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Montecatini lectures on invariant theory

Victor G. Kac

In these notes I will discuss .two approaches to the study of the
orbits, invariants, etc, of a linear reductive group G operéting on a
finite dimensional vector space V. The two technigues are the "guiver
method" and the "slice method"™, which are discussed in Chapters I and
II respectively.

Undoubtedly, the slice method, based on Luna's slice thecrem 11,
is one of the most powerful methods in geometric invariant theory. Even
in the case of binary forms the slice method gives results which were
out of reach of mathematucs of 19th century (cf. [15]). PFor exampie, I
show thét for the action of SLz(E) on the space of binary fcrms of
odd degree d > 3 the minimal number of generators of the algebra of
invariant polynomials is greater than p(d-2), where p(n) is the
classical partition function. -

On the other hand, the quiver method can be applied to a (very
special)} class of representations for which the slice method ofter faii=.

Most of the results of Chapter I are contained in [4] and {S]; on
the most part I just give simpler versions of the proofs. Chapter II
contains some new results (as, it seems, the one mentioned abcve).

_ I am mostly greatful to the organizers of the summer school in
Montecatini Terme (Italy) for inviting me to give these lectures, 2sceci-
ally to F. Gherardelli who convinced me to write the notes. My thanks
go to J. Dixmier for sharing his knowledge and enthusiasm zbcut invar-
iant theory of binary forms, and to H. Kréft and R. Stanley for several
important observations.
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Chapter I. Representations of guivers.

The whole range of problems of linear algebra can be formulated in
a uniform way in the context of representations of gquivers introduced
by Gabriel [2]. In this chapter I discuss the links of this with

invariant theory and theory of generalized root systems (([3], (41).

§1.1. Given a connected graph I with n vertices {1,...,n} we
introduce the associated root system A(T) as a subset in Z®  as

follows. Let bij denote the number of edges connecting vertices 3
and j, 4if i # 3, = and twice the number of loops at i 1if 1i=j.
Let a; = (Gil"“’ain)' i=l,...,n, be the standard basis of o,
Introduce a bilinear form ( , ) on Z% by:

(airaj) e 61..] = %bi] (ioj--l:---:n)-

Denote by Q(a) the associated quadratic form. It is clear that this

is a Z-valued form. The element oy is called a fundamental

root if there is no edges-loops at the vertex i. Denote by [ <the set
of fundamental roots. For a fundamental root a define the fundamental
reflection Ty € Aut z" by

r (\) = A - 2(A,a)a for A € z.

This is a reflection since (a,a) = 1 and hence ra(a) = -a, and also
r (A) = & if (A,a) = 0. 1In particular, (ra(k), ra(K)) = (A,\). The
group W(I') € Aut z" generated by all fundamental reflections is callec
the Weyl group of the graph I (for example W = {1} if there is an

edge-loop at any vertex of TI). Note that the bilinear form ( , ) 1is
W(l)-invariant. Define the set of real roots Are(F) by:
ATE(M) = U w().

wEW
For an element a = Z kja; € ZD we call the height of a(write:

hta) the number Zki; #e call the support of a (write: supp a) <che

L 5 : ; . \ 5
subgraph of T conSisting of those vertices 1 for which X. 0 =znd

5
all the edges joining these vertices. Define the fundamental s

M cz? by:

M -i-

-

M= {a€ xz\{O}}(a,ai) <0 for all a; €I, and supp 3 is cennects;
(Note that _(a,a;) <0 if a; ¢ I, automatically).

Here and further on, Z_ = 1 o P AL (e )




Define the set of imaginary roots al®(r) By
; ATT) = U w(Mu-M).
weEW

Then the root system A(T) is defined as

a(ry = a™(ry v A™(1),
An element a € A(T) N z is'called a positive root. Denote by 4_(T)

(resp. (T) or A (F)) the set of all positive (resp. pcsitive

real or pos;tlve 1mag1nary} roots. When it does not cause a confusicn
we will write W,A, etc. instead of W(r), A (I'), etc.

It is obviocus that (a,a) =1 if q € A*®. on the other hand,
(x,ax) L0 if o€ 7 (lndeed, one can assume that a = Zkiai € M;
but then (a,a) = Ek (a,@;) < 0.) Hence '

aAT® n A = g. :
Furthermore, one has:

A==A._|_|_-A.

This statement 1s less obvious but will follow from the representation
theory of quivers.
We shall need two more easy facts:

A a0 w(M) = {a € 4 _|[W(a) C A, };
+ i + ; +

A:e = {a GIA+\{ul,...,ah}| there exist @yr--+ra, € T such that
ror caeX (@ E€A" for kit and r i..r (a)EN}IVU T,
%1 %541 G4 ho A %1 %

The proof of these facts can be found in [3].

§1.2. According as the bilinear form ( , ) is positive definite,

positive semidefinite or indefinite the (connected) graph © is called

a graph of finite, tame and wild type respectively. The complete lists

of finite and tame graphs are given in Tables F and T. =
Table F.
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The subscript in the notation of a graph in Table F equals to the

'nquer of vertices.

Table T.

. 90

By 2

A 5D

. 1 & ’/”//01

in(n » 3 o——o——..?i:;::b
I 1 1 1

= 91 1

Dn(n > 4) o—o—o—-—...—o—g—ol
I 2 2 2 2
X

&= 2

Eg —E

1 2 3 4 5 6 4 2

The subscript in the notation of a graph in Table: T plus 1 equals to the
number of vertices. The kernel of the bilinear form ( , ) 1s Z3,

where & = % a.a, , a, being the lables by the vertices. It is easy

11 i
to show that the converse is also true (see e.g. [3], p.61):

Proposition. If there exists ¢ € Zi such that (6,ai) = 0 for all
i and 6 # 0 then T is of tame type.

Here are some characterisations of graphs of finite, tame and wild types:

I is finite = [W(D)]| <= =[a(M)] <= =A™y = g,
T is tame = Alm(r) lies on a line;
I is wild = there exists a € A+(F) such that (u,ai) < 0 for all i

and supp a = I.

A graph of wild type is called hvoerbolic if every one of ZIcs

proper connected subgraph is of finite or tame type. In the case of

7]

finite, affine or hyperbolic graph, there is a simple description of
the root system &4(T).




Propositicn. If a grach T is of finite, affine or hveerbolic tvzs,
then

k]

A(T) = {a € ZN\ {0} (a,a) < 1}.

In particular, if T 1is of finite type, then

8(T) = {a € Z%|(a,a) = 1},

and if T is of affine type, then

CAT(T) = {a € 2" (a,a) = 1}:43(1) = @\{0})s.

" Proof. Let a € zn\{o} be such that (a,a) < 1. We have to show that
a € A(T'). Note that supp @ is connected as in the contrary case
a=8+ Y, where supp 8 and supp Y are unions of subgrachs of

. finite type and (8,Y) = 0, but then (a,a) > 2. Next, either 2 or
=g € zf. Indeed, in the contrary case, a = B-y, where B,y € zi ’

supp 8 N supp Y=@, supp 8 is a union of subgraphs of finite tyre and
supp Y is either a union of subgraphs of finite type or is a subgrach
of affine type. But (a,a) = (8,8) + (y,Y)=-2(8,Y) <1 and (B3,y} < 0.
Hence the only possiblility is that (8,8) =1, (y,y) = 0 and (8,Y)=
0. But then supp Y is a subgraph of affine type and (B,y) nmnust be
< 0, a contradiction.
So, sﬁpp a is connected and we can assume that a € Zf, We can
assume that W(a) N 0 = g, otherwise there is nothing to prove. But
- then, clearly, W(a) < zn

+
height, we can assume that (a,ai} < 0 for a; € I. Since, in addi-

. Taking in W(a) an element of minimal

tion, supp a is connected, we deduce that a lies in the fundamental
- set. : . a
' Using the proposition, one can describe Aie(r) for a tame graph
~F = ﬁn’ﬁn or En via the subset 3+ c Aie(r) of positive roots of
the subgraph Anr D, or E respectively as follows:

n
re _ o 9
AL (T) = {a¢ + nél+a € Bus 1t 1} 0 A,
One can show, that conversely, if A(l) = {a € znj(a,a} < 1}, =hen

I' is of finite, affine or hyperbolic type.

Remark. The graphs of finite type are the so called simply laced
Dynkin diagrams. They correspond to simple finite-dimensional Lie
algebras with equal root length. The other graphs correspcnd *to

certain infinite-dimensional Lie algebras, the so called Kac-ocd<

-

algebras.

51.3. Examples.
a) Denote by Sm the graph with one vertex and m edges locps. Tha
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associated guadratic form on Z is Q(ka) = (l-m)kz.

