)):

o -k
335) Y Wi (a,z)(2) ™™ = ejiz% l(exp:FZa 5 5 Taze (2))/7a().

m=0
Note that
(3.3.6) WE)(a,z) =
CjiTakay [Ta Hi# ]
(3.3.7) WiV (a,z) = { N i
~Ta 87:?7 i=),
OTata op o .
Feji—mt/Ta if i # j,
(3.3.8) WiP(a,z) = a"’
Figd + 2—as=z-)/ra if i =j.
We see from (3.3.3) that V*(a,z,2) can be written in the following form:
(3.3.9) VE(a,2,2) = (D W™ (a,2)R¥ (e, £2)(£2) "™ )e**,
m=0
where
(3.3.10) R*(0,z) = Y (6, ) Eii(£2)* 1),
=1

Here and further E;; stands for the n x n matrix whose (¢,7) entry is 1 and all other
entries are zero. Now it is clear that V*(a, z, z) can be written in terms of formal pseudo-
differential operators

(3.3.11) P*(a) = P*(e,2,0) = I, + Z W(m)(a,2)0~™ and R*(a) = R*(a,d)

m=1
as follows:
(3.3.12) V¥(a,z,z2) = PX(a)R*(a)e**>.
Since obviously
(3.3.13) R (a,0)™ = R*(a,d)*,

using Lemma 3.2 we deduce from the bilinear identity (3.3.4):
(3.3.14) (P*(a)R*(a— B)P~(B)*)- =0 for any e, B € supp .
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Furthermore, (3.3.14) for a = § is equivalent to
(3.3.15) P~ (a) = (P*(a)")7},

since R*(0) = I, and P*(a) € I, + ¥_. Equations (3.3.14 and 15) imply

(3.3.16) (P*(a)R* (= B)PF(B)™!)~ =0 for all a, f € supp 7.

In the rest of this paper we sometimes write P(a) instead of P*(a).

Proposition 3.3. Given 8 € supp 7, all the pseudo-differential operators P(a), a €
supp T, are completely determined by P(B) from equations (9.5.16).

Proof. We have for i # j : R(ai;) = A9+ B+ C9~!, where

(3.3.17) A=¢;Eq, B= ) eacitEw, C = ¢;iEjj.
k=1
ki,

ForP=1I, + E;?_.l W) 3=7 we have

(3.3.18) Pl =, —-W®o ! 4 (W2 w52 4....

Let @, € M be such that a — f = a;j. It follows from (3.3.18) and (3.3.16) that
P(a)R(a = f)P(B)™" = (P(a)R(a — f)P(B)™" )+ = Ad + B+ W) (a)4 — AWX)(B), or
equivalently:

P(a)(A8 + B+ C87') = (40 + B+ W (a)A — AWD(B8))P(B).
Equating coeficients of 8™, m > 1, we obtain:
WD (a)A + W™ (a)B + WmD(a)C =
= A@WM (B)W ) (8) - W (B)W ™ (8)) + BW™)(8) + W (o) AW ™ (B).

Substituting expressions (3.3.17) for A, B and C, we obtain an explicit form of matching
conditions (m > 1):

e;jTV(m+l)(a)E.',' + Z e,-ksjkW(”‘)(a)Eu + ej;W(m_l)(a)E,'_,'

k#i,5
(3.3.19) = ei; Eq(OW ™) (8) + Wm)(g) — w(gywm™)(B))
+ Y et BuW ™ (B) +ei; WD (o) B W™ (B).

k#i,j

It follows from (3.3.19) that W(™+1)(a) for m > 1 can be expressed in terms of the W(*)(3)
with s £ m + 1 and W()(a). Looking at the (k,£)-entry of (3.3.19) for k,£ # 4, , we see
that W()(a) can be expressed in terms of W()(8) and W,S:-)(a), where k # 4,j. The
(k,7)-entry of (3.3.19) for m = 1 gives: W,f:)(a)Wi(jl)(ﬂ) = e,-ke_,-kW,S)(ﬂ), and since the
(7, 7)-entry of this equation is WJ('1 )(a)‘Vig})(ﬂ) = —1, we see that W',-(J-l) (B) is invertible,
hence W,S:)(a) is expressed in terms of W(1)(B).

Due to Proposition 2.3 for any a, € supp 7 there exist a sequence 7;,... ,7k such

that @« = 71, B = vx and vi — 7i+1 € A for all : = 1,... ,k — 1. The proposition now
follows. O

Remark 3.3. The functions P*(a,z,z) (o € M) determine the r-function
Yo Ta(z)e® up to a constant factor. Namely, we may recover 74(z) from functions

P}(a,2,2) as follows. We have from (3.3.5):
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§;
log Pjfi(a,z,2) = log Ta(zP - e;’ logra(z(’)).
Applying to both sides the operator 2 #: E,‘N :a’ (that kills the first summand
k

on the right), we obtain:

9 -k-1_0 —k-
——) z ~)log P(a,z,2) = Y 27k7! logfa(z)
5w e = TG
Hence
(3.3.20) a. log 7o(z) = Res,=o dz z"(—(?- - Zz"k"l a. Ylog P (e, z, 2).
PO B ) e

This determines 7,(z) up to a constant factor. It follows from (3.3.7) and Proposition 2.3
that these constant factors are the same for all a.

3.4. Introduce the following formal pseudo-differential operators L(a), C G)(a), LU)(a)
and differential operators B,,(a) and Bs,{)(a):

L(a) = L(a, z,0) = Pt (a) 000 P*(a)™?,
Cc9(a) = CY)(a,z,0) = P*(a)E;;P*(a)7},
(3.4.1) LY(a) = CY)(a)L(a) = P*(a)Ejj 08 o PH(a)™!,
Bm(a) = (L(&)™)+ = (P*(a) 0 0™ 0 PH(a) )4,
B (a) = (LY(a)™)4 = (P*(a)Ej; 08™ 0 P*(a)™!)y.

Using Lemma 3.2 we can now derive the Sato equations from equation (3.3.4):
Lemma 3.4. Each formal pseudo-differential operator P = P*(«) satisfies the Sato equa-

tions:

% = —(PEj;00¥o P ')_oP.
k

(3.4.2)
Proof. Notice first that

a

zz

G ~ B @V (@22 = (55
<"’§ <§§’)R+( )+P+(a>n+<a)E,,a* B (a)P*(@)R*(a))e™*
N (agzig';!) + P*(a)Ej;0* - BY(a)P*(a))R* (a)e™
_ (ag;‘é;x) + LY(a)* P*(a) — BY (a)P*(a))R* (a)e™*
_ (3_5%@ + (Z9(a)})-P*(@)R* (a)e"*
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Next apply :9:"’{;7 - Bf‘j)(a) to the equation (3.3.4) for & = 8 to obtain:

dP*(a)

Resszo dz (——g5 + (L0 (@)!)-)(P* (@R (2)e7) (P ()R~ (2)e™) =0.
Tk

Now apply Lemma 3.2 and (3.3.15) to obtain:

OP*(a)
a:ﬁ"’

(( +(L9(a)*)-P*(a))P*(a)")- =0

which proves the lemma. [m]

Proposition 3.4. Consider the formal oscillating functions V*(a,z,z) and V= (a,z, z),
a € M, of the form (3.8.12), where R*(a,2) are given by (9.9.10) and P*(a,z,0) €
I, + Y_. Then the bilinear identity (3.9.4) for all o, € supp 7 is equivalent to the
Sato equation (3.4.2) for each P = P*(a) and the matching condition (3.5.14) for all
a,B € supp T.

