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Modular Invariance in Mathematics and Physics

VICTOR G. KAC

In this talk I want to discuss some recently discovered beautiful connec-
tions of representation theory of infinite-dimensional Lie algebras with the
theory of modular functions, and related progress in theoretical physics.

1. Modular functions. Consider a finite-dimensional space of complex an-
alytic functions on the upper half-plane, having at worst a pole at ico, and
suppose that this space is invariant under transformations

(D f@) = fz+1) and f(r) ~7 " f(=1/7).

These functions are then called modular functions of weight w (€ 31Z).

To illustrate the idea of modular invariance, consider the classical partition
function p(n), the number of partitions of # into a sum of positive integers.
Its generating series 1+ 3 - p(n)x" is equal to 1/¢(x), where ¢(x) =
I1,5,(1- x™"). The key observation is that the closely related Dedekind n-
function n(t) = ¢"/**¢(q) , where q = ¢*™", is a modular function of weight
1/2 since it has the following modular invariance property:

. —1/2

2) n(x) = (—ir)” *n(=1/2).

Let 7=if (B is the standard notation of the inverse of the temperature in
statistical mechanics). Then, by (2), we have asymptotically as f | O:

(3) n(lﬂ)—l - Bl/ZeT[/l2ﬁ'

Applying the standard Tauberian theorem which relates the asymptotics of a
series ), anx" as x — 1 to the asymptotics of a, as n — oo, we obtain
the following classical result:

1 \/2n/3
— ™V asn - .

Similarly, given an integral lattice A of rank / in the euclidean space
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R’ , we can count the number of vectors of any given length by studying the
associated theta series: ,
2
0A(T) — quyl / .

yeA
This is a modular function of weight //2. Indeed, the linear span of “gen-
eralized” theta series {0,,,(7)la € A" mod A} is invariant with respect to
transformations (1), (this is obvious for the first transformation, and fol-
lows from the Poisson summation formula for the second). For example,
taking A = z , one can study the number of ways n can be represented as
a sum of / squares.
Note that by Euler’s identity

2
(4) ¢(@) =Y (-1)"q> 2,
nez
it follows that ,
3(n+1/6)2/2
n(r) =Y (-1)"q
nez

is a difference of two (generalized) theta series, hence is a modular function
(of weight 1/2).

Another famous example is the modular invariant j = 6}358/ 1124 (which
parametrizes elliptic curves), where Eg is the only even unimodular lattice
in eight dimensions. The function j(t) is invariant under transformations
(1), , and, moreover, generates the ring of all such functions.

On recent developments in number theory based on modular invariance
(including Ribet’s proof of Fermat’s last theorem modulo the Taniyama-Weil
conjecture), see the address of B. Gross.

Note that a modular function f of weight —w has asymptotics similar
to (3), namely, for some numbers d and g one has:

(5) f(iB) ~dp ™' asp|o0.

2. Infinite-dimensional Lie algebras. The most important infinite-dimen-
sional Lie algebras g possess a derivation (Hamiltonian) H satisfying the
following three properties:

(1) 9=6D;cz8;, Where g; ={x € g|[H, x] =jx} and g, #0;
(ii) g has only trivial graded (with respect to (i)) ideals;

(iii) dimg; < const.

According to the Kac-Mathieu classification theorem, there are only two pos-
sibilities for such algebras:

(a) loop algebras (the Lie algebra of regular maps from C* to complex
simple finite-dimensional Lie algebras) and their “twisted” analogs;
(b) the Lie algebra of regular vector fields on C* .
In our experience, one loses most (if not all) interesting representations,
unless one considers central extensions of the Lie algebras in question. We
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explain below the construction of (&) the affine Kac-Moody algebras § , which
are universal central extensions of (nontwisted) loop algebras, and of (b) the
Virasoro algebra Vir, the universal central extension of (b).

