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§0. Introduction. 

0.1. One of the basic problems of representation theory is to find a decomposition 
of an irreducible representation of a group with respect to a subgroup. Namely, suppose 
that  we have a representation 7r of a group G in a vector space V and suppose that  with 
respect to a subgroup S this representation decomposes into a direct sum of irreducible 
representations: 

71" = 0i71"i, V = e iVi  

Given an irreducible representation ~r of 5' one denotes by [Tr : ~r] the number  of repre- 
sentations of S equivalent to cr in this decomposition, and calls this number  a branching 
coefficient. An important  problem is to compute the branching coefficients. 

A special case of this problem is the decomposition of a tensor product. In this case 
G = S x S, S is the diagonal subgroup of G, V = V' ® V", where (V',  7r') and (V", 7r") 
are some irreducible representations of S, and the problem is to compute the numbers 
[~' ® ~" : o]. 

0.2. In the present paper we study branching coefficients for positive energy repre- 
sentations of affine algebras. Let us recall the basic definitions in the "non-twisted" ease 
(r = 1). See [8] for details. 

Let ~ be a complex simple finite dimensional Lie algebra of rank g, and let ¢(., .) be 
its Killing form. Fix a tr iangular decomposition ~- = ~_ + ~ + if+, where ~ is a Cartan 
subalgebra and if+ are maximal nilpotent subalgebras, and let 0 v E ~ be the coroot 
corresponding to the highest root. Let h v = ¢(0 v, 0 v) be the dual Coxeter number and 
let (xiY) = ¢ ( x , y ) / 2 h  v be the normalized invariant form on ~. The affine algebra 9' 

associated to ~ (called also the affine algebra of type X~ 1), where Xt  is the type of ~) is 
constructed as follows. Let C[t, t -1] be the algebra of Laurent polynomials in t, and let 
us view the loop algebra ~[t, t -~] = C[t, t -a] ®c 9 as an (infinite-dimensional) Lie algebra 
over C. Then 

9' = -6[t,t - l ]  + C K  

is the t 'aique non- t r iv ia l  central extension of-~[t , t  -1] by a 1-dimensionM center CK.  
Explicitly, it can be defined by the following commutat ion relations: 

[x(m), ~(~)] = [x, yl(m + ~) + m&~ _.(zlv)S~', 

where x(m)  E ~[t , t  -x] stands for t m ® x  (m E Z, x E ~). We identify ~ with the 
subalgebra 1 ® ~ of fl~, and let if = ~ + C K  be the Cartan subalgebra of 9~. Let also 
n+ = -if+ + t+l-~[t=~l]. Then we have the triangular decomposition 9 ~ = n_ + [~ + n+. 
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An arbitrary affine algebra is a direct sum of the Lie algebras of the form gt and their 
twisted analogues 9'(a, s) (see below). 

It is often convenient to consider 9 ~ as an ideal of codimension 1 in the Lie algebra 
9 = 9 ~ + Cd, with commutation relations 

[d, x(m)] = rex(m), [d, K 1 = 0, 

and let b = b I + Cd be its Caftan subalgebra. One extends the normalized bilinear form 
(.I.) from b to i~ by letting (hICK + Cd) = 0, ( K [ K )  = (did) = O, (Kid)  = 1. 

A representation 7r of the a~ne algebra 9 ~ in a vector space V is called a positive 
energy representation if a) r (K)  = kI,  k E C, and b) 7r can be extended to the whole g 
such that -Tr(d) is diagonalizable and its eigenvalues are non-negative integers. 

The number k is called the level of V. The eigenspace decomposition 

V = ~ . ~ z + V ( . )  

with respect to -rr(d) is called the energy decomposition; if v E V(n) we say that v has 
energy n. 

Since [d,~] = 0, the energy decomposition is ~-invariant, and we denote by ~ the 
representation of ~ in 1I(0). It is easy to show that the map rr ~ (k,~) establishes a 
bijective correspondence between the set of (equivalence classes of) positive energy irre- 
ducible representations (Tr, V) such that V(0) ~ 0 of 9' and the set of pairs (k, ~), where 
k • C and ~ is an irreducible representation of ~ (considered up to equivalence). (Given 
k • C and an irreducible representation ~ in V(0), we extend ~ to 9+ := ~[t] q- CK + Cd 
by letting ~(K) = klv~o), ~(d) = 0 and ~-(x(n)) = 0 for n > 0, and let 7r be the irreducible 
quotient of the inducedrepresentationof 9 in the space/4(g) ®u(s+) V(0). This gives us an 
irreducible positive energy representation 7r of 9 ~ corresponding to the pair (k, ~).) 

0.3. We shall consider only the irreducible positive energy representations (Tr, V) of 
9' such that (~, V(0)) is an irreducible highest weight representation of ~. In other words, 
we shall assume that there exists a non-zero vector vk, ~ • V(0), where +~ • t}, such that 

7r(K+)vk- ~ = O, ~r(h)vk,- ~ = -A(h)vk, ~ for h • b. 

These representations are parameterized by the pairs (k, ~), k • R, ~ • b*. It is more 
convenient to represent the pair (k,~) by an element A • I~'* such that +~1~ = ~ and 
A(K) = k. The corresponding representation 7rx of 9' is denoted by L(+~) and is called the 
irreducible highest weight representation of 9' with highest weight A. 

The vector v:~ := Vk,- ~ is called the highest weight vector; it is the unique up to a 
non-zero constant factor vector in L(+~) satisfying equations 

7rx(n+)v:~ = O, 7rx(h)vx = A(h)vx for h • b'. 

Especially important are the representations L(A) of 9' which can be lifted to a (pro- 
jective) representation of the corresponding loop group. These are called integrable highest 
weight representation. They are parameterized by the set 

P+ = {)~ • 0'*lk := ),(K) • Z+, A • P+, (AI0 v) < k}. 
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Here P+  C ~* is the set of highest weights of finite-dimensional irreducible representations 
of ~. 

The basic tool for study of integrable L(A) is the so called Weyl-Kac character formula 
[6] for the function chx on Y := {v E hiRe(yaK) > 0} defined by 

chx(v)=trL(x)e v. 

Recently a similar character formula has been established for a larger class of the L(A), 
those with an "admissible" highest weight [12]. Their "normalized" characters are Jaeobi 
modular forms and, conjecturally, these representations are characterized by this property. 
(These are also the only ones for which the Kazhdan-Lusztig polynomials are trivial.) 
In the present paper we consider the best studied (see [13]), principal admissible highest 
weight representations. Their levels may be arbitrary rational numbers k (called principal 
admissible) such that k + h v >_ hV/u, where u E N is the denominator of k. In the ease 
when k E Z+ all principal admissible representations are integrable (but all representations 
of fractional level are not). 

0.4. A natural class of subalgebras of the Lie algebra 9~ (and similarly of an arbitrary 
affine algebra) to consider is the following. Let ~ be a reductive subalgebra of ~, let a be 
an automorphism of # and let s E N be such that a ~ = 1. Define an automorphism ~ of 
the subalgebra ~[t, t -~] + CK of 9' by letting 

2~rin 
b(x(n)) = (exp ---~)a(x)(n), a(K) = K, 

and denote by 9'(a, s) the fixed point set of 8. 
0.5. We shall consider only the representations L(A) of 9' which are completely re- 

ducible with respect to 9'(a,s). (This is always the case when ~ E P+.) The branching 
coefficients of such 9'(a, s) in a representation L($) of 9', i.e. the numbers [L($) : L(#)], 
where L(#) is an irreducible highest weight representation of ~(a, s), are almost always 
zero or infinity. To get around this, let 9(a, s) = h_ + 6 + h+ be the induced triangular 
decomposition of ~(a, s), i.e. h+ = n± M 9(a, s) and 6' = [}'M g(a, s), and let 

[~: #], = dim{v e L(A)(,)lrx(ri+)v = 0, 7rx(h)v = ~(h)v for all h e 6'}. 