Proof. We have proved already that the bilinear identity (3.3.4) implies (3.4.2) and (3.3.14).
To prove the converse, denote by A(a,f,z,z') the left-hand side of (3.3.4). The same
argument as in the proof of Lemma 3.4 shows that:

(3.4.3) ( a(].) - B,E”(a)) Aa,B,z,2') =0,
Oz
(3.4.4) A, Byz,2') =0,. if a:g) = :tlk('.) for k > 2,

where B?)(a) is defined by (3.4.1).

Denote by A;(a, ) the expression for A(a,f,z,2') in which we set zi’) = :tlk(") =0 if
k>2and zgl) =..= z.g”) =z, z'lm =...= zi(") = z}. Expanding A(a,f,7,2') in a
power series in z\” — z\*) for k > 2 and 2" — 2, 2/) _ 710}
(3.4.4) that it remains to prove

, we see from (3.4.3) and

(3.4.5) Ay(a,B)=0.
But the same argument as in the proof of Lemma 3.2 shows that
Ai(a,B) = Res;=oW* (e, 21,0)R* (o — 8,0)W (B, z1,0)* e¥*dz,
where y = z; — z}. Hence, as at the end of the proof of Lemma 3.2, (3.4.5) follows from

(3.3.14). O

3.5. Fix @ € M; we have introduced above a collection of formal pseudo-differential
operators L = L(a), C) = C)(a) of the form:

L=1,0+) UY(2)57,
(3.5.1) =
C(i) = Eii +E C(i’j)(:‘)a_jy 1= 1121 TN,

J=1

subject to the conditions

321



(3.5.2) YW =1, cWL=Lc®, cBcW) = §,;c0.

i=1

They satisfy the following set of equations for some P € I, + ¥_:

LP = P9
COP=PE;
(3.5.3) P

7 = —(LY%_P, where L) = cL.
k
Notice that the first equation of (3.5.3) follows from the last one, since L = I,8+3,(L()_.

Proposition 3.5. The system of equations (3.5.3) has a solution P € I, 4+ Y _ if and only
if we can find a formal oscillating function of the form

(3.5.4) W(z,z) = (I, + i WO (z)z77)e*

=1
that satisfies the linear equations

ow

(3.5.5) LW =W, COW = WE, 50 = BPw.
Tk

Proof (3.5.3) = (3.5.5): Put W = Pe**. Then we have:

LW = LPe** = P9e** = zPe** = :W;
COW = C)Pe** = PE;;e** = Pe**E;; = WE;;
av(V..) = a’:.) + pZ o = —(LO¥)_Pe*? 4 2k PE;;e*?
Oz, Oz} Oz,
= —(L(‘)")_W + PE;;0%e** = _(L(i)k)_W + COpoke==
= —(LO®Y_W + COL*FPer= = —(LO*_W + LO*W = BOW.

(8.5.5) = (3.5.3): Define P € ¥ by W = Pe**. If LW = :W, then LPe** = zPe** =
POe**, hence LP = PO.
f COW = W Ei;, then C) Pe*'* = Pe**Ej; = PEj;e**, hence C)P = PE;;.
Finally, the last equation of (3.5.5) gives: a—z"’m-(Pe"‘) = —(LWFk)_Pe** 4 LIk pes=,
Since we have already proved the first two eq:mtions of (3.5.3), we derive (as above):
LOkperz = zkpes= = P‘{jc , hence: i}(’;;e"‘ = —(L%¥¥)_Pe** which proves that P
8z
satisfies the Sato equat:ons "o '
Remarks 3.5. (a) It is easy to see that the collection of formal pseudo-differential oper-
ators {L,C(M),... ,C(™} of the form (3.5.1) and satisfying (3.5.2) can be simultaneously
conjugated to the trivial collection {9, E11,... ,Enn} by some P € I,+ ¥ _. It follows that

the solution of the form (3.5.4) to the linear problem (3.5.5) is unique up to multiplication
on the right by a diagonal matrix of the form

(3.5.6) D(z) =exp— Y _a;z7/j,

=1

where the a; are diagonal matrices over C (indeed, this is the case for the trivial collection).
The space of all solutions of (3.5.5) in formal oscillating functions is obtained from one of
the form (3.5.4) by multiplying on the right by a diagonal matrix over C((z)). For that
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reason the (matrix valued) functions
(3.5.7) Wt(a,z,2) = P*(a)e**, a € supp T,

are called the wave functions for . The formal pseudo-differential operator P*(a) is called
the wave operator. The functions W~ (a,z,z) = P~(a)e™** are called the adjoint wave
functions and the operators P~(a) (which are expressed via P*(a) by (3.3.15)) are called
the adjoint wave operators. Note that V¥ (a, z, z) are solutions of (3.5.5) as well since they
are obtained by multiplying W*(a, z, z) on the right by R*(a, z). (b) Multiplying the wave
function W+ (e, z, z) on the right by D(z) given by (3.5.6) corresponds to multiplying the
corresponding T-function by exp tr Y i, axzx, where z; = diag (:z:g), ... ,zﬁ")).

(¢) The collection {L,CW,... ,C(™} determines uniquely P € I, + ¥_ up to the
multiplication of P on the right by a formal pseudo-differential operator with constant
coefficients from I, + ¥_.

3.6. In this section we shall rewrite the compatibility conditions of the system (3.5.3)
(or equivalent compatibility conditions of the system (3.5.5)) in the form of Lax equations
and Zakharov-Shabat equations.

Lemma 3.6. If for every o € M the formal pseudo-differential operators L = L(a) and
CO) = CU)(a) of the form (8.5.1) satisfy conditions (3.5.2) and if the equations (3.5.3)
have a solution P = P(a) € I, + ¥_, then the differential operators Bﬁj) = Bij)(a) =
(L9 (a)¥)4 satisfy one of the following equivalent conditions:

oL

_ g

8::0) - [Bk ’L]

(3.6.1) ac® o
15) = [BE:J),C(')]

Oz

K140 . .
(3.6.2) = = [BY) LW]

(':72:2’)

aB(l') aB(J') . ;

(3.6.3) t _ k. _(BY B

)  agl)
Proof (cf. [Sh]). To derive the first equation of (3.6.1) we differentiate the equation
LP = PJ by zﬁ"):
oL oP oP
Pt 5 =59
Ozy; Oz Oz
and substitute Sato’s equation (see (3.5.3)). Then one obtains:
oL
31? )
from which we derive the desired result. The second equation of (3.6.1) is proven anal-
ogously: differentiate C(VP = PE;;, substitute Sato’s equation and use the fact that
[LDk cO)] = 0.
Next we prove the equivalence of (3.6.1), (3.6.2) and (3.6.3). The implication (3.6.1)
= (3.6.2) is trivial. To prove the implication (3.6.2) = (3.6.1) note that L = 3°7_, LG)

implies that the first equation of (3.6.1) follows immediately. As for the second one, we
have:

P=(BYL-LBY)P

ac® _ aL® . 8L
— = ~ —C -
0.7:&’ ) azi’ ) azi’ )

)7
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= ((BY,LO] - cW[BY, L)L
= (B, cOI)L! = (B, CY).