EXAMPLE (3). §= (D, g(n)) ® Ck , where, for all n, we have 9 = 9>

a simple Lie subalgebra of gl, (C), with the following commutation relations:
(6) [x(m),y(n)] =[x, y](m+n) +m(5m,_n(x,y)k, [k,8]=0;

here x,y € g and (x,y) = consttr xy (const = 1 for g = sl,(C)). The
Hamiltonian H = H, + ad Z(g)» where [x(m) , Hyl = mx,, and z €g isa
real diagonal matrix. Geometric interpretation:

8/Ck = @a,) =Map(C”, 9) =Clt, 1" 1@g,  x,=1"x.

ExaMmpLE (b). Vir= (D,ezCL,) ® Cc, with commutation relations

3
+ 2 "M c [c, Vir] = 0.

m+n 12 m,—n">

@) [L,,L,]=(m-n)L

The Hamiltonian H = L. Geometric interpretation:

. X n+l1 d
Vir/Cc = VectC™, L, =t a0

3. Positive energy representations. It has been clear for some time now,
both to mathematicians and to physicists, that the most interesting repre-
sentations of an infinite-dimensional Lie algebra are the positive energy rep-
resentations. These are the representations in a vector space V for which
the Hamiltonian H is diagonalizable and Spec H is a set of real numbers
bounded below. The function trVqH is called the character of this represen-
tation. An important and still somewhat mysterious fact is that in all known
examples, the characters of irreducible positive energy representations have
asymptotics of the form (5) (i.e., behave as modular functions at the high
temperature limit), and that the numbers d, w, and g, called respectively
the asymptotic dimension, the weight, and the growth of V , have a group
theoretical interpretation. For example, the asymptotic dimension d has all
the properties of usual dimension, although it is an irrational number in gen-
eral. Actually, for this reason, d is a much more powerful invariant than
the usual dimension.

In all known examples of irreducible positive energy representations of
infinite-dimensional Lie algebras, the number w is nonnegative (and the
numbers d and g are positive), in sharp contrast with the finite-dimensional
case, when trVqH ~ e,B_d as # | 0 and d is a nonnegative integer (called
the Bernstein-Gelfand-Kirillov dimension).

Sometimes a character becomes a modular function when multiplied by
g~ %/** | where a is some number (the modular anomaly), the result is then
called the modified character. The corresponding representation is said to
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be modular invariant. (Note that modular invariance implies energy positiv-
ity.) It is the modular invariant representations that have played a funda-
mental role in the recent development of representation theory of infinite-
dimensional Lie algebras and groups on the one hand, and of quantum field
theory on the other.

4. A toy example. An affine algebra may be viewed as a “nonabelian”
generalization of the oscillator algebra (= Heisenberg algebra) &, the affine
algebra associated to the 1-dimensional Lie algebra a = Cs. We have:

[S(m) ’ S('l)] = mam,—nk > [S(m) , k]1=0.

It is very easy to describe all irreducible positive energy representations V' of
a: Either k = 0, then V is the trivial 1-dimensional representation, or k #
0, then V = Cl[x,, x,,...], and Simy = 2/0x,,, Siemy = kmx, for m >
0; sp=u; Hy=73 j>1J%; 0 /axj. These are the canonical commutation
relations representations. All of them are modular invariant with modified
character n(‘r)'1 ,sothat d = w = g = a = 1. This example, which is very
important in quantum field theory, is, from a purely mathematical point of
view, not just a toy model. It also serves as a basis for rather nontrivial
constructions, such as the vertex operator construction and its variations.
Along these lines one constructs the modular invariant representation of the
famous Monster group, whose modified character is j(7).

5. Modular invariant representations of the affine algebra §. There are
some general experimental facts (most of them conjectures) about an irre-
ducible positive energy representation ¥V of §:

(a) rankg < g(V) < dimg;

(b) 0<w(V)<dimg;

(¢) w(V)=0=V is modular invariant;

(d) g(V)<dimg< V is modular invariant with w(V) < dimg.