These numbers are always finite, and we can consider the power series 

b X = qm~,. ~ [~: #]nqn. 
nEZ+ 

The number rnx, g is a rational number called the modular anomaly which is defined as 
follows. Let q = e2~ir; then the above series converges to a holomorphic function in r for 
Im r > 0. According to [10, Proposition 4.36], provided that )~ E P+, there exists a unique 
number mx,g such that the function b~(v) is a modular function, i.e. is fixed under the 
action of a principal congruence subgroup F(N), some N. (Explicit formulas for the m~, u 
may be found in [11] and in the paper; of course, these numbers depend also of the 9~ and 
the subalgebra.) 
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The functions b~(~-), clearly, completely describe the decomposition of L(A) with re- 

spect to the subalgebra in question. They are called branching functions. If [L(A) : L(#)] < 
oo, then, of course, [L(A) : L(#)] = lim**0 bX(r). In general, we study the asymptotics of 
bXv(r) as r ~ 0 instead. Namely, since the b~(r) are modular functions, we have as r I 0, 
provided that  b x # 0: 

~ a ( A ,  

where a(A, #) > 0 and g(A, #) > 0 are real numbers called the asymptotic dimension and 
growth of the branching function. Here and in the rest of the paper f(T) ~ g(r)  means 
that limrt0 f ( r ) / g ( r )  = 1. 

In all known examples the growth depends only on the algebra g', the subalgebra and 
the level k of A, but this is an open problem, which we will refer to as the basic conjecture, 
even in the case of integrable L(£) and the subalgebra g(1, 1) (cf. [11]). Incidentally, 
the knowledge of the above asymptotics allows one to compute the asymptotics of the 
branching coefficients [A : #In as n ~ oe by making use of a Tauberian theorem (see [10] 
and [11]). 

0.6. An important version of a special case of branching functions are string functions 
)' which correspond to ~ = ~, a = 1, s = 1, i.e. which describe the multiplicities of e u ,  

weights of L(A). Namely, given A, # E []'* of level k, we define as usual, the weight space 
L(A) ,  = {v • L(A)lh(v ) = #(h)v for all h • ~'}, and let 

= q . . . .  ~ (dim L(A)v f-I L(A)(n))q n, c# 
nEZ+ 

where we let rn)~ = IA + -~12/2(k + h v) - 1~[2/2h v to be the modular anomaly of A (see 
below) and rn~,, = rnx - I-fi12/2k is the modular anomaly in this case (as usual, ~ is the 
half-sum of positive roots for ~). This is a modular form of weight -~ /2 ,  and it is related 
to the corresponding branching function by the equation 

= 

where G(v) is a modular form of weight ~/2 given in §2.2. 
String functions for integrable L(A) were studied in great detail in [9], [10], [11] (see 

also [8, Chapters 12 and 13]). The key result of this work is an explicit transformation 
formula for the normalized characters 

X~ := qm~ch.x, A C P+, 

under the action of the involution S : 7" ~ - 1 / r  (defined in §4.3). Here we identify 
q with the function e-K(v)  = e -(h'lv) on l]. (This result was extended in [13, Theorem 
3.6] to the case of principal admissible L(A); see formula (4.3.1) of the present paper.) 
One deduces from this result an explicit transformation formula for string functions under 
the involution S [10, Theorem A]. Since the transformation formula together with the 
polar parts of the q-expansions completely determine modular forms, this allows one to 
compute the string functions explicitly in many interesting cases. Furthermore, it turns 
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"~ is independent of #, which allows one to out that the asymptotics of the string functions c~ 
find this asymptotics explicitly ([10, Proposition 4.21] or [8, Chapter 13],) proving thereby 
the validity of the basic conjecture in this case. (Incidentally, for admissible • the string 
functions c~(r) fail to be modular forms [14].) 

0.7. General branching functions in the case of the subalgebras of the form ~'(1,1) = 
~[t,t -1] @ CK of g' and integrable L(~) were studied in detail in [11]. Again from the 
tranformation formula for the normalized characters one deduces the transformation law 
for these branching functions under the involution S [11, Theorem A]. One derives from 
this definitive results on asymptotics (which prove the validity of the basic conjecture) 
only in the case of tensor products [11, (2.7.15) and §3.4]. For general branching functions 
we derive the basic conjecture from the conjectural positivity of certain matrix elements 
of the transformations S in the basis of branching functions [11, p. 1881. 

0.8. In the present paper we consider the subalgebras 

fli~ ] := g'(1,u) = ~[t~, t -~] @ CK 

of g', called the winding subalgebras. (This is the simplest case different from ~'(1, 1).) 
The first basic result of the paper is Theorem 2.1 which gives an explicit expression of the 
branching functions b h for winding subalgebras in integrable highest weight representations 
L(A) in terms of string functions. The special case of this theorem, when the level of L(A) is 
1, is Theorem 2.2, which gives a solution to Frenkel's conjecture [4]. Theorem 2.1 leads also 
to Conjecture 2.2 on the asymptotics of the branching functions for winding subalgebras. 
We were able to prove only that it holds for all sufficiently large u. 

0.9. Next we compare branching functions b ] for winding subalgebras with branching 
functions b~ ®u for tensor products L(A) ® L(#). It is clear from [13, Corollary 4.1 and 
Theorem 3.6] that the branching functions /h®~ ~X are modular functions provided that A 
is integrable and # is admissible. This is the case studied in the present paper. As in 
the case of winding subalgebras, we find an explicit expression of the ~A®, in terms of %k 
string functions (Theorem 3.1). Comparing Theorems 2.1 and 3.1, we see that a branching 
function b~ for a winding subalgebra g[~l coincides with a branching function for tensor 
product L(A) ® L(p), where # = ((u -1 - 1)h v, 0), provided that u is relatively prime to 
h v and r v (Proposition 3.2). This (still mysterious) coincidence indicates a remarkable 
interplay between the integrable and admissible representations. As in the case of winding 
subalgebras, Theorem 3.1 leads to Conjecture 3.1 on asymptotics of the b~ ®~, generalizing 
the known result in the integrable case. After this paper was completed we received preprint 
[1] where Theorem 3.1 is derived in the integrable case using a free field resolution. 

0.10. The remarkable feature of the theory of integrable, and, more generally, prin- 
cipal admissible highest weight representations is the SL:(Z)-invariance of the C-span of 
normalized characters (in the twisted case, SL:(I) should be replaced by a slightly smaller 
subgroup F; see Proposition 4.3), hence the SL2(l)-invariance of the C-span of branching 
functions hA®~ where A (resp. #) runs over all integrable (resp. principal admissible) 
weights of fixed level. (A similar result holds for arbitrary subalgebras of the form ~'(1, 1), 
see [11]. This follows from the S-invariance of normalized characters.) Due to the above 
coincidence, this is the case also for the branching functions for winding subalgebras g{u] 



8 V.G. KAC AND M. WAKIMOTO 

provided that u is relatively prime to h v and r v. However, in the general case we have 
only the F0(u)-invariance (see §4.3). This is a general feature of the subalgebras g'(a, s). 

0.11. The last, Section 4, contains some preparatory material for our forthcoming 
paper with E. Frenkel [3]. It deals with functions qox,~, which are branching functions for 
tensor products of the level 1 integrable representations with arbitrary principal admissible 
representations (see (4.1.1) and Theorem 4.1). These functions previously appeared in this 
context in [12, Proposition 3]. 

It turns out that the functions Tx,u can be obtained by a simple limiting procedure 
from the characters of the principal admissible representations (Proposition 4.2). As will 
be explained in [3] this procedure naturally appears in the quantization of the Drinfeld- 
Sokolov reduction developed in [2]. As a result, one obtains that the functions q0x,~ are 
characters of the so called extended conformal algebras, which are higher rank generaliza- 
tions of the Virasoro algebra (of. [15]). In the particular case of ~ = s e 2 ( C ) ,  this procedure 
is equivalent to taking the residue of the admissible characters. As was shown previously 
in [16], this reproduces the Virasoro characters. It is worth mentioning that the limiting 
procedure gives a non-zero result only for "non-degenerate" principal admissible weights; 
in particular, the integrable characters always give zero. 