Next, we prove the implication (3.6.2) = (3.6.3). Since both a—fm and ad Bi‘i ) are deriva-
tions, (3.6.2) implies: '

oLY _ p6) 16
- (e
5.0 =B, L.
Hence:
9B 0B iy o), [0EDY= _9LYM)- ey (g6
—& - —& — B, B ) + ST - S (L0, (2
(azi” aa 1P o) ap ) |

= B, L — (B, LM - (B, BY] + (L), (L))
= [LWk, L) = 0,

Since ¥_ N ¥4 = {0}, both terms on the left-hand side are zero proving (3.6.3).
Finally, we prove the implication (3.6.3) = (3.6.2). We rewrite (3.6.3):

i i %)
Oz ,“’

7) (i)e
- — — [B)”,(L'V%)-]
PROBMPRCECE

This right-hand side has order k — 1, hence

LW
azi’ )

(3.6.4) (BY, LV € W(k — 1) for every £> 0.

Now suppose that %g;— - [B,(cj), L&) # 0. Then:
k

4

8L
g

Jim ord( BD, L9) =

i
—+ 00

which contradicts (3.6.4). O
Equations (3.6.1) and (3.6.2) are called Laz type equations. Equations (3.6.3) are called
the Zakharov-Shabat type equations. The latter are the compatibility conditions for the
: : 8__2a __o__a
linear problem (3.5.5). Indeed, since 70 50 W= EZE‘TB:E”W’ one finds

9 ni 3 i aB{) oy e
G (BEOW) = 5 (BYW) = (=G5 =ty = (B BDW.
k [

0= , !
o) oz

Notice that as a byproduct of the proof of Proposition 3.6, we obtain complementary
Zakharov-Shabat equations:

(L") _ B A(LU*)._
622" ) 3:1:2'.)

(3.6.5) = (LY, (L9*%)].

Proposition 3.6. Sato equations (8.4.2) on P € I, + V_ imply equations (3.6.3) on
differential operators Bi') = (LUK,

Proof is the same as that of the corresponding part of Lemma 3.6. 0O
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Remark 3.6. The above results may be summarized as follows. The n-component KP
hierarchy (2.3.7) of Hirota bilinear equations on the 7-function is equivalent to the bilinear
equation (3.3.4) on the wave function, which is related to the 7-function by formula (3.3.3)
and Remark 3.3. The bilinear equation (3.3.4) for each a = § implies the Sato equation
(3.4.2) on the formal pseudo-differential operator P = P(ar). Moreover, equation (3.4.2) on
P(a) for each & together with the matching conditions (3.3.14) are equivalent to the bilinear
identity (3.3.4). Also, the Sato equation (or rather (3.5.3)) is a compatibility condition for
the linear problem (3.5.5) for the wave function. The Sato equation in turn implies the
system of Lax type equations (3.6.2) (or equivalent systems (3.6.1) or (3.6.3), which is the
most familiar form of the compatibility condition) on formal pseudo-differential operators
LO (resp. L and C) satisfying constraints (3.5.2)). The latter formal pseudo-differential
operators are expressed via the wave function by formulas (3.4.1), (3.3.9-12).

3.7. In this section we write down explicitly some of the Sato equations (3.4.2) on the
matrix elements W,-(J-’) of the coefficients W(*)(z) of the pseudo-differential operator

P=I,+) Wm™(z)o™™.

m=1

We shall write W;; for Wl»jl) to simplify notation. We have for 7 # k:

owW;;
(3.7.1) a—x—(—k}; = VV,’)‘W,,J' - 5,";14/‘(1,2),
1
w
o _waw?@ w3
(3.7.2) az(z) = -kaj - 611:“’.‘,‘ .
1

Next, calculating 9Wii from (3.4.2) and substituting (3.7.1) and (3.7.2) in these equations,
oz,

we obtain:

(3.7.3) ZZ,';’)' = Wa ZZ:{ - ‘;Z;;’; Wijif k#iand k # ],
(3.74) ZZJ) = 2ZZ§f Wi; — zi?,-,fi if i # ,

(3.7.5) ‘ZZ:I,' = —2‘;2';')' Wi; + ?9%2 if i # 7,

(3.7.6) -Z% = 227?,;% - 2§1Vf,gl—‘g§’; — 2WiiOWi; + 20W 0.

Remark 3.7. Substituting expressions for the W;; = W,-(j])(a = 0,z) given by (3.3.7), the
above equations turn into the Hirota bilinear equations found in §2.4 as follows:

B71)fori=j5 = (244)
8.71)for:#; = (2.4.8)
(3.7.5) = (24.5),
(3.7.4) = (2.4.6),
(3.7.3)fori=j = (2.4.7) (with j replaced by k),
(3.73) fori#j = (24.9)
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3.8. In this section we write down explicitly some of the Lax equations (3.6.1) of the n-

component KP hierarchy and auxiliary conditions (3.5.2) for the formal pseudo-differential
operators

(381) L=Id+) UY(2)077 and CO = E;i+ Y Ci)(2)77 (i =1,... ,n).

=1 =1
For the convenience of the reader, recall that z stands for all indeterminates sz) , Where
1=1,2,... and k = 1,... ,n, that the auxiliary conditions are
(3.8.2) Y W =1, cOct) = §;c0, cOL = LCW,
=1
and that the Lax equations of the n-component KP hierarchy are
oL k

(3.8.3a); W = [B.( ), L),

aCcY) _ o o
(3.8.31‘)),' ax(") = [B‘ ,C( )],
where B,(k) = (C®WL),. For example, we have:
(3.8.4) B® = B+ C*D, BY = £,8% + 05Mg 4 2B, UM 4 c*2),

Denote by C,(Jk 9 and U,-(:) the (7,7)-th entries of the n x n matrices C(*:9) and U®)
respectively. Then the 9~! term of the second equation (3.8.2) gives:

k,1 op - . . .
(3.8.5) CFV=0ifi#kandj#Fk ori=j=F,
k, js
(3.8.6) e = —ci.
Hence the matrices C(U'1) are expressed in terms of the functions

Aij = C,-(f’l) (note that A;; = 0).
The 82 term of the second equation (3.8.2) allowes one to express most of the C,‘(f’z) in

terms of the A;;:

(3.8.7) CF? = —AnAsj ifi # kand j # k,
(3.8.8) ChP =3 A dpe.
r=1

Furthermore, the 8~! term of the Lax equation (3.8.3b); gives:

(3.8.9) 2’%% = Aix Axj for distinct i, j, k,
Oz,
] O04ij . ., .
(3.8.10) C,-(j’z) = —a-g])- for i # j,
(i,2) _ . 0A;j L.