In our experience, the “smaller” a representation is, the more interesting
it becomes. Since the growth is a reasonable measure of the “size” of a
representation, we may conclude that the most interesting are the irreducible
modular invariant representations of zero weight. An amazing fact is that
even in the simplest case g = sl,(C), the theory of such representations
is remarkably rich (in sharp contrast with the “abelian case” when no such
representation exists).

Positive energy representations V' of § are parametrized by the central
charge k (= the eigenvalue of the operator k) and by the (finite-dimensional
irreducible) representation A, on the minimal energy subspace V, of the
Hamiltonian H+z, of the algebra of “internal symmetries” {x € g(0)|[z , X]
= 0}. (In unitary theories one always takes z = 0, otherwise one needs to
take z # 0 to avoid divergences.)

The first problem I am going to address is to determine for which pairs
(k, A) the corresponding representations V'(k, A) is modular invariant of
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zero weight. An easy necessary condition is

®) k + A" is a nonnegative rational number,
where /' is the dual Coxeter number ofg (4’ = N for g = sl (C)).
Consider also the following condition:
9

©) (A+p,a)eQ\{0,~-1,-2,...} forallaeR,

where R is the set of “positive real coroots” of §.
Provided that (8) and (9) hold, one has an explicit character formula (due to
Kac and Wakimoto) of the following form:

H
(10) e nd = Z :I:Gy’k’l/H,

yeWk,A
where ©, , , are certain theta series and [], is certain infinite product
over all “positive roots” of §. Here 1+ j is the “shifted highest weight” of
V(k, A) (which is simply expressed in terms of k and A) and wk* is the
associated subgroup of the “Weyl group” W of g.

But if A is the trivial 1-dimensional representation of § and £ = 0, then
dimV(k,A) =1, hence trVqH =1 and we obtain from (10) an identity of
the form:

(11) I[I1=> =e,
a yEW
These are the well-known Macdonald identities.

It follows from (10) and (11) that, provided that (8) and (9) hold, the rep-
resentation V' (k, A) is modular invariant; moreover, the following condition
guarantees that w(V(k, 1)) =0:

(12) the Q-span of the set {« € R|(A+ p, a) € Z} contains R.

The main conjecture asserts that conditions (8), (9), and (12) give us the
complete list of all modular invariant representations of § of weight 0 with
k # —h'. This conjecture has been checked for sl, , Vir, and in some other
cases.

6. The example of ﬁz . To avoid technicalities, I have given only a flavor
of the main results for general affine algebras. Now I will state these results
explicitly in the simplest case of the affine algebra 512 .

The complete list of zero weight modular invariant irreducible representa-
tions V'(k, A) is as follows: the central charge k is a rational number u'/u,
in lowest terms, such that

(13) k+2>2/u;
1

all possible A (= the maximal eigenvalue of the element (, _01) on the
subspace of minimal energy) for this k are

(14) A=n-sk+2),
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where n,s€Z, 0<n<uk+2)-2,0<s<u-1.
The character formula (10) (taking into account (11)) for such a represen-
tation is:
zy _ z
(15) tI'V ‘s qH0+%z((l, fl)—(ilza—%zz) - (eb_,_,b(t’ u) eb_ ,b(r’ u).
k4 (61,2(1',2)_8_1,2(7» z))

Here Gn’m(r, z) = G(n Jm+2))2 +z(M7) is a Jacobi-Riemann theta function,
and

b=u'(k+2), b, =u(x(n+1)-stk+2), a=3-6b/b.
One also has:
dV(k, )= \/%sin ZEZ : ;; sin n(s;— Z)/sinnz;
gWV(k,A)=3-6/b.

Given k, the space spanned by all modified characters of modular in-
variant representations is invariant with respect to modular transformations
(1), - Explicitly, denoting the left-hand side of (15) by y, , one has

1 inkz*t 2\ /2
iz )= )5

e—inb+b'_ /b _ e—mb+b;/b
X Z 2l X,{'(T > Z) ’
A ‘

(16)

where A’ runs over the list (14).

Results similar to these hold for all affine algebras (see Kac-Peterson and
Kac-Wakimoto).