The main result of this last section is Theorem 4.4 which give a transformation formula 
for the ~ox,, under the action of S, obtained from the limiting procedure (which is simpler 
than that obtained from tensor products). This formula will be applied in [3] to calculate 
the fusion rules for the extended conformal algebras. 

Thus Theorem 4.1b means the coincidence of two theories of extended conformal 
algebras at least on the character level in the simply laced or twisted case. (In the case of 
B~ x) they are different, as can be seen by comparing Theorem 2.2' and Proposition 4.2.) 

Note that though the set of principal admissible representations of given fractional 
level carries quite a few features of a conformal field theory (like modular invariance, the 
unique vacuum, the involution), it can't be a conformal field theory since, for example, 
its fusion rules computed by Verlinde's formula [17] may be negative. This makes it quite 
remarkable that a "reduction" of this theory indeed produces a conformal field theory. 

0.12. We would like to thank E. Getzler and M. Hopkins who pointed out that the 
study of branching functions for winding subalgebras may be important for the theory of 
cohomological operations in the elliptic cohomology, which stimulated our research. We 
thank E. Frenkel for his patient explanations of his (joint with Feigin) work [2] and for 
collaboration in Section 4. We thank D. Jerison for consultations on asymptotics. 

The first author wishes to thank E. Strickland for the invitation to give a talk in 
January 1990 in the Universita di Roma II on the subject of this paper, for her persistence 
in having the paper written and for her lavish hospitality. The second author acknowledges 
the hospitality of MIT, where during his stay in the spring of 1990 the paper was completed. 

§1. Notation and preliminaries. 

1.1. Let I = {0, 1, . . .  ,g}, ~ > 1. Recall that an afflne matriz is a square matrix 
A = (ai j) i , je t  such that aii = 2, - a i j  E Z+ for i # j ,  aij = 0 implies ajl = O, and 
there exists a unique sequence (a0,. . .  , at) of positive relatively prime integers, called the 
null-vector of A, such that ( a0 , . . . ,  at)( tA)  = O. 
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Two affine matrices are called equivalent if they are obtained from each other by a 
reordering of I. A complete list of affane matrices up to equivalence is given in Tables Aft r 
of [8, Chapter 4]. Affane matrices in these tables are denoted by their type X ~  ), where X N  
is the type of the "underlying" simple finite-dimensional Lie algebra and r is the so--called 
tier number. The number h = Y]~ieI ai is called the Cozeter number of A. 

Note that the transposed matrix tA is again affme. The corresponding null-vector is 
denoted by (a~ ' , . . . ,  a~'), the tier number by r v and the Coxeter number by h v. The latter 
is called the dual Coxeter number of A. 

_ v -1. then the matrix (¢iaij)i,jEI is symmetric. Let ~j - aj aj , 
We keep the ordering of I given in [8, Chapter 4]. For this ordering we have in 

particular: a~' = 1 and a0 = 1 (resp. ao = 2) if A ~ A~ ) (resp. A = A~2)). 

In what follows we fix an affine matrix A of type X ~  ). 

1.2. Let [~ be the g+ 1-dimensional vector space over C with a basis II = {a0, . . .  , at} 
and a symmetric bilinear form defined in this basis by the following formula [8, Chapter 6] 

(1.2.1) (ailaj)  = eiaij, i , j  E I. 

Then II is called a root basis and (.I.) is called the normalized invariant form (for the matrix 
A). The basis 1-I v = {a~ ' , . . . ,  a~) defined by aiai = aVa v is called a coroot basis. Note 
that the kernel of the normalized invariant form consists of all multiples of the element 

(1.2.2) K = E aiai = ~'~ aYaY 
iEl  iEI  

called the canonical central element. 
Given a subset L of 0', we let I L  (resp. I + L ,  CL, etc.) denote the set of all linear 

combinations of elements from L with coefficients from l (resp. l+ ,  C, etc.). We also let 

L* = {a E CLI(alL ) C l}. 

The lattices Q --- IH  and QV =/1-i  v are called the root and coroot lattices respectively. 
We also let Q+ = / + H ,  Q~ = l + I I  v. 

We let f = {1,.. .  ,g} C I, H = { a l , . . . , a t } ,  ~v  = {avl,... , av t} ,Q=Z~, -  -~v = 

ZH v, 0 = CH. One has [8, Chapter 6]: 

Q D Q V  i f r  1; Q c  i f r  > 1. 

Define the following important lattices M and .~/by 

M = Q i f r  v = l ;  M = ~ V i f r V  > 1. 

.~ /= Q* if r = 1; 217/= QV* if r > 1. 
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Since (~l~ v) c z, we have M C -~ /C  M*. We also have: 

(1.2.3) IM*/M] (resp. I~//M[) are the same for A and tA, 

(1.2.4) IM*/M I --IOVlMI if r > 1. 

1.3. Let ri C AutO' be the f undamen ta l  reflections, i.e. 

r ~ ( ~ )  = v - ( ~ l v ) ~ ' ,  

and let W = <  ri[i C I > be the Weyl group. Note that  Q and QV axe W-invaxiant.  
Let A TM = W(II) ,  and A T M  = W(I I  v) be the sets of real roots and real coroots 

A vre = A T M  I-I Q~. We also let ~ = A re M Q, ~ v  respectively. Let AS e = A ~e M Q+, + = 

A w~NQ-v,  A+=-- A ~+ NQ,  etc. 
If c~ = w ( a i )  C A re, then c~ v = w(c~ v) C A T M  is well-defined [8, Chapter  3] and 

c~ v = 2c~/(c~lc~); lett ing r~ = w r i w  -a,  we have: 

(1.3.1) r , ( v )  = v - (c~[v)c~ v, v E I~'. 

We have the following homomorphism c~ ~ t~ of I] ~ into Autl] ~ with kernel C K  
[8, Chapter 6]: 

(1.3.2) t~(v)  = v + ( v l K ) a  - ((vlc~) + ½ ( a [ a ) ( v l K ) ) K .  

For a subset L of b' we let tL = {t~]c~ E L}. 
We have [8, Chapter  6]: 

(1.3.3) W = t M )~ W ,  

where W = <  rili E 7 > is a finite subgroup of W (we shall write: w = t ~ ) .  
The sets of real roots and coroots are invaxiant with respect to the group T~ r :=  t ~  ~ W  

containing W. Let 1~+ = {w e l~VIw(II) = II}, and let 

v 1) if r = 1 (resp.  r > 1)} .  J -- { j  C I ia j  -- 1 (resp. aj = 

Then [10, §4.8] the group T]V+ is isomorphic to l~ I /M,  acts simply transitively on 
{c~i E II]i E J} ,  and one has: 

(1 .3 .4 )  w = ~¢+ ~ w .  

The group T~+ can be described more explicitly as follows. Let W +  be the subgroup of W 
consisting of the elements preserving the subset {a0 := a0c~0 - K ,  ~1 := c~1,... , ~ t  := c~t} 
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m 

of Q. This group acts simply transit ively on the set {-ffjlJ E J}.  Denote by Nj  the element 
of W +  such tha t  ~ j ( a 0 )  = a j .  Then 

wj := tAi_hoW--j 

is the element of VV+ such tha t  wj(ao) = aj. 
Note also the following useful formulas: 

(1.3.5) IM/MI = ]JI, 

(1.3.6) IM*/M] = [JI if r = r v = 1 or ao = 2. 

1.4. Define the fundamental weights (resp. fundamental coweight~) Ai E 0'* (resp. 
A v E 0'*), i E I ,  by: 

<Ai,ajv > (resp. < a  v , a j  > ) = S i j ,  j EI.  

Let P = ~-~ieI lAi, pv = ~ ie I  lAY be the sets of integral  weights and eoweights and 
P+ = Y']~iex l+Ai, P~_ = ~-]~ier 7+ Av the sets of dominant integral  weights. Let 

p - = E A i ,  p V = E A V .  
iEI iEI  

Note that  

(1.4.1) < pV,K > =  h, < p,K > =  h v. 

The number  k = <  A , K  > is called the level of A E 0r*; the set of all A of level k is 
denoted by [~.k. The following map  rk sends [/* to 0 ~*k (since < A 0 , K  > =  1): 

(1.4.2) ,-k(~) = ~ - ( <  ~ , K  > - k ) 1 0 .  