L(s
and A(Sm) = (Z\{0})a if m > 0. .W(SO) = {ru,l} and W(
if m > 0. Sm is of finite, tame or hyperbolic type ifIf m = 0, m=1
or m > 1 respectively.
b) Denote by Pm the graph with two vertices and m edges connecting
these vertices. The associated quadratic form on %2 is Q(k

= ki - mklk2 + kg. The set of positive roots is as follows:

l+<232)

A, (Py)) = {ku + (k=L)a,, (k=1)o; + kaz, ka; + kay: k > 1}
the set { kul - kaz,k > 1} being A (T);

2
m3>3:A.(p) =1k + k azlk -m kik, + kg < 1, ky 2 0,k > 0,%,+k,20}

;

more explicitly,
re T

A, (Pm}— {cjal

C5+1 2'c3+1 s e j €z}, where cj(j €z,)

are defined by the recurrent formula:

Ci42 = ®Cy41 T 5 ¢ cg =0, ¢ = 1.

W(Pl) is the dihedral group of order 6 and W(Pm) is the infinite
dihedral group if m > 2. P is of finite, tame or hyperbolic tyce
iff m=1, m=2 or m 2> 3 . respectively.

c) Denote by Vm the graph: 2
1 om
0
Note that Vl = Py The associated quadratic form on Zm+1 is:

m 2 m
Q(k +...+kmam) = _z ki - kg _; k; -
i=0 i=1

A(Vz) = {ao,al,az,ao + ql,ao + a,,a + ay + az}.

A(VS) = {ao,al,az, PR + a5, a oy, Gg O3y ay + oy + 25,

ag - a; + 0y, @+ ay + g, 9y + 0y + o, + a3,I2a0 +ay + oy + aB}.
Aim(V4) = ®m\{0})8, where 6.=-2a0 +a; + 0y + Oy +oa,;

AT (V) = {né + @y, 1= 0,1,...,4; 08 £ (ag + oy +...¥a ), where

i
1l ls

15_11<12<...<is,1§sg4;.nez}.

Vm is of finite, tame or wild type iff m< 4, m= 4 or m>>5

respectively; Vm is hyperbolic iff m = 3.

&

D te b T th raph:
d) enote by e e grap 1




Set ¢ = 4

Q|

+ &, Then T - 49 of finite, tame oF wild type iff
r 79,

o=

c 2 1; ¢ 1 or g= 1l respectively. The only hyperbolic graphs

among -them are T7’3’2L T5'4'2 and T4'3'3.

5l.4. There are at least two more equivalent difinitions of the set
of positive roots A,(T):
a) A, (T) is a subset of Z7\{0} such that:

(i) Aprecerdy € A(T); 20, ¢ A (T) for a; € o;
f1i) if ay ¢ I, a € A, (T), then a + a; € A.(T) ;
(i3} if a € 4,(T), then supp o is connected;

(iv) if a € &, (L), a; €I and a # @,

then fo,f (a}} o 2™ c A (P).
i A
b) Assume that T has no edges-loops. Extend the action of the

group W(T) to the lattice 2z ¢ zo by: £y (P) =p - @;- Then one
can show that s(w): = p - w(p) € 22\{0} fortall w € w. For weEwy
set " e(w) = det (w); it is clear that e(w) = + 1. 1Introduce the
notation: x% = xlkl...xnkn/ where a = X kiai' and take the product
decomposition of the following sum: 3 '
: : m
I (det wyxS W _ I 5 R T

weW a€z?

Then one can show that m, € z+, and that

8, (T) = {a € Z:[ma > 0}.

The positive integer m, is called the multiplicity of the root a.
= €
Note that ma mw(a} for w W.
I do not know how to extend this definition to the case when T
has edges-loops.

Examples. The multiplicity of a real root is 1. The multiplicity o
an imaginary root of a tame graph An ' Dnor En is n. This gives the
multiplicity of any root « such that (a,a) = 0 since any such rcoc
is W-equivalent to a unique imaginary root 8 such that supp 2 is

a tame graph. One knows that if (a,a) < 0, then mult ka growth

exponentially as k -+ o,

5.5, Now we turn to the representation theory of quivers. .r= evars

-

edge of a graph I is equipped by an arrow, we say that T is eq:
" ed by an orientation, say : an oriented graph (I,2) is called =

guiver.
Pixz a base field . a representation of a gquiver (7,2 is &




collection of finite dimensicnal vector spaces Vj’ § & Tpsnsgliy SN0

linear maps ¢ij: Vi —_ Vj for every arrow i — j of the guiver
(r,Q), everything defined over IF. The element o = Z(dimvi):i ez

_'_

s . ; . s .

is called the dimension of the representatlon. Morphisms and direct
sums of representations of (r,Q) are defined in an obvious way (the
dimension of a direct sum is equal to the sum of dimensions). A repre-

sentation is called indecomposable (resp. absolutely indecomposable)

if it is not zero and cannot be decomposed into a direct sum of non-
zero representations defined over F (resp. F, the algebraic closure
of TF). '

The main problem of the theory is to classify all representations
of a quiver up to isomorphism. One knows that the decomposition cf 2
representation into indecompcsable ones is unique. So, for classzifica-
- tion purposes it is sufficient to classify indecomposable represen nta-
tions.

Note that there exists a unique up to isomorphism representation
of dimension aitl = 1,...,n) and it is absolutely indecomposable
namely: Vi =T, Vj =0 ‘for j # i and all the maps are zero.

§1.6. Examples.

a) The graph Sphas a uniqgue orientation. The problem of classifica-
tion of the representatlons of this gquiver is equivalent to the class-
ification of m-tuples of k Xx k-matrices up to a simultaneous conjuca-
tion by a non-degenerate matrix. For m = 1 this problem is "tama"
and was solved by Weierstrass.and Jordan (the so called Jordan normal
form). For m'> 2 the problem remains open and provides a typical
example of a "wild" problem.

b) Put on P, the orientation Q for which all arrcws peint into the
same direction. The corresponding problem is to classify all m-tyces

of linear maps from one vector space into another. For m = 1 R

|.n

S

o

LSy

is a trivial "finite"™ problem. For m = 2 this is a "tame" pro

which was solved by Kronecker. For m > 3 the problem becomes "wila".

c) ©Put on the graph Vm the orientation & for which all arrcws
point to the vertex O. The corresponding problem is essentially

equivalent to the problem of classification of m-tuples cf subspacses

in a vector space V up to an automorphism of V. Fer m < 3 thes
problem is "finite". For m = 4 the problem is "tame” and was solved
by Nazarova and Gelfand-Ponomarev, for m > 5 the problem becomes

®ailaT.

e T < pP—————mea T - e ——————— S e ————— i e s —_— 1



"l of a graph T and a vertex k, define a new orientation fk“” of I

Now I shall give precise definitions. A guiver is calleé finits
if_it has only a finite number of indecomposable representaticns (up
to iscmorphism). Following Nazarova [10], we call a guiver (T,3) wild
if there is an imbedding of the category of representations of the
quiver 82 into the category of representations of (T,Q2); a guiver
which is not finite or wild is called tame.

. Gabriel [2] proved that the quiver (T,R) is finite iff [ is
finite (i.e., appears in Table F); this will follow from cur general
theorems. Nazarova [10] proved that (T',Q) is tame iff T is tame
(i.e., appears in Table T). -

Let me show on examples how to prove that (T,Q2) is wild.

For the quiver from ¢) take a vector space V, put Vi ™y = v,
and take the 1l'st map Vl —_ V2 to be an isomorphism. Then the
category of representations of Sm—l is naturally imbedded in the
category in question. So (Pm,ﬂ) is wild if m > 3.

For the quiver from ¢) take VG =Vev, v, =v, =...=v=V. Let
BysAy,ecesA 32 V—> V be some linear operators. Define the maps

¢i=v—+VQV(i=1,...,m) by:

¢;(x) = x ® A(x) for i =1,...,m=3;

¢mr2(x) =X e 0, ¢m_1(x) 0 & x, ¢m{x) =x @ x.

It is easy to see that this is an imbedding of the category of rerresen-

tation of sm#3 in the category in question. So the gquiver (Um,Q)
is wild if m > 5.

"§1. 7. One of the main technical tools of the representation theory
“of quivers are the so called reflection functors. Given an orientaticn

s
T

by reversing the direction of arrows along all the edges containing

the vertex k. A vertex k of a guiver (I',l]) is called a sink (resco.
source) 1f for all edges for which k 1is a vertex, the arrcws coint
to the vertex k (resp. to the cther vertex). ©Note that if there is

a loop at k, then k 1is neither a sink nor a source.

Proposition [1l]. Let (I',R) be a quiver and k a sink (reso. source),.