(3.8.11) Ci" = Z az(;) for i # 3.

p=1""1

p#i
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The 8~2 term of that equation gives for ¢ # j (recall that 8 = a—:m +...+ a—j“'):
1 1

;2
3.8.12 ol _ acy™ 45C5D 3 (40455 + CED 4y)
(3.8.12) ij —‘—a‘ﬁ)"‘*' i;C55" “E( ip0Ap; + Ci " Apj),
Ty r=1
(5,2) n

3.8.13 C(j's) — = ac"JJ _ A,.c(jﬂ) A C(J:ﬂ)
(3.8.13) 50 ==y~ AGCT + 3 A Gy

— azl =1

r=1 P

p#i

Substituting (3.8.7, 8 and 11) (resp. (3.8.7, 8 and 10)) in (3.8.12) (resp. in (3.8.13)) we
obtain for i # j:

i o) -
(3.8.14) chP =-0- PXO) YAij =2 AipApiAij,
7} s
p#i
3) _ 0% Ay -
(3.8.15) C,(; )= ‘a—TJ)—; + 2ZA.'J'AJ',A,,J'.
3 =
p#i

Furthermore, the 8° and 8~! terms of the Lax equation (3.8.3a); give respectively for

1%

(3.8.16) U = 04,
aulM
(3.8.17) 50 = —0(AijAji).
1

Finally, the 8! term of the Lax equation (3.8.3b); gives

Aij i .,
(3.8.18) 0 5 = =245U) - ¥ for i # 4,
Ozy
O4i; _ 5 (i:2) _ ((ia) (1) .y
(3.8.19) © = % Aij — 260,5’ - Cij' +2U;;’ Aij for i # 7,
£2)
0A;; O0AL; O0Ax . X
3.8.20 L = A L Ap;— for i # k and jF#k.
( ) 6:6;” 3.1:§k) 7 azgk) # #

3.9. Finally, we write down explicitly expressions for U(!) and C(1) in terms of 7-
functions: Recall that

P=I,+) w9(z)o,
ij=1

oo
L=PoP' =10+ UWo,

=1

oo
ct = PE;P'=FE; + EC("")O‘J'.
Jj=1

Using (3.3.18) we have:
(3.9.1) UW = —aw®,
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(3.9.2) U® = whaw® _ @),

(3.9.3) CcED = (W, By,

(3.9.4) G2 = [W(Z),Eh’] + [Eii, W(l)]W(l).
Using (3.3.7) we obtain from (3.9.1) and (3.9.3) respectively:

(1) _ejia(ra+0;j /Ta) if ¢ ?é j’
(3.9.5) pw = [ it
a(g?y/ﬂ;,) lfl=].

(3.9.6) A5 = CYY = eitayar; /7.

(Recall that by (3.8.5 and 6) all the matrices C(*1) can be expressed via the functions
Aij.) Using (3.3.7 and 8) and (3.9.2 and 4) one also may write down the matrices U(?

and C?) in terms of 7-functions, but they are somewhat more complicated and we will
not need them anyway. :

§4. The n-wave interaction equations, the generalized Toda chain and the
generalized Davey-Stewartson equations as subsystems of the n-component

4.0. In this section we show that some well-known soliton equations, as well as their
natural generalizations, are the simplest equations of the various formulations of the n-
component KP hierarchy. To simplify notation, let

n
i i 7]
(4.0.1) t; = zg'), zi = :cg'), so that 8 = ; P

4.1. Let n > 3. Then the n-component KP in the form of Sato equation contains
the system (3.7.1) of n(n — 1)(n — 2) equations on n? — n functions W;; (i # j) in the
indeterminates z; (all other indeterminates being parameters):

OW::
(4.1.1) Y= i Wy;j for distinct ¢, j, k.
Oz

The 7-function is given by the formula (3.3.7) for a fixed a € M:

(4.1.2) VV.'J' = &ji Ta+m,. /Ta.
Substituting this in (4.1.1) gives the Hirota bilinear equation (2.4.8):
(4.1.3) ng)Ta Tatai; = Eik€kj€ijTataix Tatak;

Note that due to (3.9.3), Wi; = A;; if i # j, hence (4.1.1) is satisfied by the A;; as well.
One usually adds to (4.1.1) the equations

(4.1.4) OW;; =0, i #75.
We shall explain the group theoretical meaning of this constraint in §6.
Let now a = diag(ai,... ,an), b= diag(by,... ,b,) be arbitrary diagonal matrices over

C. We reduce the system (4.1.1) to the plane [D]:

(4.1.5) T) = arz + bit.
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A direct calculation shows that (4.1.1) reduces then to the following equation on the matrix
W = (W;;) (note that its diagonal entries don’t occur):

(4.1.6) [a, "’a—v:’] ~ b, a(,,—v:] = [la, W), [b, W] + b0Wa — adWb.

Hence, imposing the constraint (4.1.4), we obtain the famous 1+ 1 n-wave system (cf. [D],
[NMPZ]):

ow ow y
(417) [av ?] - [b1 E] - [[av W]v [bv w ]]
Let now
(4.1.8) Tk = arz + bt — y.
Then equation (4.1.6) gives
ow ow oW ow
(41.9) [a, 571 = [b, 51~ ‘13;” +hg = ([a, W], [, W]].

If we let
Qij = —(ai — a;)Wi;.

equation (4.1.9) turns into the following system, which is called in [AC, (5.4.30a,c)] the
2 + 1 n-wave interaction equations (i # j):

0Q;i; 9Q;; 9Q;;
(4.1.10) gt’ = a;j aQI" +bijaiyj + ) (aik — ak;)Qik Q)
k
where
(4.1.11) aij = (bi — b;)/(ai — a;), bij = bi — aiaj;.

On the other hand, letting (we assume that a; > ... > a,):
(4.1.12) wij = Wij/(ai — a;)'72,

the equation (4.1.6) gives for i # j:

(4.1.13) ;t" —a.-,-% —bij; gy" =ZEijkwikwkj,
k

where

aibr + akbj + ajb; —ab; — a_,'bk - a,-bj
4.1.14 Eijk =
(4.1.14) %= T (e — an)an — a5)(ai = a2
Imposing the constraint W;; = —wj;, we obtain from (4.1.13) the following Hamiltonian

p g J J

system (considered in [NMPZ, pp 175, 242] for n = 3 and called there the 2 + 1 3-wave
system) (i < j):

Ow;; Ow;j Ow;j  OH

(4.1.15) Bt %y iy T 0w,

where

(4.1.16) H= )" eiji(winweBij + Bixjwis).
ikl
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Final]y, let n =3 &Ed let uy = iwl;,, U = iﬁl;;, uz = i‘wlg, ay = —aszs, bl = —b23,
a; = —@3, by = —bi3, a3 = —ajz, b3 = —by3. Then, after imposing the constraint
€132 = 1, equations (4.1.15) turn into the well-known 2 + 1 3-wave interaction equations

(see [AC, (5.4.27)]):

= Ukly,

(4.1.17) it R B |

ot Oz dy
where (3, k,£) is an arbitrary cyclic permutation of 1,2, 3.
4.2. Let n > 2. Then the n-component KP in the form of Sato equations contains

the following subsystem of the system of equations (3.7.1) for arbitrary a € M on the
functions W;;(«) in the indeterminates z; (all other indeterminates being parameters):
Wii(a o s g -
(4.2.1) a;( ) = .-j(a)Wj;(a) if i # 5.
3

The 7-function is given by (3.3.7) (a € M):

EjiTatay; [Ta f1#]
(4.22) Wis(a) = { HenlTe W17
—3;logTa  ifi=7.
Substituting this in (4.2.1) gives the Hirota bilinear equations (2.4.4):
(4.2.3) D;Dj7q - Ta = 2Ta+a.-,- Ta—aij+

In order to rewrite (4.2.1) in a more familiar form, let for i # j:

(4.2.4) Uij(a) = loge;iWij(a) = log(Tatai; /Ta)-
Note that log(Ta+ai; /Ta) = = 10g(T(ataij)—ai; /Tata:;- Hence from (4.2.2) we obtain
(4.2.5) Uij(a) = =Uji(a + ai;) if i # j.
Furthermore, we have:
8 i 82
(@) = ——— atay; — == lOg To
Tz:05; () = G, 108 Teken T g 1oBT