Fix u E N relatively prime to a0. It is easy to see from [8, Chapter  6] tha t  the element 
6~o := ao1(u - 1)K + ao lies in A r~+ and the element ~ := (u - 1)K + a~' lies in A~f  e. 
We let 

II[.l = {~o,  ~ / : =  ~ (i c 7)} ,  

n~'. 1 = ( S o ,  v ~ .  v := ~ ,  (i e ~)}, 

W[.] = <  r~, ]i e I > ,  

Then II M and II(u I are root and coroot bases with the same normalized bil inear form as 
for II and II v. We shall indicate the objects  associated to II[u ] by an overdot. For example, 
the canonical central element for H[u] is 
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(L4 .3)  

the fundamental  weights are 

(1.4.4) 

hence 

(1.4.5) 

/~" := E ai(~ v = uK, 
iEI 
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/~i = Ai + (u -1 - 1)aVh0, 

b := ~ L  = p +  ( ~ - '  - 1)hVho, Ibl ~ = IPl ~, 
iEI  

(1.4.6) i ~ = t , ~ ,  

(1.4.7) TCV = W[u] = t~M :~ W .  

The following lemma, the proof of which is straightforward, will be useful in the sequel. 

~* = LEMMA 1.4. I f  y 6 I~¢', 76 and w 6 yW[u]Y-l, so that y t#~ for some ~ 61~l and 
y 6 W ,  and w = ytuc,~y -1 for some ~ 6 M and ~ 6 W ,  then 

w y t ~ y - l w  -1 = tw y(~). [] 

1.5. Let k • Q and let u 6 N be the denominator of k (i.e. ku 6 l and (ku, u) = 1). 
We say that  k is principal admissible if 

(1.5.1) ~(k + h v) > h v and (u, r v) = 1. 

Given k 6 Z+ we let P~ = P+ M [},.k. Given a principal admissible k, we let P_~ = 
Tk(p~(k+hV)-hV). (Note that when k 6 l + ,  the two definitions of P.~ coincide.) 

Given ~ 6 [}'*, we let 

= : A v r e  R ~ { ~ e ~ W ~ l < a + p , a > e Z } ,  R~ R ~ n ~ +  , 

and denote by S ~ the set of a 6 R~_ which do not decompose into a sum of several elements 
from R~_. Let W ~ = <  r~la 6 R~ >;  one can show that W x = <  r~[c~ 6 S x >.  

We call A 6 0'* an admissible weight if it satisfies the following two properties: 

V f e  (1.5.2) - < A + p, a > ~  l +  for all a 6 A+ , 
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(1.5.3) QR ~ = QII v. 

A weight A is called principal admissible if in addition to (1.5.2 and 3) we have: 

13 

(1.5.4) the matrix (2(alfl)/(~l~))~,aes~ is equivalent to A. 

Note that all dominant integral weights are principal admissible. 
We recall now the description of the set of all principal admissible weights. Given y • 

l~, denote by Pu,v the set of all admissible A such that Sx = y(HV[H1); let P~,vk =P~,yNiJ~*k. 
Denote by Pk(A) the set of all principal admissible weights of level k. Finally, recall the 
shifted action of l~d: 

w.~ = w(~ + p) - p. 

PROPOSITION 1.5. [13, Theorem 2.1 and Proposition 2.1]. 
(a) P~,, # 0 if ~ d  only i t  

(1.5.5) k is principal admissible and u is the denominator of k, 

AVre (1.5.61 ~(ni~.l) c ~ +  . 

(b) If (k ,u ,y )  and (k,u,U')  are two triples satisfying (1.5.5 and 6), then the followi~g 
statements are equivalent: 
(i) P~,, n P~,,, 5 0 ,  
(ii) P:,, = pk,,,, 

e V (iii) y(II~,]) = y ( I IN) , . 

(iv) there exists a = ta-ff • 17V+ such that y~ = ytua~. 

(c) If (1.5.5 and 6) hold, then 

pk,~ = y.p~ = {y.(A - (u - 1)(k + hV)A0)l A • P~(k+nv)-hv }. 

(d) Pk(A) ~ 0 if  and only if k is principal admissible. 
(e) Pk(A)  k = UyP~*,y, where u is the denominator of k and y satis~es (1.5.6). [] 

PROOF: We shall prove that (iii) is equivalent to (iv). The rest of the statements are 

proved in [13]. Indeed, (iii) is equivalent to y- ly ,  C (TV+. But t~V C 14r+ if and only if 

t , ~  E W+. [] 

Remark 1.5. (a) If k E l+ ,  then Pk(A) = P~. 
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(b) Admissible weights are classified completely in [13]. In the case A = A~ 1) this 
is precisely the set P ( A )  of all principal admissible weights. For all other affine matrices 
there are admissible weights which are not principal admissible, and their levels need not 
be principal admissible. 

For A E pk, y, let A ° = T/l(y-1./~), i.e. 

(1.5.7) = v.(~ ° - (u - 1)(k + h ~ ) h o ) . ,  

The map A ~ A0 defines a bijective correspondence between P~,v and "'P_~ (k+hv)-hv. 
Note that 

(1.5.8) W A = yW[uly -1 for A E p k  

The set P k ( A )  admits an important involution A ,__.,A defined as follows. Let A E 

pk := M W is the Weyl group for the u,y, Y = t~Y, /3 E 2~/, y E W. First, note that W )' W ;~ 

finite root system ~ x  := ~ v  M R x. Denote by ~)' the longest element in W x (so that w - °  

is the longest dement in W). Recall that we have: ~ ; ~  = --)' - -  - A +  and (~),)2 = 1. Define 
w ~ C Aut I) by 

(1.5.9) w~(v) = - ~ ( v )  if ,, e F, w~(Ic) = K, ~ ( d )  = d. 

Note that wAA~ ~* ---- A~ r~. If A C P ~  (m E l+ )  is a dominant integral weight, we let 

(1.5.10) 

Let 

(1.5.11) 

Finally, we let 

(1.5.12) 

~A = ~° (A) (=  - ~ ( A )  + 2mAo e P $ ) .  

t y  = V~w-O, tV = t_~ ty. 

t)~ =ty.(t(Ao ) _ (u - 1)(k + hV)A0). 

It is easy to check that this is an involution that maps p k  onto pk and that more u~y u~ty~ 

invariantly this involution can be defined by 

% = w~(;~ + p) - p. (1.5.13) 

We clearly have 

(1.5.14) R'~ = w~(R~). 

The following lemma will be used later. 
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LEMMA 1.5. Let y = t ~  E 17V, where fl E M,  y E W ,  and let u E N be such that 

V re - -V (1.5.15) y(H[V]) C A+ \ A + .  

Define w~,y by 

(1 .5 .16)  o~u,y-[-p(res p.  _[_pV) ~- u A 0 _ ~ - l ( f l )  i/er = r v = 1 o r r  ) l ( r e s p ,  i / 'v = 1, r v ) 1). 

Then ~,~ e p;_hv (resp e p:u-h ). 

PROOF: We shall consider the case r = r v = 1 or r > 1. The proof in the case r = 1, r v > 
1 is similar. It is clear that  wu,y C P u-by,  so one has to show that  (w~,~[a v) _> 0. For 
i > 0 we have: 0 < y(&V) = yc~v _ (yavlfl)it-,  hence (aVl~-lf l )  < 0 and (w.,yl av )  k O. 
Finally, 0 < y(&~') = (u - 1 - (c~Vl~-afl))K + -yc~ 0v implies that (uA0 - ~ - ' f l l c ~ )  _> 0. In 

- -V 
the case of equality, y(&~') = g(%v) _ I£ E A+, which contradicts (1.5.15). [] 

1.6. Let 0' = 9(A) be the affine Kac-Moody algebra associated to an affine matrix 

A of type X}~ ) and let b be its Car tan subalgebra. Let 1~' = [0, 0] be the derived algebra. 
Then  [?' = ~' M I) is the space introduced in §1.2. The bilinear form (.I.) extends from b' 
to the whole g(A) to a non-degenerate  bilinear invariant symmetric form (.I.) (not in a 
unique way). We pick an element d E h, called the scaling element, such that 

( d l a j ) = 6 0 i ,  j E I ,  (did) = 0 .  