All experimental facts (a)-(d) stated at the beginning of this section hold
for sl,. In particular, the following statements are equivalent for an irre-
ducible positive energy representation V' of sl, :

1) &(V)<3;
(i) w(V)=0;

(iii) V¥ is modular invariant of weight 0.

The Macdonald identity (11) is, in this case, the celebrated Jacobi triple
product identity:

e o]
H(l _ unvn)(l _ unvn—l)(l _ un—lvn) — Z(_l)nun(n+l)/2vn(n—1)/2.
n=1 nez

Letting u =q, v = q2 we deduce Euler’s identity (4), and letting u = v =
—q , we obtain a product expansion 0,(7) = 772((1 +1)/2)/n(z+1).

7. Some applications. The most popular representation is the modular
invariant representation of minimal possible growth / = rankg. This is the
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basic representation V = V (1, A = trivial) (and the ones obtained from V
by a simple twist) of the affine algebra §, where g is one of the simple
classical Lie algebras sl ,(C), so0,,(C), or the exceptional ones E¢, E;, E;.
The modified character of this representation is given by an especially simple
formula (Kac):

Hy+z—(1/24—(z,2)/2) _ 0Q+z(1)

17 tr ,
(17) v n(e)
where Q is the root lattice of g.

Note that since H, commutes with g C §, the H-eigenspace decomposi-
tion V=@ jez, V, is invariant with respect to g. Thus we obtain a series of
finite-dimensional representations of g (dimV, =1, dimV| = dimg, ...)
such that the generating series Y .., (dim Vj)qj —24 s equal to OQ/nl.
1/3

j€z,
In particular, for Ej this series is equal to j(t) Moreover, replacing
(dim V}) by tr, g, where g is a finite order element of the Lie group G

with Lie algebra g, we obtain a modular function of weight 0.

In a remarkable parallel development, McKay, Thompson, Conway, and
Norton observed that the sporadic finite simple Monster group F, has a series
of finite-dimensional representations ¥V, ¥, =0, V,, V5, ..., such that the

generating series jez (dim Vj)qj -1 equals j(7) — 744 and that, moreover,

the series > jez, (ter )’ ~! is a modular function of weight 0 and “genus” 0
for all g € F, ; almost all modular functions of “genus” 0 occur in this way.
The latter phenomenon is yet to be explained.

The basic representation admits a large variety of explicit constructions.
One starts with a regular loop s(f) € C[¢, £ ']® g (= §/Ck) (i.e., for any
ty € C*, the centralizer of 5(ty) in g consists of commuting diagonaliz-
able elements); its centralizer § is commutative and its preimage s in § is
a Heisenberg algebra. Let S denote the centralizer of 5 in G(C[¢, t_l]).
An important property of the basic representation (proved by Kac and Pe-
terson) is its irreducibility with respect to the pair (s, S). (For example,
taking s(¢) to be a regular constant diagonal matrix, we obtain the homo-
geneous Heisenberg subalgebra and the irreducibility theorem follows from
(17).) This allows one to identify V' with the space of the oscillator represen-
tation. The oscillator representation extends to the basic representation of §
by making use of the vertex operators of string theory. The vertex operators
are characterized by the property of being eigenvectors with respect to s and
S, and are, up to a simple factor, of the form

(epoAix,.) <exp2uiaixi> .

The vertex operator construction attached to the homogeneous Heisen-
berg subalgebra (the Frenkel-Kac-Segal construction) in the case g = E; is
an important part of the “heterotic” string model used in compactification
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from 26 to 10 dimensions by Gross-Harvey-Martinec-Rohm. A twist of this
construction applied to Griess’s algebra produces the series of representa-
tions of the Monster group mentioned above (Frenkel-Lepowsky-Meurman
and Borcherds).