_ Wii(e) _ OWii(a +aij) _

Wij(a)Wji(a) — Wij(a + aij)Wji(a + aij)

oz; Oz;
_ _Ta+u.'j Ta—c\r.',' + Ta+2a.'j Ta - eU;,-(a-{.a,-j)—U;j(a) _ eU,-,'(a)—U.','(or—a.'j).
Ta Ta Ta+a.~j Ta+ai,-

Thus the functions Ujj(a) (i # ) satisfy the following generalized Toda chain (with con-
straint (4.2.5)):

27, .
(4.2.6) ___aaU'é(a) = eUii(etaij)=Uij(a) _ oUij()=Usj(a—aij)
z;0z;

Note also that (4.1.1) for distinct 7,5 and k becomes:

IU;j(a)

Ui (a)+Uir()+Usj (@)
Oz

(4.2.7) = Eik€kjEjie

One should be careful about the boundary conditions. Let S = supp 7; recall that by
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Proposition 2.4, S is a convex polyhedron with vertices in M and edges parallel to roots.
It follows that (4.2.6) should be understood as follows:

(i) if « ¢ S, then U;j(a) = 0 and (4.2.6) is trivial,

(1) if a € S, but a + a;; ¢ S, then (4.2.6) is trivial,

(iii) if « € S, but @ — a;j ¢ S, then the second term on the right-hand side of (4.2.6) is
removed,

(iv)ifa € S, a+ a;j € S, but a +2a;; ¢ S, then the first term on the right-hand side
of (4.2.6) is removed.

Let now n = 2, and let u, = Uyz2(naiz2). Then we get the usual Toda chain:

(4.2.8) S =eirHiTUn _eUnTUn-1 i € Z.

It is a part of the Toda lattice hierarchy discussed in [UT].

4.3. Let n > 2. Then the n-component KP in the form of Sato equations contains the
system of equations (3.7.4), (3.7.5), (3.7.3) and (3.7.1) for j # k on n? functions W;; in
the indeterminates zx and tx (k = 1,...,n) (all other indeterminates being parameters):

L. 214/ - L.
(4.3.1) Wi _ _OWi; +26V:{’ Wi if i # 4,
7

ot; Oz? fi]
(4.3.2) 6;’:" = a;?;,-,» - 26;::" Wi if i # J,
(4.3.3) aav::,- = Wa a;r:,- - a;: ;" Wi, ifi # k and j # k,
(4.3.4) %—vg = WiWi; if i # k and j # k.

This is a system of n® — n evolution equations (4.3.1-3) and n(n — 1)? constraints (4.3.4)
which we call the generalized Davey-Stewartson system.

Note that the 7-functions of this system are given by (3.3.7), where we may take a = 0.
The corresponding to (4.3.1)—(4.3.4) Hirota bilinear equations are (2.4.6); (2.4.5); (2.4.7)
if i = j and (2.4.9) if ¢ # j; (2.4.4) if i = j and (2.4.8) if ¢ # j, respectively.

Now, note that letting

o l oW + oW;; + oWy + oW;; (= ¢ji)
$i=3\ 0z " Or; oz | 0w )0

and subtracting (4.3.2) from (4.3.1) we obtain using (4.3.4):

(4.3.5)

Wy oWy _ (& &
at; ot

e i 5—;2-) Wij +2Wis(pij — Wi;Wji).
: J

Also, from (4.3.4) we obtain

Opi; 1,9 a\?
9z;0z; 2 (b?, + 'a_z;) (Wi; Wji).

(4.3.6)

Let now n = 2; to simplify notation, let
g =W, r=Wa, ¢ =12 =p.

Then, making the change of indeterminates

331



(437) 8§ = ——2i(t1 + tg), t= —2i(i1 - tz), r=2z1+ 22, Yy =21 — T2,

equations (4.3.5 and 6) turn into the decoupled Davey-Stewartson system:

2 2
i =3B+ 5 +ae—ar)
. 2 2
(43.8) % =1GF+ &) -rle-a)
2
(

Due to (3.3.7), the corresponding 7-functions are given by the following formulas, where
we let T, = Tnay,:

2

13}
(4.3.9) g=-7/T0, r=T_1/T0, p = —a—zilog‘fm

the Hirota bilinear equations being (cf. [HH]):
. 12,1
(lDl + '2'Dz + EDy)Tl T = 0
1

(43'10) (—iDt + %D: + §D§)T_1 c10=0

(D2 = D)o - 1o = 21171,
Finally, imposing the constraint
(4.3.11) r = K3, where k = £1,

we obtain the classical Davey-Stewartson system

(4.3.12) i5+ 353 + 59 = (o — slal)g

Remark 4.3. It is interesting to compare the above results with that obtained via the

Lax equations. To simplify notation, let U; = U.-('-l). Substituting (3.8.15) (resp. (3.8.14))
in (3.8.18) (resp. (3.8.19)), we obtain for i # j:

dAi; A
(4.3.13) 5t L = 612] —24iU; -2 AijAjrAs;
J J k#j
0Ai; _ PAi;
(4.3.14) i = o T 245U +2) ) Ay A A

ks#i

These equation together with (3.8.9, 17 and 20) give a slightly different version of the
generalized DS system (recall that A;; = W;; if ¢ # j and U; = —0Wj;). For n = 2
we get again the classical DS system after the change of indeterminates (4.3.7) if we let
p=—3(U1+U2).

4.4. Finally, we explain what happens in the well-known case n = 1. In this case
C® =1 and auxiliary conditions (3.8.2) are trivial. Lax equation (3.8.3b) is trivial as
well, and Lax equation (3.8.3a) becomes

oL .
(4.4.1) a—x' = [B",L], 1= 1,2, ceey
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where L = 0 + Z;?__l uj(z)077, 8 = 3% and B; = (L")4+. Thus, the KP hierarchy
is a system of partial differential equations (4.4.1) on unknown functions u1,us, ... in
indeterminates 1, z2,.... By Lemma 3.6, (4.4.1) is equivalent to the following system of
Zakharov-Shabat equations:

05, _ 0By

(4.4.2)k,e e Ome [Bk, By).
By (3.8.4) we have:

(4.4.3) By =0, By =8 +2u,.
Furthermore, we have:

(4.4.4) B3 =8 4 3u19 + 3uz + 33—:

Thus we see that equations (4.4.2);,1 are all trivial, the first non-trivial equation of (4.4.2)
being

0B; 0B; _

313 - 3::2 - [Bz’ Ba].

Substituting in it (4.4.3 and 4), the coefficients of 8° and 9! give respectively:

ou _, Pu g, Ou
Oz3 0z,0z2 Yoz,

3ug az‘UQ

=390 3o

(4.4.5) 2

% = 3% - 0’uy
Oz, "~ 0z 0z

Differentiating (4.4.5) by z; and substituting -g%f from (4.4.6) gives a PDE on u = 2u,,
where we let z; =z, 2o = y,23 = t:

(4.4.6) 6

(4.4.7)

3 0%u a @ 3uau 1?32
ot 2 0z 40923

407 0z \ot 200 4

This is the classical KP equation. Due to (3.9.5), the connection between u and the
7-function is given by the famous formula

8 .
(4.4.8) u= 2@ log 7.

Substituting u in (4.4.7) gives the Hirota bilinear equation (2.4.3).
§5. Soliton and dromion solutions.

5.1. We turn now to the construction of solutions of the n-component KP hierarchy.
As in [DJKM3] we make use of the vertex operators (2.1.14). When transported via the
n-component boson-fermion correspondence ¢ from F to B = C[z] ® C[L], they take the
following form:

; %) > ; 2 zF 8
(5.1.1) $*O(2) = QF12* (exp £ kE_j a)(exp F ; %;@).