Then  I? = [?' + Cd. The space [)'* will be identified with a subspace of h* via extending a 
linear function ~ on [)' to [) by < ,~, d > =  0. Since the restriction of the bilinear form (.[.) 
to [1 is non-degenerate,  it induces an isomorphism I)-=*[)*, and we shall identify [) and [~* 
via this isomorphism. Note that  d is then identified with a0A0. The action of the groups 
W and l~d extends from [l' to [) by (1.3.1 and 2), and the bilinear form (.I.) is 17f-invariant. 

Introduce the following domains in 1): 

Y = {v E %l Re(KIv) > 0}, 

D = {v C %I Re(c~i[v) > 0, i E I}. 

Note that  D C Y and recall that D, the closure of D in Y in metric topology, is a 
fundamental  domain for W in Y (see [8, Chapter 3]). 

Given ,~ C %, we denote by e a the function on b defined by e~(v) = e(NV). The 
function e - g  will usually be denoted by q. 

Define a holomorphic function R on Y by 

R ~ - e  p I I  ( 1 -  e - ~ )  mult a' 
c~EA+ 

Here A+ = A~_ ~ U NK, mult  a = 1 if c~ e A y ,  mult  r j I (  = ~, mult j K  = ( Y  - £)/(r  - 1) 
if r > 1 and j ~ 0 mod r (see [8, Chapters 6 and 8] for details). 
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Given A E I~*, let L(A) denote the irreducible highest weight module over g(A) with 
highest weight A (see the Introduction). With  respect to d we have the energy decomposi- 
tion: 

L(A) = @iEz+L(A)(ACd)-D, 

where L(A)(a) is the a-eigenspace of d in L(A). We shall say that dements from L(A)(^(d)_j) 
have energy j .  Let 

char  = trL(h)e v := E mult~x(A)e()'[')' v E I}, 

be the character of L(A). By [8, Lemma 10.6h and (11.10.1)], this series converges in D 
to a holomorphic function. The foUowing result is a special ease of [12, Theorem 1]: 

PROPOSITION 1.6. Let A be a principal admissible weight. Then in the domadn D, chA 
is given by the following formula: 

(1.6.1) chA = ~ ~(w)e~(~+P)/a. [] 
w E W  ^ 

Of course, a special case of (1.6.1) when A = 0 is the Macdonald identity 

(1.6.2) ~ ~(w)~ ~(p) = n. 
w E W  

Remark 1.6. Both the numerator and the denominator in (1.6.1) converge to holo- 
morphic functions in Y and the denominator R does not vanish in D. 

Define the modular anomaly of A E 0 I*/c by 

[A + pl 2 [p[2 
(1.6.3) mA -- 2(k + h v) 2h v '  

and the normalized character by 

(1.6.4) XA = e - m ^ g  chh. 

Note that Xh depends only on A mod CK. Another advantage of introducing the normal- 
ized character is its modular invariance properties which will be discussed later. Note that 
using (1.6.1) functions chA and XA can be extended to meromorphic functions in Y, which 
are analytic at least on the set of regular elements Yres = {v E Yl(alv) # 0 for all a e A~Y}. 

Introduce coordinates (r,  z, t) on Y as follows: 

r = {(r, z, t) := 2~ri(-rA0 + z + t g ) l ~ , t  e C, Im ~ > O, z e F}. 

Then 
q : ~  e - K  ~ e 2~iv .  
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For A • P= +, u • N l ,  let 

(1.6.5) Ax = q Ixl2/l" Z e(w)e~'(x)" 
w E W  

This is holomorphic function on Y (which is identically zero if A is not regular).  
k Let A • P~,~, y = ray. Formula (1.6.1) may be rewri t ten in terms of the functions 

Ax as follows [13, Theorem 3.5]: 

(1.6.6) x n ( r ,  z, t)  = A h o + p ( u y - l t _ # l u ( r ,  z / u ,  t l u 2 ) ) l A , ( r ,  z,  t). 

Using this formula, it is s traightforward to derive the behaviour of the characters under  
the involution A ~----*tA: 

(1.6.7) x ~ ( r ,  z, t )  = e(~a)e(w-°)xA(~, -z ,  t). 

For # • I~ '*m, m ~ 0, we have the following simple but  useful identity:  

(1.6.8) r - -  r l# l  I I I  . . . .  i w(~) _./:Li2 
m , ~ ( m T ,  l # ,  2"m~ J = ~tw)q ~ . . . .  . 

w E W  

Now (1.6.8) for/~ = p and (1.6.2) give the following identity:  

(1.6.9) A~,( h V r,-r-p, rlPl212h v) = ~ ~(w)q Ihv'~(~')-'pl=ii'a'v 
wEW 

= qlhVX-"Pl~12~'hv H (1 -- q(Xla))mult a 
~ E A +  

Here and further,  given A • I}% we denote by A • 0 the restriction of A to 0. Finally, [13, 
Lemma 3.1] gives us the following asymptot ics  as r $ 0: 

(1.6.10) 
A x ( m r , - r - f i ,  rl#lV2m) ~ ( u m ) - t l 2 1 M * l M l - ~ 1 2  I I  4 sin =(:~1~) sin ~(~1<~) 

U m aeR+ 
~ri h v d im0(Xlv)  

X ( - - iv)  - t /2  exp 127" r u m  ' 

where R+ is defined by 

- -  - - V  

(1.6.11) R+ = A+ if r v = 1, and = A+ if r v > 1. 
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§2. B r a n c h i n g  funct ions  for w i n d i n g  subalgebras .  

2.1. Let u E N be relatively prime to a0, and let y E 1~ satisfy (1.5.6). Denote by 
9[~,v] the subalgebra of the affme algebra 9 generated by [~ and the root vectors attached to 
the roots from 4-y(II[~]), and let 9[~] = 9[~,1]- The subalgebras 9[,,v] will be called winding 
subalgebras. 

Example 2.1. Let A be of type X~ 1). This is usually refen:edto as the non-twisted 
case. Let g be the simple finite-dimensional Lie algebra of type Xt. Then 

g -- 9(A) = C[t,t -~] ®c ~ +  CK + Cd 

with well known commutation relations (see the Inroduction), and one has 

g[,~] = C[tU,t -"]  ® g + C K + C d .  

One of the main objectives of the paper is to describe the decomposition of an inte- 
grable g-module L(A) with respect to the subalgebra 9[u,v]. It turns out that  this can be 
obtained in terms of the so called string functions. Recall that, given A E I)*, the string 
function c A of the g-module L(A) of level k is defined by: 

(2.1.1) cA = qmA-~212~-~ E multA(A - nK)q n. 
nEI 

(Recall that q = c-K.)  This series converges to a holomorphic function in Y [ , Chapter 
11]. Note that c A depends on A mod CK, that c A ~ 0 implies A - A  E Q, and that cw~A = c A 
for w E W. 

Let k E N and let A E P~.. Then by [8, Proposition 11.8], the g-module L(A) 
decomposes as a 9[~,y]-module into a direct sum of integrable irreducible highest weight 

modules L(A) of level uk (by (1.4.3)), each appearing with a finite multiplicity. Denote 
by [A : A] the multiplicity of the occu[reneeof L(A) in this decomposition. Introduce the 
branching function b A = bA(g[u,v]) for the winding subalgebra, where A E pk ,  A E y(p_~k), 
by 

(2.1.2) b h : qmA--Um~ E [ A :  (A - nK)]q n. 
nEZ 

This series converges to a holomorphic function in Y. Note that as before, b A depends on 
A mod CK. Note also 

(2.1.3) b A # 0 i m p l i e s  A - A E ( u - 1 ) k A 0 + Q .  