Another beautiful application of the basic representation, to the soliton
theory, was discovered by Sato, Date, Jimbo, Kashiwara, and Miwa. An
analysis of their work shows that their approach is based on the following
simple observation: Let G be a group acting on a vector space V', let v, € V',
and let Q be an operator on V' ® V' commuting with the (diagonal) action
of G and such that v, ® v, is its eigenvector with eigenvalue 4. Then an
element f of the orbit G- v, satisfies the equation

(18) Qfef)=Afelf.

For example, we can take Q to be the “Casimir operator” and v, to be the
vacuum vector.

Applying this construction to G = SL,(C[¢, t’l]) and V its basic (projec-
tive) representation, we obtain two quite different systems of partial differ-
ential equations depending on the construction of V. If the construction is
based on the homogeneous Heisenberg subalgebra of sAl2 , then equation (18)
turns into the NLS hierarchy, the simplest equations being (after a change of
functions) the coupled nonlinear Schrodinger equations on functions g(¢, x)
and g*(¢, x):

g =8,-28'¢, & =-g, +288"
If the construction is based on the other Heisenberg subalgebra, associated
to s(t) = (° 3) (the principal construction), the equation (18) turns into the
KdV hierarchy, the simplest equation being (after a change of functions) the
celebrated KdV equation:

-3 1
ut - Zuux + 4uxxx'

Moreover, the N-soliton solutions of these equations can be obtained by
making use of vertex operators. For example, if X(z) is the vertex operator
of the principal construction

—] a.

= J z
X(z)=|exp2 E Z'X; exp —2 E T ax |’
j1 i1 J
Jj odd Jj odd

then N-soliton solutions of the KdV equation are given by the following
formula (in which x = x,, ¢ =x,):

u(t, x) =2(log((1 +ayX(zy)) - (1 +a,X(z))-1))

These solutions describe the interaction of N solitary waves.
This theory has an important connection to the theory of theta-functions.
Namely, equation (18) in the case of the basic representation of the group

xx°
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GL_, is nothing else but the KP hierarchy, which characterizes theta func-
tions of algebraic curves among all theta functions (Arbarello-De Concini,
Mulase, Shiota).

Apart from the basic representation, the only positive energy irreducible
representations of growth < 2/ have central charge k equal to 2. This case
plays an important role in various supersymmetric theories.

The modular invariance constraint is an important ingredient of the rep-
resentation theory itself. The basic observation here is that given an affine
algebra § and its affine subalgebra g, the branching coefficients of an irre-
ducible unitary (and hence modular invariant) positive energy representation
of § restricted to §, are coefficients of modular functions, called branching
Sfunctions, with well studied transformation properties. In the simplest exam-
ple g =sl,(C) and g, = (C((l, _01 ) , these modular functions turn out to be the

classical indefinite Hecke modular forms divided by 172 (Kac-Peterson). This
has been exploited by Date, Jimbo, Miwa, and their collaborators to calculate
explicitly the local height probabilities in solvable lattice models. It should
be pointed out, however, that even in this simplest example, the branching
functions of a nonunitary modular invariant representation are not always
modular functions (Lu), and their transformation properties are unknown.

The SL,(Z)-invariance of the space of modified characters of modular
invariant representations with given central charge k has important applica-
tions to 2-dimensional quantum field theories, since it allows one to compute
explicitly their partition functions (Gepner, Capelli-Itzykson-Zuber, ...).

In general, a conformally invariant 2-dimensional quantum field theory
(CFT) produces a finite set of modular functions f, ..., f, whose C-span
is invariant with respect to transformations (1), and such that

() n-r; 0] -
fi(1)=zanq , wherea, €Z, , r,€Q, andry>r 21, 2>....
n€zZ,

These data contain the most important information of this field theory, such
as conformal anomaly, conformal dimensions, the partition function (Cardy),
the fusion rules (Verlinde), etc. These properties of f, ..., f, alone turn
out to be very restrictive, and, for small N, allow an effective classification
algorithm (Mathur-Mukhi-Sen). Given § D §, and k € Z_, taking branching
functions of all unitary modular invariant representations of § with central
charge k with respect to §, we get a finite set of functions satisfying the
above properties (Kac-Peterson), obtaining thus a large variety of CFT.