Then there exists a functor R; (resp. R;) from the categcrv oI ra-

presentations of the quiver (I',22) to the categorv of recres=antacicn
of the quiver (F,Ek(Q)) such that:

% - ' 5 t’ '
a) R; (Uue u') = K'(U) & RO(U');

b) If U is a representation of dimension A, fthen Ri?’(U) = 0:




¢) If U is an indecomposable reoresentation of (7,3) and @i T 2 4 4
then

R; R;(U) = U (resp. R; R: (U = ),

+ —_== 3
and dim R;“ (U) = £_ (dim U).
e Q-
. . &

Corollary. Under the assumptions of ¢) of the proposition, = ()
is an indecomposable representation of (F,Ek(ﬁ)): and end U and

o =
End ﬂ? (U) are canonically isomorphic.

We shall explain the construction of the reflection functcrs =t

" and R; in the next section in a more general situation.

§1.8. Now we establish a link between representation theory of gai-
vers and invariant theory.

£
presentations of dimension 2 of the quiver (T,Q) is in 1-1 corres-

pondence with the orbits of the group

Pix a=1L kia. € 22. Then the set of all, up to isomorphism, re-
i

"G*(@F): = GL, (F)X...xGL_ (F)
k1 Lkn

operating in a natural way on the vector space
. - . k. k.
MH(r,2): = @ Hom(F *, F )
7 i_'.j_ -
(here the summation is taken over all arrows of the quiver (T,2)).
Note that the subgroup C = {(t,...,t),t erF*} operates trivially

and that
(=) ‘ dim 6% - dim M%(s,Q) = (a,a).

Furthermore, note that U € M*(r,Q) is an indecomposable represen-
tation of the quiver (I',Q) iff End U contains no nontrivial pro-
jectors (recall that P is a projector if P2 = P). U is an absolute-
ly indecomposable representation iff End U contains no nontrivial
semisimple elements, i.e., 1iff the stabilizer (Ga/C)U of O € Ha(s,;)
is a unipotent group. -

Another observation: the group GE is connected since it is the
set of invertible elements in the ring End U.

Now I shall explain, what are the reflection functors. Let G ke
a group and Tl,ﬁz some representations of G on vector spaces Vl
and V2, dim Vl =m > k. Then the group G x GLk acts naturallv con
the space

+ _ k
M = Hom(vlﬂF )y 9 V2.

Set 'MB = {¢p ® v € M+|¢ € Hom(VlJFk), v € Vz, rank 4 = k}. Furtherncrs,

e e s T —— T E— e Y T e G e TS T T — - ————



m-k

the group GL__, * G acts naturally on 4 = Hom(TF V) 8 v,

We set Ma ={¢@dveud|pe Hom(IE‘m-k,Vl),v € V,, rank ¢ = m-k;. Ue
defing a map B from the set of orbits on Mo to the set of orbits
on M; as follows. If ¢ @ v 1lies on an orbit g C M;! chocsing an
isomorphism F™ K . Ker b, we get amap rh(p): FVF vy
denote by R+(0) the orbit of (¢) & v € MO. It is easy to see that

R+ is a well-defined map. Simllarly we define the "dual” map R frem

the set of orbits on Ma to the set of orbits on M;. One easily
checks that RTR' (resp. RYR™ ) is an 1dent1ty map on the set cf orbit
in Mo (resp. M )

Many people have discovered lndependently from each other this tyre
of construction. For example, Sato and Kimura call it the "castling
transform”.

In order to get the reflection functor R; we apply the a?ove con-
struction to the :oupk_G=l 1.k : k-k r V) =g Hom L (F S 4y,
V= 8 Hom (T °, »J), 3

itj
§1.9. We need a general remark about actions of a connected algebraic

2=

group G. Let G act on an irreducible algebraic variety X over
field IF. Then by a theorem of Rosenlicht, there exists a dense oren
subset Xg € X, an algebraic variety 2 and a surjective morghism
Xo —* 2, everything defined over ¥, whose fibers are Gg-orbits. 2
is called a geometric quotient of XO‘

Now, given an action of G on a constructible set X we can de-
compose X into a union of irreducible subsets and take a (finite) set
of G-invariant algebraig subvarieties Yl,...,Ys C X such that
dim X\{YIU...UYS) < dim X and each Y, has a geometric gquotient Z;.
Next, we apply the same procedure to X\{YlU...UYS}, etc. After at
most dim X steps we obtain (absolutely) irreducible varieties 2y
Zoreee o
is well defined. We say that®the set of orbits of G on X depen:is

We set u(G,X) = max dim z It is clear that this number

on u(G,X) parameters.
Denote by M?nd(r'ﬂ) the set of all absolutely indecomposable re-
presentations from MG(I‘,R)= This is a G° -invariant set, which is

constructible and defined over the prime field. AIndeed, there exi

n

a
(=

n

42 _(o.n

Ve r- o Ve fee
(o4

i

a finite number of projectors Pl""'Ps such that
(QGG(MG(P,Q) i s O Applying the above construction we obtain *hat =n

1Y

i : "
set of absolutely indecomposable representations (ccnsidered ur to
isomorphism) is parametrized by a finite union of algebraic variecties

i

21,...22,..., defined over the prime field. We denote for short:

S a ,a
Ua(r;Q) i u(G 'Mind(r'g)).

1 Dl el U



§1.10 Now we can state the main theorem.

Theorem. Suppose that the base field F is algebraically clcsed.

Let (F,Q) be a quiver. Then

a) There exists an indecomposable representation of dimension
n : =
a € Z+\{0} IftE a € A+(T).

b) There exists a unique indecomposable representation of dimension
o Aff w & AT (F).

c) If a € Al™(T), then u (T,Q) = 1-(z,a) > 0.

The proof of the theorem is based on two lemmas. We de“er their
proof to the next sections.

Lemma 1. Suppose that o lies in the fundamental set M and that,
moreover, (a,ai) < 0 for some i. Then

a) The set Mg(F,Q) of representations in MQ(F,Q) with a trivial

endomorphism ring is a dense open G*-invariant subset. In particular,
a
M (6%, MG(T,Q)) = 1-(a,0).

a a a
b) U(G rMind(er)\Mo(r:Q)) < l-(ala)'

Lemma 2. The number of indecomposable representation of dimension =x

(if it is finite) and & (T,Q2) are independent of the orientation

e @

Proof of the theorem. Note that using the reflection functors, -

ur_(a)(r;ﬂ) = ua(F,Q) if_'a *+ a; and i is a sink or a source of the
qu%ver (r,Q) (the same is true for the number of indecomposable re-
presentations). But using Lemma 2, we can always make the vertex 1 a
sink provided that there is no loops at i. Hence the above statement
always holds if there is no loops at i. '

If a € Aim(P), by the above remarks we can assume that 2 € M.
If (a,ai) =0 for all i, then supp @« is a tame graph and =z = X!
(see §1.2), and case by case analysis in [10] gives the result. Now
the part c) of the theorem follows from Lemma 1.

Similarly, part b) of the theorem follows from the (trivial) fact
that there exists a unigue up to isomorphism representation whcse
dimension is equal to a fundamental root.

n

-

m

To prove c¢) take a € ZE\W(H), @ + 0, and suppose that thers exi
an indecomposable representation of dimension a. Then, as belcre,
there exists an indecomposable‘representation of dimension <, (1)
for Y € NI; in particular, rY(a) € %5. Also supp a 1is connecsc
Hence W(a) C ZM\W(I). Taking 2 € W(a) of minimal height, we have:

(&%
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(B,ai) 20 for all @; € I and supp B is connected. Hence 2 = M
and o € A_(T). . o

Remark. One can show (see e.g. [4]) that a generic representation of
dimension k8 of a tame quiver decomposes into a direct sum of k
representations of dimension §.