By the Weyl-Kac character formula (which is a special case of (1.6.1) when h E P+) 
we have for an integrable g-module L(A): 

(2.1.4) XA = Ah+p/Ap. 
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Similarly we have for an integrable g[,,y]-module L(A): 

(2.1.5) )~x = A~(X+~)/A~(~), 

where for # • P~_, # = ~'~i miAi, one lets it = ~ i  m i i i ,  and Ai and ib are defined by (1.4.4 
and 5), and where 

(2.1.6) Ay(h) = e~l~'2£" E ¢(w)e~('i~)" 
wEyI~Vy -1 

Note that 

(2.1.7) 

Finally, by the very definitions we have 

(2.1.8) x ,  = 

= # + ( u -  1)sAo. 

E A . 

XEP~ k 

We can prove now the main result of this section. 

THEOREM 2.1. Let $ be an aglne algebra of type X(N r), let u C N, (u,ao) = 1 and let 
y e ~V satisfy (1.5.6). Let A • P~ and let A • P~'. Then 

(2.1.9) * = by(x)(9[u,u] ) E ¢(w~qhV("~+^v)l~-h-~'12cA . . . . . .  u . . . . .  \ ) y ( w ( A t p ) - - t O - - (  - - l ) t~lkO) • 

wEW 

PROOF: In view of (2.1.8) and (2.1.5), it suffices to show 

(2.1.10) £ ( ~ ) x ~  = ~ a " y()qAy(£+b), 
,kE P~ k 

where b h is given by the right-hand side of (2.1.9). ~(x) 
Recall that by definition of string functions we have [8, Chapter 12]: 

(2.1.11) XA E E "~l~-~et'(OcA 
~EA+QTCK 7EM 

rood (kM+CK) 

The left hand side of (2.1.10) is equal to 

(2.1.12) ~ - ~  Z ~(~)~('~)x~" 
wEy~Vy - t  
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We can write w = y t ~ y  -~, where a ~ M, ~ ~ W. Letting 7 = Y--W7 ~, ~ = w - l y - l ~  t 
and using Lemma 1.4 and (1.4.3-6), we can rewrite (2.1.12) as follows 

(2.1.13) 

12  " t i 

weyWy-1 ~ ' E ( w y ) - 1 A + Q + C K  q'eM 
rood (kM+CK) 

wEyWy -1 $.~y-~ A+Q+CK "r~M 
rood (kM+CK) 

We may assume that y(~ + ~ + kT) is regular with respect to yl~Vy -~. Then there exists 
a unique element ~ from the set y(.p~_k) of dominant integral weights of level uk for the 
basis yH~]y -1 and a unique a E y W y  -1 such that 

(2.1.14) y(/9 + ~ + kT) = a(9 + Y(P)) + aK, where a E C. 

Plugging (2.1.14) in (2.1.13) we obtain: 

(2.1.15) :E 
wEyr~vy-~ a~yr/Vy-~ ;'ev(P~ h) 

where 

b = - a  + I, '(~ + Y/,) - Y/' + aKp  + ,,IPl___~ ~ 
2k 2h v 

= I,,(~ + yA) - yAP e ~'Ipl---~ 
2k 2h v 

hV(u k +  hV ) l a(~ +y~)  ~(~) 2 + ul v + y~l 2 
2k [ uk + h v h v 2(uk + hV)" 

Plugging this expression of b in (2.1.15) and putting w' = wa, fJ = y-19, we obtain: 

~vl,,k+hv), ~ ~_.~.,2 A 
(2.1.16) ~ ~ ~(~,)~i,(~+~)q . . . . .  +~v-~ . . . .  -o.y(~+,~)-yp. 

Using (2.1.7) completes the proof. [] 

Since c A = c A for w C W, we obtain, in view of (1.3.4), the following corollary of 

(2.1.9): 
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COROLLARY 2.1. Decompose y E 17V according to (1.3.4): y = (/w, ~I 6 l~+, w • W. 
Then 

b~-l(A), . bh(9[-,y]) = x t(}[,]>. [] 

This corollary allows one to reduce the study of branching functions for the subalgebra 
i}[,,~] to that  for the subalgebra 1}[,]. 

Since bh(gD]) = CA.x, we obtain another corollary of (2.1.9). For A, A • P.~ one has: 

(2.1.17) E ¢(w)q ' " (~+h") I~_@I ,cA<x+p)_  p = 6A,X. 
w E W  

2.2. In this subsection we consider the special case k = 1 of Theorem 2.1. Recall the 
following 

LEMMA 2.2. ([10, 4.6], [8, Chapter 13]). Let 9 be an a/flne algebra of type X(~ ) where 
XN is of  type AN, DN or EN, and let A, M E P~ + CK. Then either A - M ~ Q and 
c A = 0 ,  or A -  M e Q and 

c~ I = qmA--IAl'/2 H (1 -- q.)-mult .K  [ ]  
n E N  

Using Lemma 2.2 and (1.6.9), formula (2.1.0) can be rewritten in the case A C P~. as 
follows: 

THEOREM 2.2. Let g be an atTme a/gebra of  type X(N r), where X N  is of type AN, DN or 
EN (i.e. either r = r v = 1 or r > 1), and 1et A E P~. Let u E N, let A E P" and consider +,  

the subalgebra g[u] ors.  Then either A - (A - (u - 1)Ao) ~ Q and [A: (A - ng)] = 0 for 
al l  ~ ,  o r  A - ( ~  - ( u  - 1 ) A 0 )  C O a n d  

q (Ixl~-IAI2)/2 rLezx+(1 - q(~X+Pl~))mult 
(2.2.1) E [ A :  (A - ng)]q n = [] 

. e z  l-l.eN(1 - -  qn)mul t  n g  " 

This result was proved in the case of A~ 1) in [4] by a quite complicated method and 
was conjectured there for the simply laced case (except that the power of q is missing 
there). 

COROLLARY 2.2. Let g be as in Theorem 2.2 and let u E N. 
(a) If  A C P~. and A E P_~ are such that A - A E (u - 1)Ao + Q then the minimal n 

for which [A: (A - nK)]  # 0 is equal to ½(IAI ~ - IA[2), and [A: (A - ½([AI 2 - IAI2)K)] -- 1. 
(b) In the g-module @Aep~L(A) viewed as a 9[~]-module all integrable highest weight 

modules of  level u occur, the minimal energy of occurr ing of  the highest weight vector o f  
1 - - 2  L(A), A E P~'+, being equal to ~(IAI  - IXI2).  D 

According to Corollary 2.2b, given 9 as in Theorem 2.2 and u E N, for each A E P_~ 
there exists a canonically defined 1-dimensional subspace in the space V = @hep~L(A), 
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which we denote by V [~] , whose non-zero vectors are all highest weight vectors of weight 

for 91u ] of lowest energy. (Comparing this with [8, Exercise 12.17], we see that V~[~]\{0} 

is also the set in V of highest weight vectors of weight A for 9 of lowest energy.) Since all 
weights of L(A), A • P~_, are of the form t-~(A) - nK, 7 • Q, n • l+, we conclude that 

(2.2.2) V ["] = L(A)t,(h), where A - A = (u - 1)A0 + "7 mod CK. 

Let N I = N for A = X } ~  ) except for A = 4  (2) andn(2 )  when we let N ~ = g + l  "*2t--1 ~ t + l  
and 2g - 1 respectively. Introduce the following function, 

c( '~)  = q~ ' /~ , .o  i i  (1 _ q.).,°,, . / ~  

n > l  

- - V  
This function, along with the related values of IQ /M], is given by the following table: 

Typ~X~ ) C(r) I~V/MI 

4(2) q(v) t I X~ I) or "'2g 
A(2) 2t-1 rl(r)t-l~(2r) 2 
D(2) 2~-1 g"}- 1 TI (T)~(2T)  ~-1  

E~ 2) r/(v)2~(2r) 2 4 

D(~ ~) ~(T)~(3~) 3 
Then formula (2.2.1) can be rewritten as follows: 

q[hVX-up[2/2(u+hV)h v 1-Ic~CA+(1 __ q(X+p[c,))mult  c~ 

(2.2.3) b~ = G(T) 

Remark 2.2. Formulas (1.2.3), (1.2.4), (1.3.5) and (1.3.6) together with the above table 
allow one to compute the values of [M*/MI, ]~/MJ, etc. 