8. Modular invariant representations of Vir. Positive energy irreducible
representations of Vir are parametrized by two numbers, the conformal ano-
maly ¢ (= the eigenvalue of ¢) and the minimal energy # of the Hamil-
tonian L,. A complete list of pairs (c, #) such that the corresponding
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representation V, , is modular invariant of weight 0 is as follows:
2 2 2
6(m—n mr—ns) —(m—n
19 e—p_Sm=nm® )= (m—n)
mn 4mn
where m, n, r, s are positive integers such that (m,n)=1, r<n, s<m,
sn<rm.
The character formula for arbitrary V, , was given by Feigin and Fuchs.
For representations from the list (19) this formula turns into

Ly—c/24
(20) ter,hq 0TI = (e(mr—ns)/Zmn+Z(mnT) - 0(mr+ns)/2mn+Z(mnf))/n(r)'

b

For these representations we have

6
(21) g(V;’h)= 1—-’;1—’1-
The following properties of a representation V = V., are equivalent:
i) &) <1;
i) w(V)=0;

(iii) V is modular invariant.

According to Belavin, Polyakov, and Zamolodchikov each ¢ from the
list (19) corresponds to a solvable 2-dimensional statistical model, the 4’s
corresponding to the critical exponents of this model.

Note that g(¥) < 1/2 in two cases only: ¢ = 1/2, which corresponds
to the Ising model and ¢ = —22/5, which corresponds to the Lee-Yang
edge singularity model (Cardy). The Ising model is the first member of the
sequence of unitary statistical models (Friedan-Qiu-Shenker) and the Lee-
Yang model is the first member of a very interesting sequence of nonunitary
models with

c=1-3"=2 57,9, ..,
m
., (m=s5s-1)(s-1) _ m-—1
h=h = T s—1,2,...,———2 .
In this case the character admits a simple product decomposition:
L,—h j\—1
(22) t, ¢° = [ (1-d).
n>1

nz0,+s mod m

Note that this product, in the case m = 5, is precisely the product part of the
celebrated Rogers-Ramanujan identities (and in the cases m > 5 that of their
Gordon generalizations). A natural conjecture is that these identities provide
bases of representation spaces; in particular, in the case m = 5, vectors
"'L—j3L—j2L—j]lhs) with ji+j,+-=n, j, >2j,+2, j32j,+2,...
and j, > 2 (resp. > 1) when s = 0 (resp. = 1), should form a basis of
the subspace of energy 4, + n. In the same spirit, every modular invariant
representation of Vir should produce a Rogers-Ramanujan type identity.
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Further development of the Belavin-Polyakov-Zamolodchikov approach to
the 2-dimensional conformal field theory gave the following simple construc-
tion of the partition function Z(7) on a torus (Cardy). Fix the conformal
anomaly c, and let x h)( 7) = tr, g Lo=¢/2% pe the modified character. Then
Z(t) must be a (real analytic) functlon of the form

(23) Z(1) = Z a, ,h’X(h)(T)X(h’)(T) >

h,n'

where a, , are nonnegative integers, a, , = 1, and Z(1) is modular in-
variant (i.e., invariant under transformations (1),).

If (c, k) is from the list (19), then all modified characters (with given
c¢) form a basis of a vector space invariant under transformations (1), and
the corresponding matrices are unitary in this basis. It follows that Z(1) =
2ol ;((h)(‘r)|2 is a partition function. A complete classification of partition
functions (23) with ¢ < 1 (and hence from the list (19)) is obtained in two
steps. First, the problem is reduced to a similar problem for glz and unitary
characters (Gepner). Fix a positive integer k, and for an integer 4 from
(14),1ie., 0<A<k,let

H,—a/24
XA(T) =trV(k’l)q 0 af .