Note that for z,w € C* such that |w| < |z| we have (A\,u =+ or —):
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VO (w) = (2 - w)sMnQd ut 2o ol

oo . . oo -k g -k 5
x exp »_(A¥z{” + pw*s()exp - [ AL AR
k=1 kgl k 01:;:) k azi’))

(5.1.2)

We let for 0 < |w| < |2]:
(5.1.3)

oo
e i —-(3 —b:: —1_a() o) i -
Tij(z,w) €9+ O@p D (w) = (2 - w) ™5 Q@7 2w exp 3 (ko) — whal?)
k=1
= z% 9 w 7]
X exp — E (—-—T -—).
=1 k 6::5,) k 635")

Using (5.1.2), we obtain for |21] > |z2| > ... > |zan—1] > |22n| > 0:

—1)k+e5. .
Liia(21,22) ... Tipy _yion (22N -1, 22N) = H (2k — 2¢) ("D bini
1<k<t<2N
2N (—1ym-1 (im) 2N oo (m)
- -— - [¢3 m
(14)  *XQuQ7'--.Qiy.,Qi) [] 2m ©exp(= ) > (-1)mzha(™)
m=1 m=1 k=1
2N o z_k )
x exp( ) (-1,
m=1 k=1 a‘tk

We may analytically extend the right-hand side of (5.1.4) to the domain {zi # 0, z; #
zjifi#j, 4,7 =1,...,2N}. Then we deduce from (5.1.4) for N = 2 that in this domain
we have:

(5.1.5) Tijiy(21,22) 5,04 (23, 24) = Digi, (23, 24)T5 i, (21, 22),
(5.1.6) F,‘j(zl,ZQ)z = lim F.'_,'(zl,ZQ)F.'j(z;;,h) =0.
23—
2422
Remark 5.1. Let A = (a;;) be a n X n matrix over C and let z;,w; (i = 1,... ,n) be

non-zero complex numbers such that z; # w;. Due to (1.2.3) the sum

(5.1.7) Ta(zw) = ) aiTij(zi, w5)

i,y=1

lies in a completion of (g4 ).
By (5.1.5-6) we obtain:

(5.1.8) exp'4(z, w) = fI 1+ a,-,-l‘;,-(z;,w,-)).

=1

Lemma 5.1. (a) If 7 is a solution of the n-component KP hierarchy (2.9.7) of Hirota
bilinear equations, then (exp L a(z,w))r is o solution as well for any complez n x n matriz
A and any z = (z1,... 2,), w = (wy,... ,wn) € C*™ such that z; # wj.

(b) For any collection of complez n x n-matrices A, ... , Ay and any collection 2(1), . .. |
2w (V) € € with all coordinates distinct, the function
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(5.1.9) expTa, (20, wM)...expTap (2, wM) 1

is a solution of the n-component KP hierarchy (2.5.7).

Proof. (a) follows from Proposition 1.3 and Remark 5.1. (b) follows from (a) since the
function 1 = o|0) satisfies (1.3.1). o

We call (5.1.9) the N-solitary 7-function (of the n-component KP hierarchy).

In order to write down (5.1.9) in a more explicit form, introduce the lexicographic
ordering on the set S of all triples s = (p,i,j), where p € {1,...,N}, 4,5 € {1,...,n}
(i-e. 1 < s2 if p1 < p2, or py = pz and t; < i3 or p; = pg, 41 =iz and j; < j2). Given
N n x n complex matrices A, (a(p)), we let a, = a(’) for s = (p,i,j) € S; given in

addition two sets of non-zero complex numbers z, and w,, all distinct, parametrized by
s € S, introduce the following constants

r r
c(S1y-.0 y8r) = H as, H Eirie€irjeCinicCinie

k=1 =k+1
(zsk - 231)6‘."“ (w,,‘ — Wy, )Gj"j'

- w")ﬁ.-“-l (wsk - zsl)aj"il '

(5.1.10)

X
(Z,
1<k<t<r k

Then the N-solitary solution (5.1.9) can be written as follows

Nn?
1+Z E c(s1y. .. 55r)

(5111) r=1 (1 1,1)<81<...<3,<(N,n,n)
x (exp Z Z(zm 1:(”') wrzng)))eZ{ﬂ Fipik
k=1m=1

5.2. Let n = 1. Then the index set S is naturally identified with the set {1,... ,N},
the two sets of complex numbers we denote by z3j—1 and 225, j = 1,...,N, and we
let Ap = (22p—1 — 22p) 'ap , where a, are some constants. Then (5.1.11) becomes the
well-known formula (see [DIKM3]) for the r-function of the N-soliton solution:

M =14 z Z IrI ajy, H (2. = zj, )(_I)H-l

r=11<H1<..<jr<Nk=1  1<k<t<2r

r oo
m m
X exp Z 2:(2‘,-2,'_l -z, )Zm.

k=1m=1

(5.2.1)
Letting z; = z, z2 = y, z3 = t and all other indeterminates constants 4 = c4,..., we
obtain, due to (4 4.8), the soliton solution of the classical KP equation (4.4.7):

2
(5.2.2) u(t,z,y) = 238? log 7™™(z,y,t, ¢4, 5, .. ).

In particular, the 7-function of the 1-soliton solution is

(5.2.3) TW(z,y,t) =1+ ; 2 . exp((z1 — z2)z + (22 — 22)y + (23 — 23)t + const.)
1— 22

and we get the corresponding 1-soliton solution of the classical KP equation (4.4.7):

(21— 2)?
2

(5.2.4) u(z,y,t) = cosh'z(%((zl —z)z + (22 = 22)y + (23 — 23)t) + const.).
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5.3. Let n = 2. Then any 7 € C[z] ® C[M] can be written in the form

T= E 70612 where 7, = Tloyz-
ez

For a N-solitary solution 7(¥) given by (5.1.11) we then have
. 4N
(5.3.1) 1—‘(1‘) =6g0+ Z E c(s1,... ,87)exp z Z (zmz(u) zs#)),
=1 (81,...,8;) k=1m=1

where (s1,... ,5,) run over the subset (5.3.2); of S”, where

(5.3.2) {(1,1,1)551 <82...< 8, <(N,n,n)
.3.2)n

#{(r, 1)lik > gk} — #{Cry Jr)lix < i} = £

Letting (cf. (4.3.9)):

Tl(xyyytacvc.'(if.)..) r= T—1(I,y,t,0,cgl),---)
1 ) 1 )
(5.3.3) To(z,y,t C, cg )7 ) Tﬂ(xayvtvc3 c:(i )7 ee)

= —i-(logro(z y,t,c c:(, oo ))s

where z = z(l) + a:(l), y= z(l) (]) t= 21'(2:(1) gz)), c= —2i(zgl) + zgz)) and all

other indeterminates z\) are arbltta.ry constants ¢\’

the decoupled Davey-Stewartson system (4.3.8).

We turn now to the classical Davey-Stewartson system (4.3.12) for k = —1. The con-
straint (4.3.11) gives

, we obtain a N-solitary solution of

T]/To = T_1/To.
One way of satisfying this constraint is to let

a(” = (- 1)‘*’0(' ) 2pis) = ~B(psiys

(5.3.4)
=0, ) € i**1R.