51.2 1. In this section we prove Lemma 1. Let first a = Ekiai be
an arbitrary non-zero element from zi. Let a = Bl+...+Bs, where

By 2 By>... (i.e., each coordinate > ) be a decomposition of = into
a sum of non-zero elements from zﬁ; let Bk = § m{k) a; . Taking
distinct elements kl,kz,... € F* defines a conjugacy class of semi-
simple elements in G° consisting of the elements g = (gl,.:.,gn)
such that 1j is an eigenvalue of 93 with multiplicity mij) for
all i=1,...,n. Denote by SB]-'”_’_B c ¢® the union of all such
conjugacy classes. Then an easy computgtion shows that the dimensions
of the centralizer G% of g € G%and of the fixed point set 4%(r,2)9
of g in M%*(Tr,Q) are independent of the choice of g €s, 3
and, moreover, we have: : 17°°"""s

e (1) aim Gy - aim M(r,2)9 = £(8;,8)).
' It follows from the theory of sheets in GL,[6] that SB o

- is a locally closed irreducible subvariety in Ga: denote byléé s 2

the union of orbits of the same dimension in the Zarisky closureIQEOﬂ,hq

sB T Then, as we saw, SB e 4 §81.---,B &

itlfollowg from the theory of sheé&ts in sGLk[G] thatS §B e
Foe ey s
contains a unique unipotent conjugacy class u, which corresponds

Futhermore,

to the conjugate partition of  a. A similar (but slightly more delicate

computation, which can be found in [4]) shows that the above properties
hold for g = u. By a deformation argqument it follows that these pro-
perties hold for arbitrary q & g™ (this also can be checked by a di-
rect computation, cf §1.13). So, we have proved the following

Lemma. For g € §B 3 dimensions of Gg and Ma(F,Q)g are
P ooy R S

independent of g and formula {!) holds.

oA . ; a ; 5 .
Note that Sg a 1s a sheet in G, 1i.e., an irreducible
= T : a e . .
component of the Union of the orbits of ¢ of the same dimensizn, sc

that G% is a disjoint union of the sets éS [6]. Note aiso

resesB
that the trivial sheet Sa coincides with C} =
We need one more lemma. Its proof is based on the following iden-

tity:




3 ; <
(#) ‘ a..m,(k.-m.) = m. (k:-m.)k. a..k.)
. i, =1 i1 3 J j=1 3 d 444 =2 4
% 3 oL . )2
+ . s (— . ) k-k ’
i,3=1 ij kl kj 1T 3

provided that aij = aji
can be checked directly.

and  ky +0 for all i,j = 1,...,n. This

Lemma. Let o € M. Then

(11) dim ¢% - dim ¢% < dim M*(r,2) - dim a9,

a
g -

The equality holds only in the following situation:

(N) (a,ai) =0 for all i € suppa  or g € C.

Proof. Using formula (=) from §1.8 and formula (!), we have only to

show that (a,a) < E (Bi,Bi) and the equality holds only in the situ-

ation (N). This is equivalent to: Z (a-Bi.Bi) < 0 and the equal-
ity holds only on the situation (N). W& can assume that supp 2 = I.

Applying identity (#) we deduce: '

(a-B.,By) = ] m;t) (kj—mét))kgl (a,a;) +
b 2 e, O g CER
+ % -z. (ai,aj) ( ; - 4 Yok &

1,] i kj

Since (ai,mj) < 0 for 4 $ 3 and (a,a;) 20, we deduce that both
summands of the right-Hand side are < 0. This proves the ineguality

in question. In the case of equality, both summands are zero. Since

the second summand is zero and T is connected, we deduce that = anc

B, are proportional. Since « ¥ By and the first summand is zerc,

we deduce that (a,ai) =0 for all 1i. ’ ]
Now we can easily complete the proof of Lemma 1. Indeed, 1f

g € G3\c, then, by inequality (1! we have:

dim M%(r,) > dim M3(r,2)9 + (dim c* - dim G;).

it

e
I

h

-

WD

It follows that dim 4%(r,Q) > dim(c* (M (r,2)9)) and thersfcre

exists a dense open set M(g) in M*(T,Q) such that the Iinte

}
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i

[ =

(

th

;:
(9]
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of the conjugacy class of ¢ with Gg is trivial for any U

)

I

=

Since there exists only a finite number cf conjugacy ciasses 2

=
“

{

s g v
b

=—d =

wn

jectors in ©® glk (F), we deduce that there is a dense oOpen
1 i '




in MG(P,S) such that (Ga/c)U is a unipotent group for any U = ',
Since there is only a finite number of unipotent classes in Gé we
deduce that there is a dense open set in .'-fa(?,-Q) which consiszs o=
Irepresentations with a trivial endomorphism ring. This proves Lzcma
la).
To prove b)-note that WM (T, \Mg(T,2)) < max (dim 47 (r,2))% -
din(G Q/C)u where u ranges over a set of representatives of all non-
trivial unipotent classes of G%. Byt the right-hand side is (by (11))

< dim %(T,2)-dim 6® + 1, which is equal to 1-(q,a). o

§1.12. Unfortunately, I do not know a direct proof of Lemma 2. 7The
only known proof Tequires a, reduction mod P argument and counting over
a finite field. 1In this section we recall the necessary facts.
iew---l@t X be an absoiutely irreducible N-dimensional algebraic va-
riety over a flniio'fiogd')tq- of q » p* ‘elements (P is a prime nun-
" ~—._ber), Then the number of points in X over the field P ., is ecual
T R Al e temem U . where A, v g o3 G
2 e Vg *~ Vg » where iy are
independent of ¢ and }Ai},fﬁai < q¥. mhis result is due
to Grothendéeck. In partiggigr,‘knowing the number of
 points in x over all finitim??;TE;_?ﬁgg W E;Btéaipdte the dimen-
sion of x. - : RN
Let now X be an.absoluteiy'ir:educible N-dimensional algebraic
variety over Q0. Then x can be represented as a union of open affiae
subvarieties, each of which is given by a system of polynomial eguatis=-=
over Z, the transition functions being polynomials over z. Now we
can reduce this modulo a Prime p. Then for all but a finite number oz
primes we get an absolutely irreducible variety x(p) over Zfb oz
dimension N.
This reduces the Proof of Lemma 2 to the case when P is a field

of prime characteristic P- -
q)

——— et e e o T S e i — s — " . - 2
§1.13. In order to count the number of orbits of G (T

H“(P,Q)(lﬂq) we employ the Burnside lemma: for the action of a Einita
group G on a finite set Y the number of orbits is:

on

1 g;
lv/6] = 57 1 I¥9].
Gl g€G
(Here Y9 denote the fixed point set of g on Y and [2; S&enctes
=

the cardinality of z). Denoting by cg the congugacy class

and ysing fcgl = !G[/IGgI we can rewrite this formula:

le/el = 1 1¥91/1s ],
g9

i s i Dl Sl ST e i s - — S o S A S s S




where the summation is taken over a set of representatives of conjugacy
classes in G.

' Now we need a Jordan canonical form for the elements frcm GL, :?q}
(this information can be found, e.g., in [9], Chapter Iv).

Denote by % the set of all irreducible polynomials in t over
IFq with leading coefficient 1, excluding the polynomial t. Such a
polynomial of degree d has the form
da-1 i d

q ® g
P(t) = T (£t -a ), where o €F_,a = Qs
i=0 ; q

It follows that the number of polynomials from ¢ of degree d 1is
equal to '

- » a/3
g-1 if 4=1 and 4d £ I u(jla / if g > 1,
j‘d .
where u denotes the classical Mobius function.

Let Par denote the set of all partitions, i.e., non-increasing
finite sequences of non-negative integers: A= {ll 2 A2 .- }. We
"denote by A' the conjugate partition and by mi(k) the multiplicity

of i in X; we denote: |A] =11 X, <A,u> = T Rafiys
i e 1 1
Conjugacy classes C,, in GLk(]Fq) are parametrizes by maps :
PéédEQ P) |v(p)] = k as follows.
aj_t]"'1 ‘we associate the "companion matrix”

$ — Par such that

Yo auch & & -

i

N~1e

1

010 ...0]
0011...0
J(£f) = i S '
000 ...1

ajajaz ...3y
- e

and for each integer m > 1 let

J(£) L 0 ... O i

0 FJEEY L wan @

Jm(f)=
0 8 0 ...0(f)
L —
with m diagonal blocks J(f). Then the Jordan canonical form oy

elements of the conjugacy class Cv is the diagonal sum of matrices

Jv(f)i(f) for all i > 1 and £ € 6.



The order of the centralizer of each g € CU is

: o ¥ (deg P) <v(P)',v(P)'> -deg P
a,(q) = q g, Pg@ b,(p) (@ )

-1 =2 m; (A) .

where for )\ € Par, bk(q) = Al Alsg I ") . (lng )

i>1

Pinally, if g € Cv and h € CY c GLm' then (see e.g. [4]):

dim(c* @ €™ = § (deg P) <v(B)',Y(P)'>.
=L .

Let now (I',;Q2) be én criented graph, and 2 = Ik.a. € zf. The

conjugacy classes of G% are parametrized by the map; lg ~— Par™.
An element A € Par™ is an n-tuple of partitions ¢t o {l{i)ikéiéooo};
"set A. = (X!}!..,A;n)) € ZE. Por X,u € Par® we define (A,u) =
= ; (lj,lj), where the bilinear form ( , ) on 2zZ" is the one asso-
ciated to T. This pairing depends on the graph T but is independeant
of . ‘ '
Using the Burnside formula we easily deduce the following formula

for the number of orbits du(q) of G*@ ) on MQ(F,Q)GF ) s
- J(deg P) (v',v') 9 9

pEd
da(q} = g B 0 degP :
E.E. b k} (g o3")
k=1 peg V(@

- where v ranges over all maps v: ¢ —» Par® such that

g@tdeg P)[v(P){i)| = ki' This formula (derived jointly with R. Stanley)
P

is quite intractible. However, the following two important corollaries

\

- 0of this formula are clear:

The number . da(q) of isomorphism classes of representations of
the quijer (T',2) over :Fq is independent of the orientation 32, and
is a polynomial in g with rational coefficients.