Later we shall need the following asymptotics as T ~ 0: 

7tiN 
(2.2.4) G(T) -1 ~ I~V /mla/2(- ir)  e/~ exp 12rv'  

which can be deduced either by using the above table and the asymptoties of ~(v) -1, or 
*° [8, Chapter 13]. by using the asymptotics of the string function %0 

There is one more case when branching functions for winding subalgebras have very 
simple expressions: 9 is of type B~ 1) and k = 1. In this ease all (up to equivalence and 
symmetry of the Dynkin diagram) non-zero string functions are given by the following 
formulas [10, 4.6]: 

Ao Ao qm~° r I  (1 _ q - ) - t (1  + qn-a/2), (2.2.5) CA0 + CA1 = 
nE r,,l 
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(2.2.6) a~ qmat-ln~12/2 H (1 - q" ) - t (1  + qn). CAt = 
nEl~l 

THEOREM 2.2. ' Let g be an a ~ n e  algebra of type B~ ~) and let A E P~_ = {A0,A~,At}.  
Let u E N, A E P~_ and consider the subalgebra g[=] of  9. Then either a11 branching 
coettlcients [A: (k - nK)] are zero, or A E uA0 + O (resp. E At + (u - 1)Ao + Q) and we 
have respectively: 

(2.2.7) 

E [ A 0 :  ( A - n K ) ] q  n + E [ A I :  ( A - n K ) l q  "+1/2 

nEl nEZ 

= ql'X[2/2 H (1 - -  q(~.+pla))mult a H (1 - q" ) - t (1  + q . - , / 2 ) ,  

aEA+ nENI 

(2.2.8) 

nET 
(A - n K ) ] q  '~ 

= q(IAI2-1itl2)/2 H (1 -- q()~+,[a))mult c~ H (1 -- qn) - t (1  -4- qn). 
~EA+ hEN 

PROOF: Formula (2.2.8) follows from (2.1.9), (1.6.9), (2.2.6) and the fact that  any non-  
h~ is equal to At zero string function of the form c~ CA. 

Adding up formulas (2.1.9) for A = A0 and A1, we have: 

(2.2.9) 
hV(~+h v) ~(:,+p) p 2 A 

hA° + b~l = Z ¢(w)q 2 ~.--~Zv-h--h~r, o 

w E W  

Since w(A + p) - p - (u - 1)A0 E p1,  it is Q-congruent  to A0, hence is W-con juga te  to A0 
or A1. Hence A0 u 1 A A1 u 1 A Ao + cA1 ° or Ao A1 which Cw()t+p)-P-(  - ) o "~ Cw(X+P)-P-(  - ) o "~- CA0 = CA1 + CA1' 
are equal. Now we can apply  to (2.2.9) formulas (1.6.9) and (2.2.5). []  

2.3. In the section we discuss the asymptot ics  of the branching functions b~h(9[=]; ~-) 
a s r ~ 0 .  

Introduce the following notat ion (see (1.6.11)): 

(2.3.1) a(A) =(k+hv)-t/21m*/~vl-~ H 2 s i n ~ r ( A + p i a )  k + h V  , A E P ~ ;  

(2.3.2) Ck - 

We can s tate  now the following 

k dim 9(XN) 
k+h v 

, k e Q .  
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CONJECTURE 2.2. Let $ be an afflne a/gebra o/" type X(~ ), let k E N, A E P~ and let 
u E N, u > 1, A E p~_k be such that A - A E (u - 1)kA0 + Q. Then 

(2.3.3) bxh(fl[u]; v)-~ I J l a ( A ) a ( ~ ) e x p  ~-~Tr _ u_ lcuk) .  

Note that  asymptotics (2.3.3) is obtained from (2.1.9) if one replaces thoughtlessly 
the string functions by their asymptotics (given in [10, §4.7] or [8, Chapter 13]): 

(2.3.4) c~(v) ~ ] J I I - Q V * / M l - l l M * / M i l / 2 a ( A ) ( - i r / k ) t / 2 e  7rick/i2rr if A - ~ E Q, 

and then uses (1.6.8 and 10). This procedure gives however a wrong result when u = 1. A 
more careful argument using the second term in the asymptotic expansion of the cx h shows 
that  (2.3.3) holds for sufficiently large u. More precisely, let 

bk = ~ m i n  (2k(Xlp) - h~l~l~)a ~, 
xeP~\{kAj,jeJ} 

and let, as usual, b~ denote the same quanti ty for the adjacent root system ([10,§1.5] or 
[13, §3]). (Note that  bk = b~k if r ---- 1 or a0 = 2. Recall also that  bk > 0 [10, Proposition 

4.14]. For example, b~ = e(k - 1)/k ~ for A~ 1), k > 1.) Then (2.3.3) holds if 

12aobl/(k + h v) > d i m g ( X N ) / ( u k  + hV). 

Note also that  (2.3.3) holds for k = 1 if r = r v = 1 or r > 1. This follows from Lemma 
2.2 by making use of the "thoughtless" argument. 

2.4. In this section we will assume (for simplicity) that  r = 1, hence g~ = 

C[t, t -1] ®c $ + C K  as described in Example 2.1. The well-known Sugawara construction 
extends any representation of 9 in a vector space V with K = k I y  and with spectrum 
of d bounded below, to the semidirect product Vir ~< g' (see e.g. [11, §3.4] where this is 
described also in the twisted case). Recall that  Vir is spanned by operators L ,  (n E / )  
and I ,  which satisfy the usual Virasoro relations: 

m 3 -- m 
[Lm,L.] = ( m -  n )L~+ .  + ~ _ .  1~ ek, 

where the central charge ck is given by (2.3.2), and that  [tm ® x, L=] = m t  m+= ® x. 
We fix u E N and let 

L .  = u - l L , ,  + 5,,o(U - u-1)ck/24.  

These operators satisfy the Virasoro relations with central charge uck, and for x ( u m )  E gl,] 

we have: [~(.m), t . ]  = m x ( . ( m  + n)) e gi.l" (Rec~l that ~(r.)  stands for t ~ ® z.) 
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Let L,n (n E l )  be the operators  given by the Sugawara construct ion for the glu]- 
module  V. They satisfy Virasoro relations with central charge cuk. Hence the coset 
Virasoro operators  

(2.4.1) L~ ~J := L ,  - L ,  

satisfy the Virasoro relations with central charge 

(2.4.2) c~ ~] := UCk -- Cuk. 

This is a variat ion of the well-known coset construction [5]. 
The operators  L[~ u] commute with g[~],l hence act on each subspace ?d(A, A) of highest 

weight vectors with weight A e pk~ for g[~] in a g -module  L(A),  A • P~.  This represen- 

ta t ion of Vir in/,?(A, A) is uni tary  with central charge c~ ~] and with the lowest eigenvalue 

of L~ ~] equal to 

(2.4.3)  = u - l m A  _ + c ul/24 + u-l , 

where n is the lowest energy of d in td(A, A). 
Using the above facts it is easy to compute the branching functions in terms of Virasoro 

characters ~,~,Jm) in the case when c [~] < 1, using the method explained in [11] (we use 
nota t ion of [11]). 

PROPOSITION 2.4. Le t  g -- g(A) be an atone algebra associated to a s y m m e t r i c  m a t r i x  A 

and  let  u > 1. Le t  c = c~ ~] < 1; then k -- 1 and  u = 2, and all these cases are l is ted below 
(in all formulas b = b(v) and X = X(2v)): 

_ 1 .  0 )  A~ 1), c - -  ~ - .  

Ao Ao . (1) A1 ,)((1) . (1) 
b2ho = b2A~ = X2,2; bAo+A ~ = 1,1 "JY X2,1" 
1) 1), = 

A0 . (1) . (1) . (1) 
b2Ao X2,1; bA~ bA; -~-- X2,2; ~-- X I , I '  

2) e : 
A0 bA~6 . (2) . (2) bA6 . (2) + ~(2). . (2) + (2) 

b2A0 = ---- X2,1; bA~ = hA: --~ A0-t-A6 X3,2 A3,3, X2,2 ; = bA: : XI,1 )~3,1' 

s )  c = t :  
Ao h i  A2 (3) - (3) Ao A1 A2 (3) __ (3) 

b2Ao ~ b2A2 = b2i~ = X4,2 -I- X4,4; b i~+ i :  ---- bho+h ~ = bho+A 2 ---- X2,2 d- X3,2. 
6 .  4) E~ 1), c :  ~. 