Then we have the following special case of (16) (Kac-Peterson):

12 k
o (1)~ (20)" 5 (et ) o

A'=0

The problem of determining all partition functions of the form (23) with Xy
replaced by x, was solved by Cappelli-Itzykson-Zuber. A remarkable fact
(which is yet to be explained) is that these partition functions are labeled by
Dynkin diagrams, so that the constants a; in (23) are expressed in terms
of “exponents” associated to these diagrams.

The transformation law (24) has reappeared recently in the beautiful work
of Witten on Jones polynomials (see addresses of Witten and Jones).

9. The Ising model. This is a very instructive example of an explicit con-
struction of all modular invariant irreducible representations of the Virasoro
algebra with conformal anomaly ¢ =1/2.

Fix 6 = 0 (the “Ramond sector”) or 6 = 1/2 (the “Neveu-Schwarz sec-
tor”), and let U; be the algebra over C on anticommuting indeterminates
¢ f (j € +Z,). Define the following operators on U :

=172 _ 0 _ ]
(o aé) Vn=pe Von=t forn>0;

1- 25 1 .
E Jv_;¥;, Lk=§ E JV_i¥ik for k # 0.
JEO+HZ, JESHZ

L,=

NI'—‘
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Using that [y,,, L,]1= (m + 3k)y,,,, , we find

3
m —m
+6

m+n m,—n 24

[L,,L,]=(m-n)L

Thus, we have constructed a representation of Vir on U; with conformal
anomaly ¢ = 1/2. This representation is not irreducible: the subspaces U;
and U; of elements of even and odd degree respectively are invariant. One
can show that

+
(25) Ul/2= Vij,00 U1/2 V1/2 1/2° U =U, 1/2 1/16°

obtaining thereby all modular invariant irreducible representations of Vir
with ¢ = 1/2. In fact, we see from (25) that

—1748 12 1/24 1
(26) 2y EX1/ =4 M axad™"), Xane =4 PETL (+a™h).
ne€Z, n€zZ,

This can be rewritten in terms of the n-function:

2 1
__ 1@ _ n(37)
@ Xo) T X2 = nGon2r)’ X0 ~Xam T )
_ n@27)
Xane) = p(r) -

It is clear from (26) and (27) that the 3-dimensional subspace spanned by
X0y Xa1/2) 0 and Xa16) is invariant with respect to the modular transforma-
tions (1),.

10. Modular invariance versus unitarity. Let w be a conjugate linear anti-
automorphism of § (resp. Vir) defined by a)(x(n)) = zic‘(_n) , o(k) =k (resp.
w(L,) =L_,, w(c) =c). A representation of g or Vir in a vector space V'
is called unitary if V carries a positive definite Hermitian form for which
the operators ¢ and w(g) are adjoint (g € § or Vir). (For example, taking
in the Ising model all monomials in &; for an orthonormal basis, we see that
the representations of Vir in U are unitary).

Unitary irreducible positive energy representations of an affine algebra §
are all modular invariant (with weight 0). We have seen that modular invari-
ance is given by certain rationality conditions ((8) and (9)). Unitarity turns
out to be given by certain integrality conditions. For example, the modular
invariant representations V'(k, A) of §12 , given by (13) and (14), are unitary
if and only if k¥ and A are nonnegative integers and A < k. Representation

o h of Vir for ¢ > 1 is always unitary (Kac), and, for ¢ < 1 is unitary if
and only if (c, &) is one of the pairs from the list (19) such that |m—n| =1
(Friedan-Qiu-Shenker, Goddard-Kent-Olive, Kac-Wakimoto).

The unitary representations of the affine algebra § always give rise to
a representation of the corresponding group G (= a central extension of
G(C[¢, t—l]) by C*). This is not true for nonunitary modular invariant
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representations. The representation theory of affine algebras is thus much
richer than that of the corresponding groups.

The unitary positive energy representations have been much studied in
the past decade both by mathematicians and physicists. One may expect that
the more universal class of modular invariant representations will keep both
groups busy for years to come. I have discussed here only the genus one case
and have not even touched the superalgebra case!
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