(It is immediate that da(q) is a rational function in gq over @,
but since d (q) € Z for all q =p%, p prime, s € Z,, it follcws,
that, in fact, da(q} is a polynomial.)

We deduce by induction on ht a the following

Lemma. The number of isomorphism classes of indecomposable rocresan-

tations of dimensiocn « of the quiver (I,2) over the field m., 18

a polynocmial in g with rational coefficients, independent of the

orientation Q.




§1.14. It remains tc pass from indecomposable representations o ab-
solutely indecomposable ones. For that we need the following g=neral

result, the proof of which can be found e.g., in [13] (see zlso [3]).

Proposition. Let G be a connected algebraic group cperating tran-

sitively cn an algebraic variety X over a finite field ZEq. Surpose

that the stablizer Gx of x € X 1is connected. Then the set X(F_)

of points defined over ZFq is non-empty and GGFq) operates transi-
tively on it. |

Since all the stabilizers of the action of G* on M¥(I,2) are
connected, by the proposition, counting the points over T of the

9
geometric quotients ZI’ZZ"" is the same as counting the orbits oI
a 5 a
G an) in Mind(F,Q) GFq).

In order to count the number of absolutely indecomposable represen-
tations over :Fq we need the following lemma, which follows easily from
the proposition (see [3],p.90). :

finite

Lemma. a) A representation U of (T,Q), defined over

a
field T, has a unigue minimal field of definition TF'. If
c € Gal(F': ]E‘p). and U 1is isomorphic to UU, then o = 1.

b) Let U € Ma(P,Q) be an absolutelv indecomposable representaticn
of (T,Q) with a finite minimal field of definition IF'. Let ZEq G =

and set G = Gal({F': F_). Set U= Uc. Then
- q - oEG

(i) U e Mna(F,Q) is indecomposable over :Eq and JFq is the
minimal field of definition for U; '

(ii) two such reoresentations U and V are isomorphic over TF_ iff

U is isomorphic over TF' to a G-conjugate of V;

(iii) every indecomposable reporesentation for which TF_  is the min-
g
imal field of definition can be obtained in the way descrilked atove.

Now we can easily finish the proof of Lemma 2 (and of the theorem).
Denote by m(Tl,a;q) (resp. m'(l,a,q)) the set of absolutely indeccn-
posable (resp. indecomposable) representations over ZTq of dimension
a of the quiver (I',2). Then we deduce from the lemma that Zfor an In-
divisible o € Zi cne has:

d

() m' (I, ra;q) = |} ) u(k)m(r,é—- a:qE).
- dir kId

Q) =

where 1y is the classical Mobius function. From this one expres

n

ac
L




m(Vy,8,) =(q@ + 1)*3 4 aq

: 5 s " - 2L .
- mi{l,ra:q) wia m'(I,du:q%) where d| r. Hence m{l,ra;q) is indszen-

dént of Q. a

§1.15. Note that we have also the following

) u u =1 :
Proposition. MT,a;q) = g .5 a]g % +..u+a“a, where H,= 1-(2,2)

and al,az,... are integers, independent of Q and g; moreover,

m(T,w(a);q) = m(l,a;q) for any w € W.

Proof. It follows from the remarks in §1.12 and the main theorem that

B e o

. Bt e : i, e H
T - a t t .t - a
m(L,a;q") = q * Xy heeohidy - ¥y Te..= V_ , where ]lil,lvj|<q A

; H‘*W : R s T T L e W i
- __Om the other hand, by §1.13, m’(l,a;q) and hence m(l,a;q) is a

polynomial in q with rational coefficients. Since mil,arq) € 2
for all q = p®, it follows that the coefficients dre integers. The
rest of the statements were pProved in the previous sections. a

Conjecture 1. au = mult a (provided that T has no nges-loops),
a

Conjecture 2. a; >0 for all i.

I have no idea what is the meaning of the rest of ai's.

Examples. a) If q € Are' then m(T,a;q) = 1.
SXaMPEES +

b) If I is a tame quiver with n + 1 vertices, and o € AT, then
m(l',a;q) = g + n.

c) Let (I,R) be the'quiveg V. from §1.6 and let

k
Bk - 2“0 + a; + a, +o..4 @y € A+(Uk). Then one can show (using
Peterson's reccurent formula) that the multiplicity of 3 satisfies

& -
the following reccurent relation:

(k - 1) (mult g) = k(mult &) + 2%"2(x - 2); muie 85 = 1.

From this we deduce: mult By = 2k-1 _ k.

On the other hand one has (as D. Peterson pointed out):

k_ll Bk"l) = szuk_zyﬂk_z)-
which gives:

Rt = 0w 65 & 0By + B0dtt v by . EgES

R 5 B L N PP

_ » I peleni o
and m(Vy,8,:0) = 2

e o . e —— e
ot ¥ 7 T T ——— s . : - - P ey ———



All the examples agree with the conjectures!

Remark. The constant terms of the polynomials m(T,a;g) and m'(F,a;G6)

are equal. Indeed, by formula (a) Wwe have:

' (T,ra;0) = J & I wlom,ge;0=1 Lo Za;0 (] wi) =
d|r kld dlr a k‘d
= m(l,ra;0), since E u{k) = 0 unless 4 = 1s

kld

Conjecture 2 naturally suggests one more

Conjecture 3. The set of isomorphism classes of indecomposable ra-

presentations of a guiver admits a cellular decomposition by locally
closed subvarieties isomorphic to affine spaces, ai's being the
number of cells of dimension WM, -

It follows from the proofs that the minimal field of definition of
the (unigue) representation of (T,Q) of dimension < € Aie is :EP ic
char F = p. Ironically enough, I do not know how to prove

Conjecture 4. If char F = 0, the representation of (T,R) of dimen-

sion a € Aie is defined over Q.
. It would be interesting to give an explicit construction of this
representation.

More general is the following

Conjecture S. The main theorem holds over an arbitrary field TF.
Note that it is clear that if o & GZ+Aie) U Aim, then there is

no indecomposable representations of dimension o« over TF. It would

follow from Conjecture 4 that this is the case also for o & &o-

§1.16. It is easy to see (see [3]) that the theorem, as well as Ccn-
jectures 4 and 5 would follow from the following

Conjecture 6. Let G be a linear algebraic group operating on the

vector space V, all defined over T, such that charF = 0 or
char F > dim V. Denote by Vo (resp V;) the sets of points with 2

unipotent stabilizer in V (resp. V*). Then the number of orbits oI
* *
G on Vo is equal to that of G on VO and u(G,VO) = u(G,Vc}.

Example: T =R, G = {[3 ?) , -where a > 0}, V =}R2 ,action on V




(resp. V*) 1is the multiplication on a vector-column from the laf:
(resp. vector row from the right). For the action on V the orbits
of(é] and [—é] are the two (l-dimensional) orbits with a (l-dimensicr-
al) unipotent stabilizer. For the action of G on V* the orbits c:z
(10) -and (-10) are the two open orbits with a trivial stabilizer.

The following generalization of Conjecture 6 was suggested by
Dixmier.

Conjecture 7. Let S € G be a reductive subgroup of G. Denote by

Vg (resp. Vg) the set of points x € V (résp. € v*) sich that a Levi

factor of Gx is a conjugate of S. Then the numbers of orbits of
G in Vg and Vg are equal and u{G,VS)_= u(G,Vg).

- Remark. It is easy to deduce from Conjecture 6 the following state-

ment: Fix a miximal torus T C G and denote by VT(resp. V;) the
set of x € V (resp. € V*) such that a maximal torus of G, 1is a con-

- jugate of T. Then the numbers of orbits of G in V. and V* are

T T
equal and u(G,VT) = u(G,V;).

More general is the following

Conjecture 8. Let N be the unipotent radical of G; G/N acts cn
the sets of orbits V/N and ?*/N. These two actions are equivalent.

SE.E7. Examples. a) If (I',R2) is a finite type quiver there is no
imaginary roots and we recover Gabrial's theorem: U ,l— dim U gives

"a 1 - 1 correspondence between the set of isomorphism classes cf in-

decomposable representations of a finite type quiver (I',Q2) and the
set A;(F).

We consider in more detail the finite type qguiver U3, which
corresponds to the problem of classification of triples of subscaces
U)+U5. 0y
There are 12 roots in 'A+(P). Apart from the roots %y025,%5  which

in a given vector space U0 up to an automorphism of UO“

correspond to U0 = 0 we have 9 nontrivial indecompcsable trigples.