We shall concentrate now on the case N = 1. It will be convenient to use the following
notation:

I = 1'5 )) T2 = zgz)v

Zij = 2(1,i5)s % = a0,ii) €R4 (14,5 <2), a3 =a1,12) €C,
|as|?
(z+?)(w+W)’

%)+ Z<z - (-2 ( =1,2),

C(z,w) = D(z w) =

4j(z) = (z +2)(z; - (- 1)’lt

As(z,w) = 221 + Bz + zt(— + —) + E(z" M _ (—w)ke.
k=3

Then ¢ = —711 /79 and ¢ = —%(5% + %)2 log 7o is a solution of (4.3.12), where
(5.3.52) 71 = age2125)(1 4 0, C (212, 211 ) CD)(1 + 0,C(221, Z22)e 4222,
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o=(1+ a e (1) (1 4 ageta(322))
(5.3.5b) + D(z12, 221 )CAS(Zn,zn)+Aa(zu,zn)(1 + a1]C(212, 221)|28A|(«1u))
x (1 + az|C(z21, 222)[2e42(722)).

Consider now two special cases of (5.3.5a,b):
(D) 21 = 211 = 212 and 29 = 292 = 221,

(8) =0 (1=1,2),
and let T = D or S. Then (5.3.5a and b) reduce to

(5.3.6a) T = a;eA"(:"”) in both cases,

(5.36b) 77 = (1+brpare V)1 + Srpaze?*(?) + D(z, ) (A,

so that ¢T) = —1 /787, o™ = —%(‘—,‘Z—‘ + -a%;)z log 78 is a solution of (4.3.12).
In order to rewrite ¢(T) in a more familiar form, let (j = 1,2 and a;(z; +%;) > 0):

pD = (aj(z +%;))/?f T=Dand =1i T=S5,
p1 =R +ipr = 371, p2 = par +ipor = 1z,
) = 2By B

. |m(-T)|
£'=2I'+2bu'1t) £=—l°g_!-—1
j j j iT uin ,——2#1‘R

T) (T
p™ = —a;p{"pi".

Then we obtain the following expression for ¢(T):

49T (u1ppar)'’? exp{—(p1r(&1=&)+uar(€2—E))+i(=(m1162 +p2r€2)+(p1|2+|p2|?)t+arg mims))
((6rp+exp(—2p1r(€1—£1)) (670 +exp(—2p2r(£2—E€2))+[p(T)[?)

The function ¢(?) is precisely the (1,1)-dromion solution of the Davey-Stewartson equa-
tions (4.3.12) with k = —1 found in [FS] (provided that ujr € R4). On the other hand,
if we let p11 = por = 0, then ¢T) reduces to the 2-dimensional breather solution found in
[BLMP]. Finally, ¢ is a 1-soliton solution.

Recall that the dromion solutions of the DS equation were originally discovered in
[BLMP] and [FS] (see also [HH]). The dromion solutions of the DS equation were first
studied from the point of view of the spinor formalism by [HMM].

5.4. Similarly, we obtain the following solutions of the 2-dimensional Toda chain (4.2.8):

(5.4.1) - { log(r{27 /i) if -N <e<N -1

0 otherwise
where the -functions T,(N) are obtained from (5.3.1) by letting all indeterminates =) with
m > 1 to be arbitrary constants:
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4N r
(5.4.2) TI(N) =be0+ Z E c(81,-++ y8r)Csy - .. Cs, EXP Z(z;k Zgy — Tj, Wy, ),

r=1 (s1,...,8,) k=1

where (s1,... ;) runs over (5.3.2); and ¢, (s € S) are arbitrary constants.

5.5. Let now n > 3. Then we obtain solutions of the 2 + 1 n-wave system (4.1.9) as
follows. For 1 <1¢,7 < n let

Nn?
Ti(J-N) =6;; + Z Z Csy---Csp

(5.5.1) =1 (s1,...,85)
r
X exp Z(ai,x +biyt — y)ze, — (@, T + bj t — y)ws,,
k=1

where (s1,... ,s,) runs over (5.3.2), and c, (s € §) are arbitrary constants. Then W;; =
€jiTij/To (i # 7) is a solution of (4.1.9), and Qij = €;j(a; — a;)7ij/70 (i # j) is a solution
of (4.1.10).

§6. m-reductions of the n-component KP hierarchy.

6.1. Fix a positive integer m and let w = exp 2—,’;‘ Introduce the following mn? fields
(1<4,j<n, 1<k<m)[TV]:
(6.1.1) aR)(2) = Zaﬁ,‘jk)z""'l = ()= (w*2) :,

PEZ

where the normal ordering is defined by (2.1.6). Note that

(6.1.2) o™ (z) = ol)(2),

where a(#)(z) are the bosonic fields, defined by (2.1.5), which generate the affine algebra
g€,(C)" with central charge 1 (see (2.1.7)). It is easy to check that for arbitrary m, the
fields a(/¥)(z) generate the affine algebra g€mn(C)" with central charge 1. More precisely,
all the operators ag']k) (1<4,j<n, 1<k<m, p€Z)together with 1 form a basis of
94mn(C)" in its representation in F* with central charge 1, the charge decomposition being
the decomposition into irreducibles. .Hence, using (2.1.14), (2.2.5 and 8), we obtain the
vertex operator realization of this representation of g€ma(C)" in the vector space B (see

[TV] for details).

Now, restricted to the subalgebra s€m,(C)”, the representation in F(%) is not irreducible
any more, since $f;,n(C)" commutes with all the operators

n
Za?,],m)’ ke mZ.
1

=

(6.1.3) (m) def

n

In order to describe the irreducible part of the representation of mn(C)N in B©) con-
taining the vacuum 1, we choose the complementary generators of the oscillator algebra a
contained in $€mn(C)" (k € Z):

(6.1.4) B
40 alim™ if k ¢ mZ,
P e el — e itk e mZand 1< <n,

so that the operators (6.1.3 and 4) also satisfy relations (2.1.9). Then the operators 1, a;'.j k)
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for ¢ # j, together with operators (6.1.4) form a basis of s€mn(C)". Hence, introducing
the new indeterminates

) if k ¢ mN,
(6.1.5) y,(gj) = J(H_l)(z(l) .+ :cij) - j.tijﬂ)) if ke mNand j <n,
;‘;(zﬁ" +... 12")) if ke mNand j =n,

we have: Clz] = C[y] and

(6.1.6) o(BP) = and 0(8Y) = kyP if k> 0.

oyt (J)

Now it is clear that the irreducible with respect to smq(C)" subspace of B(%) containing
the vacuum 1 is the vector space

(6.1.7) B =Cy’1<j<n, keN, or j=n, k € \mZ]g C[M).
The vertex operator realization of $,,,(C)" in the vector space B[ m) is then obtained by
expressing the fields a(*/¥)(2) for i # j in terms of vertex operators (2.1.14), which are
expressed via the operators (6.1.4), the operators Q.Qj'1 and a,(,i) - a((,j) (1<i<j<n)
(see [TV] for details).