The corresponding dimensions (dim UO; dim Ul' dim Uz' dim 03) are

(1;0,0;0), (1;1,0,0), (l;ollfo)l (l:olol‘l)f (l;lrlco)r (l:lfotl}l
(330;%,1), [13,1,1,1) and  (2:1,%.1}). -

Let ’ae,al,...,a8 be the number of times these representations accezv
as indecomposable direct summands in a given representation
(UO;UI,UZ,U3). Then we have:

T




7 8
1 a; + 2ag =dim U, 1 a; + 23,
i=0 i=1

dlm(Vl - v2 + V3) '

a, - a, - a5 - a5 + a8 = dim Vl' a, + a, + a6 -+ a + a8 = dim V2,

]

a3 + a5 + a6 + a5 ES a8 dim V3, a, + a; = dim Vl N Vz,

ag +a, = dim V 3+ 3g +a,; = dim V2 n V3, a; = dim v1 n Vz N V3.

N
g Y

It is clear from this system of equation that the nine discrete para-
meters dim Ui(i 2 Qe wssd), dim Ui N Uj ;3 = 1,2.3, & = 3).

.dim Ul U2 U3
spaces U, Uy U, is the vector space U

and dim(Ul + 0, + U3) determine the triple of sub-

o UP to isomorchism.

b) The quiver P, from §1.6 corresponds to the problem of classifica-
tion of pairs of linear maps A,B: V1 — V2'
Kronecker. We assume that IF is algebraically closed. Then the com-

the problem solved by

plete list of indecomposable pairs is in some bases {ei} and {£f.}
of Vl and V2 as follows (k =1,2,...):

dim Vl = k, dim V2 =k + 1:

.

A(ei} = fi;B(ei) = fi+1ﬁl = 1,.0.sK).

. dim v, = k + 1, dim Vv, = k:

A(ei] = fi(i 0 . . A(ek+l) = 0;

Bleg) = £;_;(i = 2,...,k + 1), Bley) = O.
dim Vl = dim V2 = k:

A(ei) - fi( ] =™ Lyeeenk)? B(ei) = kfi + £ i1 = Lisnsnk = L,

i+l
B(ek) = Af, . Here A ETF is arbitrary .

A(ei) = £,

1+l(l =1l,...,k - 1), A(ek) = 0;

B(ei) = e

§1.18. Since the problems of classifcation of all representaticns oI

an arbitrary quiver (T,2) seems to be too difficult, we shall try tc




tnderstand . simpler question: what is the structure of 3 cener:

presentatior. :Z given dimension «. It is easy to see that there

a unique deccmposition
@ = By+...+8, , where g, € zT\{0},

such that the set M((r,2): = {u € ¥%(r,q)|u = elu , dim U; = 3,
all Ui are indecomposable} is a dense open subset in M“(F,Q)n

anc
This

is called the canonical decomposition of «. Further on we assume

the base field I to be algebraically closed.
In order to study this decomposition we need the following de

fini-

tion. A representation U e MG(F ) is called a Schur represantation

-

if End U =TF (or, equivalently, (G /C) = 1). An element =z = Z A0
is called a Schur root for the quiver (F Q) if M“(P,D) contains a
Schur representation. 1In this case the set of Schur representations

form a dense open subset M (r,2) in MQ(F,Q). Note that 2z = o

is

the canconical decomp051tlon of a Schur root. Conversely, if there
exists a dense open subset in M“(r,n) consisting of indecomposable

representations (i.e., a = a is the canonical decomposition of
then a is a Schur root. Indeed, otherwise,

My (T,R) > dim u“(;,g) =din G % 1w k- (a,af,

a contradiction with the statement c) of the main theorem.

@),

The set of Schur roots is a subset in A (I') (by the main theorenm):
we denote it by ASChur(P ). As will be clear from examples, this
set (as well as the canonical decompOSLtlon) depends on the orientation

Q of the quiver.

Remark. One can show that even a stronger result holds [4]: 1If

a

representation U € M% (F',Q) 1is stably indecomposable, i.e., 2all re-
presentations from a neighbourhood of U are indecomposable, then [

is a Sschur representation (the converse is obvious). The quiver
2

with relation A = 0 shows that this property fails for quiver =

relations. It might be interesting to study the rings R which

the property that avery its stably indecomposable representaticn :

a trivial endomorphism ring.

-

Example. Consider in the 3-dimensional space V0 2 quadruple of sub-

spaces Vl,Vz,V3,V4 of dimensions 2,2,1,1 respectively. This

quad-

ruple is indecomposable iff Vl = VZ’ and V3 + V4 is a 2-dimensicnal

- e T ——



subspace different £rcm Vl and V2 and dim Vlﬂ V2 N (V3 ¥ V] = i
\all such quadruples are equivalent). However, the generic gquacdruple

is decomposable and the canonical decomposition is as follows:

?
I

3 ao + 2al + 2a2 + a3 + ay = (Zao + al + Uy + a3 + a4}+b0+11+12)

So, a is a (real)root but not a Schur root.

§1.19. civen a quiver (T,2), let rij denote the number of arrows
with the initial vertex i and the final vertex j. We define the (in
general non symmetric) bilinear form R (R in honour of Ringel) cno
.2 by [111:

Note that (a,B) = %(R(a,B) + R(8,a)) is the associated symmetric bi-

linear form. The following proposition is crucial.

Proposition [11l]. Let U and V be representations of 2 guiver

(r,2) of dimensions o and B respectively. Then

dim Hom(U,V) --dim Ext(U,V) = R(a,B) .

Using formula (=) from 51.8 we deduce the following well-known
formula for an arbitrary representatlon U € Ma(F Q) :

(=) . dim M*(T,Q) - dim ¢*(W) = dim Ext(U,U).

We need another formula, which also can be derived from the 2ro-

position by a straight forward computation.

B : .
Lemma. Let Uj € M(r,@ (3 =1,...,8) and o Z B,. Let S€ G"
be a semisimple element, such that a = 7 Bj is tng orres grdine sar-
tition of «. Then J
dim M%(r,Q) - dim G° M (r,°%) = ¥ dim Ext(U;,T.)
f s J
i3
Proof. + is clear that the left-hand side of the formula is egual

to:




dim M*(T,2) - dim G*(U) - dim M%(r,2) S + dim Gi = dim 4%(r,) - dim 6%+

! a , a : o S _ . > 5
+ dim GU + dim GS = dim M7 (I',Q)° = =(d,a) + Z {Bj,Bj) + dim GU by
formula (=) from §1.8 and (!) from §1.11. Since dim Gg = dim Hem (U,U)
the lemma follows from the proposition. a

B.
Corollary. Let U; € My'(I,2) and U= U;, @ = [B;. Then
e 5 . —
U € My(Tr,a) iff Ext(U;,U) = 0 for all i 4 j. ‘'In particular, if
all Bi are Schur roots, then a = ZBi is the canonical deccmpositicn
; I

of a.

$R.20. We call an element a € zé\{o} indecomposable if a cannot
be decomposed into a sum o = B + Y, where B8,y € Zi\{ﬂ} and R(23,7)>0,
-R€Y,B) > 0. One deduces immediately from the remarks in 51.17 and the
corollary from §1.18 the following facts:

Proposition. a) If o is an indecomposable element, then a is a

Schur root.

b) Let a € ZE\{O} and a = Bl+"'+Bs be the canonical deccmoositicn
of a. Then all Bi are Schur rocts and R(Bi,sj) > 06 for a1l i=1.

Conjecture 9. If a is a Schur root, then .a is indecomposable.

Conjecture 10. Provided that (T,Q2) has no oriented cycles, each

a € 2™\{0} admits a unique decomposition a = fBj such that’ Sj are
indecomposable and R(Bi,Bj) =0 for i # §. (gee [4] for a version
of this conjecture without assumptions on (I,Q)).

If the conjectures 9 and 10 were true, we obtain that the deccmposi-~
tion of « given by conjecture 10 coincides with its canonical decom-=
position. '

En [4] conjectures 9 and 10 are checked for finite and tame guivers,

and for rank 2 guivers.

Example. If (r,Q2) is finite, then conjecture 9 holds since then any
root is indecomposable. Indeed, if o = 8 + Y, where R(2,v) > 0 and

R(y,8) > 0, then 1 = (a,a) = (B,B) + (v,Y) + R(B,Y) + R{x,B) > 2.
Similarly, we show that if (I',Q) is a tame quiver and 2 1is a root
such that its defect R(S,a) # 0 then o is indecompcsakbie.

Remark. If (a,ai) < 0 for all i and (a,ai) < 0 for some i,

then a is indecomposable by the identity (#), and hence is a Schur

s i

R SR O i i i, o B S Pl S o b R o e yr— s



root. This gives another proof of Lemma la),

§1.21. The foilowing simple facts proved in [4] show that manv gues-
tions about the action of Ga on MG(T,Q) can be answered in terms

of the canonical decomposition.

Proposition. Let o € ZE\{O} and let a = sl+...+8k be the canoni-

cal decomposition of «a.

" c* k
a) tr deg F(M(T,0))" )= ‘21(1-(]8&,61)).
a.a, 1= g
b) tr deg FM(r,a) €76y = ¥ (1-(8,,8;)) + |suwpp a| - s - 1,
i=1

where s and r are the number of distinct real roots and the dimen-

sion of the Q@-span of all imaginary roots in the canonical decomzosi-

tion of «, respectively.

c) G® has a dense orbit in M3 (r,Q) iff all ﬁi are real, the orin~
cipal stabilizer being reductive iff R(Si,Bj) = 0 whenever 3, = Sj.

4) If G® has a dense orbit (¢ in M“(r,n), then we have for the
categorical guotient: ’

“a(I‘,n)X(G“-,Ga) -.-IFISUPP al - s ,

where s is the same as in b) (and also is the number of distinct in-

decomposable summands of a representation from ().

e) The generic (G%,G%)-orbit in M?(r,Q) is closed iff R(3;,3;) L0
whenever B8, # Sj. '
Remarks. a) If (r,Q) 1is a finite type quiver, then G* always

has a dense orbit in 4*(r,Q) (since it has a finite number of orbits
or by part c) of.the proposition), and hence formula from d) alwavs
holds. This has been found by Happel.

b) If (Tr,Q) 1is a tame guiver then c®* has a dense orbit in ¥ {0, 8
iff the defect R(S5,a) ¥ 0 (by part c) of the proposition).
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Chapter II. The slice method.

The slice method is based on Luna's slice theorem [7] and was for
the first time applied in [5] for the classification of irreducible
representations of connected simple linear groups for which the ring
of invariants is a polynomial ring. In this chapter I discuss some
examples of applications of this method, ma_nly to invariant theory of

binary forms.

$2.Y. Let G be a linear reductive group operating on a finite-dim-
ensional vector space V, both defined over €. For p € V 1let G

‘denote the stabilizer of p and T_ the tangent space to the orbit

P
G(P)of p. Then TP is Gp-invariant and we can consider the action

of GP on the vector space Sp: = V/Tp. If the orbit G(p) is closed,
the action of G on the space .Sp is called a slice representation.

Note that Gp is a reductive group (since G/Gp is an affine variety
and' by Matsushima criterion G/H is affine iff H is a reductive sub-

group); therefore, we can identify SP with a Gpeinvariant complement-

ary to Tﬁ subspace in V.
The slice method is based on the following principle:

Given a representatlon of a -reductive group, every its slice re-
Qresentatlon is "better™ than the representation itself.

§52.2. in order to make this principle more precise we have to intro-
duce the so called categorical guotient. Let €[V] denote the ring
of polynomials on V and R = U:[V]G the subring of G-invariant poly-
nomials. Then it follows from the complete reducibility of the acticn

of G on C€[V] that there exists a linear map C[V] — E[V}G, denct-
ed by £ |— fh with the following properties:

(1) if U C g[V] is G-invariant, then Uht: U;

(i) if fecwv® geavl, then (£ = £qf
One iImmediately deduces the classical fact that the algebraz C{V}G
is finitely generated. Indeed, let I C T(V] be the ideal generates
by -all homogeneous invariant polyncmials of positive degree. By Hilker-:-
basis theorem, it is generated by a finite number of invariant DCivro=
mial, ‘say Pl"“’PN' We prove by induction on the degree of a na;e-

geneous polynomial P £ ¢[V] that P 1lies in the subalgebra gsners
ed by Pl’.-orP

T -
[

N® We have. q o )
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N
P= ] Q.P, where deg Q, < deg P.

r

i=1 **t
Applying to both sides the operator j we get:
1

]
P = E Q; P;, where deg Q; =deg Q; < deg P,
and applying the inductive assumption to Qi’ completes the proof.
Denote by V/G the affine variety for which E[V}G is the coor-
dinate ring. Then the inclusion E[V]G C— €[V] induces a map

s V — V/G called the guotient map. The pair {=m, V/G} 1is called

the categorical quotient because it satisfies the following character-

istic prcperties:
(1) the fibers of 1w a G-invariant;

(ii) if =n': V —— M is a morphism, such that M 1is in affine
variety and the fibers of ' are G-invariant, then there exists a
unique map Y: V/G —— M such that 7' =y o m.

Note that V/G 1is a (weighted) cone (i.e., it has a closed imbedd-
ing v/ C— c®, ghich is igvariant under transformations
(Cyreenrcy) — (tGlcl,...,t e B EE, =y > 0.

Note that €[V] is a polynomial ring < the vertex of V/G is
a regular point = V/G 1is smooth.

§2.3, Here we prove the following classical fact: V/G parametizes

the closed orbits, i.e., for each x € V/G, the fiber w?l(x) con-

tains a unique closed orbit.
"This follows from the following two facts:

(i) if Ml'MZ C V are two closed disjoint G-invariant subvarieties,
then there exists an invariant polynomial P which is identically O

and identically 1 on M,;

on M 2

1
(ii) the map 7 'is surjective.

Then the closed orbit in a fiber is an orbit of minimal dimension
in the fiber.

Por (i), let Pi's and Qj's be generators of defining idea
I, and I for - M,y
{Pi'Qj}i,j generate C[V] is an ideal, hence ; g;P; + ) géQj =1
for some gi,gj'. Denoting the first summand by fl and sécond ty =2

2 and Mz. Then by Hilbert's Nullstelensatz,

we have:

f1 + fz = 1, where fl € I, f2 € IZ'




Applying E] , WwWe get:
/ b

fI + f2 = 1, where fi = Ii'

Set P = ff ; clearly, P{M =0 since P€I;, so P|, =1.
If (ii) fails then th%re exists a maximal ideal I C m[V] which
generates C([V] as an ideal; then we have: 1 =] £.P,, “where

fi € C[V], and Pi € I. Applying k ; WwWe get:

1= 'P!.
y el
Hence I = E[V]G, a contradiction. O

§2.4. Let p € V be such that the orbit G(p) is closed. We have:
vV = TP @ Sp {Gp-invariant decomposition). We have by restriction:
we Sp —+ V/G, and by the universality property, this can be pushad

down to the morphism:
m.: S —_— V/G.
P P/GP 4

It is clear that dim s /G =-dim V/G. From Luna's slice theorem we
deduce the follow1ng lemma[s]

Lemma. The morphism ﬂp induces an isomorphism of completions of
local rings of w(p) € V/G and the vertex of the cone S /G
=y Note that this lemma says, in particular, that wp ls an analytlc

1somorphlsm on some neighbourhood of the vertex of S /Gp (in complex
topology), i.e., this vertex has the same singularity as 7 (p) € V/G.
Moreover, it follows from §2.3 that we get all the singularities of

V/G in this way.

$2.5. Here are some precise special cases of our general “rincinle.

"Let p € V be such that the orbit G(p) is closed. Set R = I{V] and
R, = ¢[S ] P

Proposition. a) If R is a polynomial ring {resp. comglete intar-

section), then R1 is a polynomial ring (reso. complete interseczion!

too.
b) Let m (resp. m ) denote the minimal number of homogenesus zeon
erators of R (resp. R ). Then m > mp.




c) Set A = E[z;,...,zm], Ay = e‘:[zl,...,zm ] and let

r
. o r T2p "1p

ve.—+ A “—> A "— R —> 0 and — A — A —_ R,— 0

be the minimal free resolutions for R and Rl' Then

Proof. follows from §2.4 and the following remarks. From the point

of view of the properties we are interested in

(i) the behaviour of a local ring is the same as the one of its com-
pletion;

(ii) the behaviour of the local ring of the vertex of a cone is the
same as the one of the coordinate ring of the cone;

(iii) the local ring of the vertex is the "worst" among all the local
rings of a cone.

All these statements about local rings are gquite simple ancd can be
found ‘e.g. in [14]. . O

§2.6. One often can find slice representations for which Gp is a-
' finite group. Then one can apply the Shepard-Todd-Chevalley thecren
to check that R is not a polynomial ring. In order to check that R

is not a-complete intersection one can apply the following result (16].

Proposition. Let G be a finite linear group operating on a vector

‘space V of dimension n. Suppose that m[V]G has m generztors

and that the ideal of relations (i.e., the kernel of the surjection

I[zl,...,zm] e E[V]G)A is generated by m - n + s elements (note

that m >n and s > 0). Then G is generated by those ¢ such thsa

rank(oc - I)< s + 2, In particular, if V/G is a complete intsrsec-
tion, then G = <o € G|rank(oc = I) < 2>.