The n-component KP hierarchy of Hirota bilinear equations on 7 € B(®) = C[y] ® C[M]
when restricted to 7 € B[(:')] is called the m-th reduced KP hierarchy. It is obtained from
the n-component KP hierarchy by making the change of variables (6.1.5) and putting zero

all terms containing partial derivates by y("), yg','n), y§")

It is clear from the definitions and results of §3 that the condition on the n-component
KP hierarchy to be m-th reduced implies the following equivalent conditions (cf. [DJKM3]):

(6.1.8) L(a)™ is a differential operator,
= OW(a)
6.1.9 ~— = z"W(a),
(6.1.9) ,Z:T ) (a)
6.1.10 PIAMNSU recC
(6.1.10) Zax(‘i) = Ar, for some A € C.
=1 m

It follows from (6.1.8) that these conditions automatically imply that all of them hold if
m is replaced by any multiple of m.
The totality of solutions of the m-th reduced KP hierarchy is given by the following

Proposition 6.1. Let Oy be the orbit of 1 under the (projective) representation of the
loop group SL;n(C[t,t71]) corresponding to the representation of s€mn(C)" in B[(:.)]. Then

Ofm) = 9(O) N B{Y).

In other words, the 7-functions of the m-th reduced KP hierarchy are precisely the 7-
functions of the KP hierarchy in the variables y(") which are independent of the variables
y,(:l) , £eN.

Proof is the same as of a similar statement in [KP2). O
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Remark 6.1. The above representation of s€mn(C)" in B(:') is a vertex operator con-
struction of the basic representation corresponding to the element of the Weyl group Sm»
of s€mn(C) consisting of n cycles of length m (see [KP1] and [TV]). In particular, for n = 1
this is the principal realization [KKLW], and for m = 1 this is the homogeneous realization
[FK]. The m-th reduced 1-component KP was studied in a great detail in [DJKM2] (see
also [KP2]).

6.2. Let n = 1. Then the 2-reduced KP hierarchy becomes the celebrated KdV hierar-
chy on the differential operator S = (L?); = 8% + u, where u = 2u;:

i}

§% =[(S"*3),,5%), n=1,2,...,
e [( )+:5%), n

(6.2.1)

the first equation of the hierarchy being the classical Korteweg-deVries equation

ou Bu ou
+ 6u

(6.2.2) 45 = 75 +ouz.

Of course, the 3-reduced KP is the Boussinesq hierarchy, and the general m-reduced KP
are the Gelfand-Dickey hierarchies.

6.3. Let n = 2. The equations of the 1-reduced 2-component KP are independent of
z, hence equation (4.3.8) becomes independent of z and ¢ becomes 0 (see (4.3.9)). Thus,
equation (4.3.8) turns into the decoupled non-linear Schrédinger system (called also the
AKNS system):

A - 5 -q
2
(6.3.1) o 20y
or 18 +ar?
‘ot 292 1

Thus (6.3.1) is a part of the 1-reduced 2-component KP. For that reason the 1-reduced 2-
component KP is sometimes called the non-linear Schrédinger hierarchy. Of course, under
the constraint (4.3.11), we get the non-linear Schrédinger equation

o _ 10

_:  elal?
(6.3.2) vl 3 3y7 klql?q.

Similarly, under the same reduction the 2-dimensional Toda chain (4.2.8) turns into the

1-dimensional Toda chain

A%u,

Oz?

(6.3.3) = e¥nTUn=1 — Unt1 % (here z = 2y{V).

Thus, the 1-dimensional Toda chain is a part of the non-linear Schrodinger hierarchy. It
was studied from the representation theoretical point of view in [TB].

6.4. Let n > 3. Since the constraint (4.1.4) is contained among the constraints of the
1-reduced n-component KP hierarchy, we see that the 1 + 1 n-wave system (4.1.7) is a
part of the 1-reduced n-component KP hierarchy. Note also that the 1-reduction of the
n-component KP reduces the 2+ 1 n-wave interaction system (4.1.10) into the 1+ 1 system
(4.1.7).

6.5. Since the non-linear Schrédinger system (6.3.1) is a part of the l-reduced 2-
component KP hierarchy, the 1-reduced n-component KP hierarchy will be called the
n-component NLS. Let us give here its formulation since it is especially simple.

Given a n x n matrix C(z) = 3_; Cj;zl, we let

C(2)- =Y Cjz, C(2)4 =Y Cj'.

Jj<0 j>0
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Also, given a diagonal complex matrix a = diag (a1,... ,a,) we let

n n
» 9 9
T = arzy’, = ak —.
Z k I: Z axi])

=1 =1

Let h denote the set of all traceless diagonal matrices over C.
The n-component NLS hierarchy is the following system on matrix valued functions

P(a) = P(a,z,2) =1+ E W (a,2)277, a € M,
j>0
where z = {zia)la €h, k=1,2,...}:
OP(a)

6.5.1
(6.5.1) =g

= —(P(a)aP(a)_l Zk)—P(a)

with additional matching conditions

(6.5.2) (P(a)R(a — B,2)P(B)™1)- =0, a,8 € M,

where R(y,z) = R*(v,z2) is defined by (3.3.10).

This formulation implies the Lax form formulation if we consider C(*)(z, 2)=P(a)aP(a)™!
f(})lr (;ach a € b and fixed a. Consider a family of commuting matrix valued functions of
the form

CW =0 (z,2)=a+ ) C\(2)z7,
i>0
depending linearly on a € h, and let Bi") = (C@z*),. Then the Lax form of the n-
component NLS is
ac(a)

=B®,cW], abep, k=1,2,....
b
axi)

(6.5.3)

The equivalent zero curvature form of the n-component NLS is
aB{" 9B

W——a—(:)— =[B£b),B§a)], a,beb, k,€=1,2,... .
k Tt

(6.5.4)

Since for the 1-reduced n-component KP one has: L = 9, i.e. all U = 0, we see from
Remark 4.3 that the n-component NLS in the form (6.5.3) contains the following system

of equations on functions A;; = (C,E” )i G #7):

0Ai; 8%A;; .
6t,- = - 61:3 - znglJAJkAk]’
0A;; 0%Ai;
at:’ - 61?1 +2§A{5A,'k.4k,‘,
(6.5.5) 0Aij _ , OAxj , Odu e s )
o A'k—axk Ak;j e ifi#tk, j#k,
OA;; P .
5;)%=A;;,Akj ifi#k, j#k,
0Ai; 9Ai; _
Zk: dz - ; Oty =0.

This reduces to (6.3.1) if n = 2.
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Remark 6.5. Equations (6.5.1), (6.5.3) and (6.5.4) still make sense if we consider an
arbitrary algebraic group G and a reductive commutative subalgebra § of its Lie algebra
g. The functions P(a) take values in G(A((z))) and the functions C(*) take values in
9(A((2))). If G is a simply laced simple Lie group, the element R(v,z) € G(C[z,z7!]) in
matching conditions (6.5.2) can be generalized as follows. Let f be a Cartan subalgebra
of g, normalize the Killing form on g by the condition that (a|a) = 2 for any root «,
and identify h with h* using this form. Let M (resp. L) C h* = b be the root (resp.
weight) lattice and let e(a, 8) : M x M — {£1} be a bimultiplicative function such that
e(a,a) = (=1)3(@l®) o € M. Define R(a, z) € H(C[z,z7]) for each a as follows:

(6.5.6) R(a, z) = ca2%,

where in any finite-dimensional representation V of G, ¢, € H and 2* € H for z € CX are
defined by

(6.5.7) ca(v) = £(B, @), 2%(v) = 2Py if v € V.

Note that this GNLS hierarchy is closely related to the Bruhat decomposition in the loop

group G(C((2)))-

6.6. It is clear that we get the T-function of the m-th reduced n-component KP hierarchy
if we let in (5.1.9)

(6.6.1) Wy = Wszg, S E S,

where w, are arbitrary m-th roots of 1. The totality of r-functions is (a completion of)
the orbit of 1 € B(®) under the group SLyn,(Clt,t1]).
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