Proof. Let Fg denote the fixed point set cf g € G. Denote by

2z the union of all Fg C V such that codimg; Fg > s + 3. Then G
acts on X: = V\AZ and X/G = (V/G)\(2/G). Note that V/G 1
connected since, being a cone, it is contractible to the vertax.
Furthermore, X/G 1is simply connected by the following fact, ©

by Goresky and Macpherson. Let M be a closed affine subvariety in
o

by m-n + s elements. Then if M is simply ccnnected, M\Y 1s

of dimension n and suppose that the ideal of M is generated




simply connected for any sibvariety Y € M of codimension 2 & F 3.
So, G acts on a connected variety X such taht X/G is simgly

connected. But then G = <Gx|x € X>. 1Indeed, let G, denote the

right-hand side. Then G/G1 acts on X/Gl such that g # e has no

fixed points. Since X/G = (X/Gl)/(G/Gl), we deduce that VG/Gl

This completes the proof. _ . a

li
o

Note that the same proof gives the "only if"™ part of the Shepard-
Todd-Chevalley theorem.

Remark. If G C SLz(m), then EZ/G is always a coﬁplete intersec~

tion (F. Klein). But for G ={(g g), where € is a cube root of 1 ,

Ez/G is not a complete intersection. Indeed, U, = x3, u, = xzy,

uy = xyz, u, = y3 is a minimal system of generating invariants, and a

G A c % R ol
minimal system of relations is: uju, = uyug, ujuy = u,, u,u, = uy .
This is the simpliest counter-example to the converse statement of the

proposition.

$T.7. In order to apply the slice method one should be able to check
that an orbit G(x) is closed. PFor this one can use the Hilbert-Mumfc:ri-
Richardson criterion, which ¥ will not discuss here, or the following
Proposition [8].. Let G be a reductive group operating on a vector
space V, p€V and HC G;, be a reductive subgroup. The normalizer
B of B in G acts on the fixed point set L of B in V. The
orbit G(p) in V is closed iff the orblt N(p) 1n L. is closed.

Note also that G(p) is closed iff G (p) 1is closed where G is
the connected component of the unity of G.

52.8. Now we turn to an example of the action of the group G = SLZ{Z
on the space V of binary forms fo degree d by
(3 8) »x,y) = Plax + By,vx + oy).

Fix the following basis of Vg:
d d-1 d-1 d

St * Py 78S g e . Saim i Pt e Mipuh S s Vs
We consider separately the cases d odd and even.
a) d odd and > 3. Set p = xd-ly - xyd-l and € = exp éié

k

€ 0 . . el L
Then Gp = {Ak = (0 s_k) s k=-1,...,d-2} 1is a cyclic group cf crd=r
d - 2. The fixed point set of Gp is L = vy + Tvgy_ & the conre
component of the unity of the normalizer of Gp is 0 i L),
t € C*}. The orbit No(p) is clearly closed. Hence-by §2.7, the cortit
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G(p) is closed.
. . The tangent space Tp to G.p 1is

4 l a a —a_ _
[EX a—y +G:Y -ﬁ +C (x 3% )](P) 7

» 2 =2
hence the eigenvalues of A on Tp are : € ,€ and 1.

Oon the other hand, we have:

o @3=27)
Altvj) = & vj‘

Hence the eigenvalues of A, on Sp-= V/TP are:

82,83,...,6(6-3).

So, according to our principle, the representation of a cyclic

d-2

group H = <a;> of order d - 2 on € acting by Aljej) = s—]e

3
in some basis e;,...,e3_,, 1s "better" than the action of SL,(C} on
the space of binary forms of odd degree 4 > ;1
Let fl,...,fd_zk_bekshg basis dual to €1sec-r8q_ 5" Then the
monomials fl..'.fd 2 such that S 1 e —

- Yl Z jky = 0 mod(d - 2)

form a ba51s of the space of 1nvar1ant polynomlals for this action of E.
An integral solution of (*) is called p951t1ve if all ki > 0 and

not all of them = 0; a positive solution is called indecomposable if

it is not a sum of two positive solutions. It is clear that the mini-

mal number of geherating invariant polynomials for the action of H

on Ed-z is equal to the number of indecomposable positive solutions

of (*). I do not know how to compute this number.. However, (as ob-
served by R. Stanley) it is clear that if a solution

(kll LA Ikd_z)
d - 2, then this is an indecomposable solution. Also it is clear

is positive and the left-hand side of (*) is equal tc

that (4 - 2) (6 ""'5d A ) is an indecomposable soluticn providec
that i and d- 2 are relatlvely prime and i # 1. This gives us the
following estimate: ( number of positive indecomposable sclutions of (#))
» p(d-2) + $(d-2) - 1, where p(k) is the classical partition
function and "¢ (k) is the number of 1 < j £ k relatively prime tc g,
For the discussion of the number of relations we need the
defintiion. Let R = m[zi,...,zm]/I be a finitely generated
where m 1is the minimal number of generators; let n(< m) be
dimension of R. We say that R requires at least s extra

g | -
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m-=-n + s elements.

., It is clear by §2.6 that for the action of the cyclic group H tas
ring of invariants requires at least d-5 extra relations. Again,
applying the principle, this gives an estimate for the number of rela-
tions between invariants of binary forms. -

The obtained results are sumarized in this following

Proposition. Let R be the ring of invariant polynomials for the

action of SLZ(E) on the space of binary forms of degree d > 1, d
odd. Then the minimal number of generators of R is >p(d-2)+3(d-2)-1

and R requires at least d - 5 extra relations.

: A coﬁplete information about degrees of polynomials in a minimal

system of homogeneous generators of R (it is easy to see that these
are well-defined numbers) and the generating relations are known (for
odd d) only for d < 5. Namely, for d = 3, R is generated by a
homogeneous polynomial of degree 4; for 4 = 5, R is generated by
homogeneous polynomials of degrees 4,8,12 and 18 and there is exact-
"ly one generating relation.

Note that for d =3 and 5 our low bounds are exact. However,
for 4 > 7 the low bounds given by the slice method are far from be-
ing exact. For instance taking p = x7 + y7- for d = 7 gives the bes<
low bound, which is 17, for the minimal number of generating invariants;
it is known, however, that this number lies between 28 and 33 [15].

b) d even and > 4. We take p = > % yd and let € = exp 3%3 .

Then Gp'= <[§ g-lJ.;(-g é]> . The same argument as in a) shows that
the orbit G (p) is closed, and our principle gives similar low bounds.
In particular, we get that R requires at least % d - 5 (resp.

%(35 + 2) - 5) extra relations if 4|d (resp. 4|d + 2).

One has a complete information about R (for even d) only for
d < 8. Namely for d = 2, R is generated by one polynomial cf degree
2; for d = 4, R is freely generated by polynomials for degree 2
and 3; for d =6, R is generated by polynomials of degree pi%ipi0

I
w

&
10 and 15 and there is exactly one generating relation; for & =
R 1is generated by polynomials of degree 2,3,4,...,10 anéd raguirss
two extra relations.
' One can see that for d = 4, 6 and 8 . our low bounds are exac:.

829 It follows from the results of §2.8 that for the acticn oI
SLZ(G) on the space Vd of binary forms of degree d, the ring R
s

=

O

0

[ 1)

invariant polynomials is a complete intersection iff d < 6 (and




polynomial ring iff 4 < 4).
Similarly, one can apply 22.7 to the classificaticn cf reductive

; Bl
linear groups for which the ring of invariants is a complete in

ntsrsec-
tion. As an example, let us prove the following
Proposition. For the action of SLn(E)(n > 1) on the spacse Sd(En}

the ring of invariants R is a complete intersection iff either

d <2, or n=2 and 4 <, or n=d=3, or n=4,d=3. Xore-

over if R is a complete intersection but is not a8 polvnomizl ringc,

then (n,d) = (2,5) or (2,6) or (4,3) andR isthe coorcdinate rinc
of a hypersurface.

Proof. The case (4,3) was worked out by Salmon about a hundred vears
"ago [12]. He showed that R is generated by invariants of degree 3,
16,24,32,40 and 100 with one generating relation. It is well known
that in the case (3,3), R 1is a polynomial ring generated by invarinats
of degree 4 and 6. The case d < 2 is obvious.

In order to show thaE in the remaining cases R 1is not a complete
intersection take p = .Z zg € Sd(mn). Then as in §52.8 we show that
the orbit of p is cloézé. Using §§2.5 and 2.6 we deduce that R
is not a complete intersection in all cases in gquestion except (3,4).

In the last case one should take P = ziz2 + 232 + z3z O

23 3°1°

§2.10. Let G = SL_(C) and V be the direct sum of m > n copies
of the natural representation of SLn on €°. Let p = (vl,...,vm)ev,
p $# 0. Then the orbit G(p) is closed iff rank(ﬁl...vm) = n; in this
case Gp = {e}. So all non-trivial slice representations are nice.
However, if m > n + 1, the point w(0) is (the only) singular point
of V/G. '

In other words, for these representations the slice method does
not simplify the problem. 1In fact the slice principle works best cZ
all for irreducible representations.
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