Ao A1 A5 (4) . (4) . (4) X(4) 
b2Ao ~-- D2A5 = b2A t ~2,1 -~- X4,1,  bAAA: bAAA14 DAA: 2T- ~ ~ ~- X2,2 4,2 

A0 A1 A5 __ X(4) [ ]  
bAI+A ~ ---- bA0+A1 = bAo+As - -  4,3 '  

Remark 2.4. Comparing (for A of type E~ 1), A = A0, A = A1) formula (2.2.1) with 
Proposi t ion 2.4, we obtain the following curious identity: 

1 ] . e A + ( E ~ ' ) ) ( 1  - q(A~+pla) )mult  c* 

l ineN(  1 _ q,~)S = H (1 + q2n). 
nGNI 
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§3. C o m p a r i s o n  wi th  b ranch ing  funct ions  for t ensor  p roduc t s .  

3.1. Let g = g(A) be an affine algebra of type X(N r). Let m E N, let k E Q be principal 
admissible, and let A E PC, I s E pk (A)  (see §1.6). Then by [13, Corollary 4.1] the module 
L(A) ® L(IS) decomposes with respect to g into a direct sum of irreducible highest weight 
modules L(A), where A E Pm+k(A) + CK,  each appearing with finite multiplicity. Denote 
by [A ® IS : A] this multiplicity. Define the branching function ~A®~ ~ as follows: 

bA®~ qm~+m~-.,~ ~ [ A  ® IS: (A - nK)]q". A ---- 
n E l  

Note that ~h®~ = 0 unless A + IS - A E Q. ~A 
We have seen already in §2.1 that the branching functions for winding subalgebras can 

be expressed via string functions. We will show now that this holds for tensor products as 
well. Recall the map ), ~ A ° defined by (1.5.7). 

THEOREM 3.1. Let g be an a/fine a/gebra of type X(~ ), let m E N and A E PC, and let k 
be a principal admissible rational number with denominator u and IS = 

pm+k and in this case y.(Is0 _ (u _ 1)(k + hV)A0) e R ~ Then b~ ®~ # 0 implies that A e -  ~,, 
one has: 

Ik+hv){~+k+hv) I ~(~O+P) ~°+P 12 h 
(3.1.1) 1'h®~' y(w(~0+p)_(~o+p)_(u_l)mAo). =  (w)q . . . .  

w E W  

PROOF: By the very defmitions we have: 

(3.1.2) 

By (1.6.1 and 2) we have 

(3.1.3) 

w h e r e  

.A®t*., .  
XAX~, = 0 A XA. 

A e P ~  +* 

(3.1.4) A~+p = q2(k+hv) ~ e(w)e~'(#+p). 

wEyPVy -x  

A similar formula holds for XA. Using (3.1.2 and 3), it suffices to show 

(3.1.5) xA>L+p= b~ A~+p, 
A e P :  +~ 

where ~h®~ is given by the right-hand side of (3.1.1). Using (2.1.11) and (3.1.4) we can v,k 

rewrite the left-hand side of (3.1.5) as follows: 
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I~°+pl 2 
(3.1.6) q~(~---'4~ E E e(w)e'(~'+°) E "  2g~-~ et'(~)cn 

~EATQTCK wEylJVy -1 7EM 
mod (mM+CK) 

Recall tha t  w = y t ~ y - 1 ;  let 7 = Y w7 ~ and ~ = ~ ~ ' .  Then, using Lemma 1.4, we can 
rewrite (3.1.6) as follows: 

(3.1.7) q ~(k+'~) E E E £(wXeW(V'+P+Y('~'+m~/))-~cA' J ~ v(~ )" 
wEyl~Vy-1 ~' Ey-I(A)+Q+CK "y'EM 

mod ( m M + C K )  

We may assume tha t  # + p + y(~' + roT') is regular with respect to yl~Vy -1. Then there 
exists a unique dominant  integral weight ~ of level u(m + k + h v) - h  v for the simple coroot 
basis y(HN] ) and a unique a E yI~Vy -1 such tha t  

(3.1.8) (# + p + y(~' + rnT')) - a(~ + y(#)) e CK,  

where jb is given by (1.4.5). 
We can write y - l ( ~ )  in the form: 

y - l ( ~ ) = - E m i A i ,  mi C Z+, E a V r n i  = u ( m + k + h V ) - h  v, 
i i 

where the £i  are defined by (1.4.4). Let v + p = ~ + y(~). Then we have by (1.4.4 and 5): 

(3.1.9) v + p = y(v ° + p - (u - 1)(m + k + hV)A0), 

where v ° = EmiAi)hence v E p ~ + k .  
Using (3.1.9) we can rewrite (3.1.8) as follows: 

(3.1.10) ~ + p + y ( (  + m7') = a(v + p) + aK, a ~ C. 

Since the string functions are invariant under t ranslat ions by elements from raM, we see 
from (3.1.10), tha t  

(3.1.11) A A cv(~') = %(v+p)-(~+p)" 

Plugging (3.1.10) and (3.1.11) in (3.1.7) we obtain 

(3.1.12) E E ^ b A ~(a)Av+pq %(v+p)-(~+p), 
vEp~  +k aEyWy -1 

where 

b -- - a  + la(u + p) - (# + p) + aKI2 + ItL° + pl-----------~2 Iv° + p[2 
2m 2(k + kv) 2(~ + k + h v) 

= I ~ ( ~ + p ) - ( ~ + P ) I  = + I~° + P I ~  I~°+pl  = 
2m 2(k + hv) 2(m + k + hV)" 

Furthermore,  we have: a -- ytua-#y -1, a E M, ~ E W.  Hence, using (3.1.9), we obtain:  

(3.1.13) a(v + p) = y(t~-5(v ° + p) - (u - 1)(m + k + hV)A0) mod CK. 

Formulas (3.1.12 and 13) prove (3.1.5) and the theorem. []  
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CONJECTURE 3.1. Let g be an a//ine algebra of type X ~  ), let m E N and A E P ~ ,  and 
let # E P~,y and A E p~+k  be such that A + # - A E Q. Then 

~ri 
(3.1.14) b~®Z('r) ~ [Jla(A)a(A°)a(# °) exp 1--f~vr(Cm + Ck - Cm+k). 

Note that  asymptotics (3.1.14) is proved in the case k e N [11, (2.7.15)]. As in the 
case of Conjecture 2.1, one can show that (3.1.14) holds for sufficiently large u, namely, 
when the following inequality is satisfied: 

12a0 b~ h v dim g.(XN) - - >  
m + a (k + h )(m + k + by)" 

3.2. We shall compare now Theorems 2.1 and 3.1. 

PROPOSITION 3.2. Let g, m and A be as in Theorem 3.1. Let u E N be such that (u, h v) = 
1 and (u, r v) = 1. Let k = (u -1 - 1)h v and let y E ITV satisfy (I.5.6). Then (by Proposition 
1.5) Pku,y = {# := y.(kA0)}, and for any A = y.( ~ ° - ( ~ - l )( m ~- u -  l h V ) Ao ) E Pum,,y + k (where 
A ° E p~m)  one has: 

(3.2.1) hA®~ A ~ = b~0 (g[~,~]). 

PROOF: Just compare formulas (3.1.1) and (2.1.9). [] 

§4. F u n c t i o n s  ~ , ~  a n d  m o d u l a r  i n v a r i a n c e .  

4.1. Branching functions for winding subalgebras are intimately related to the func- 
tions ~).,, defined as follows. As in Lemma 1.5, we shall distinguish cases 1) r = r v = 1 
(i.e. A is symmetric) or r > 1, and 2) r = 1 but  r v > 1, put t ing the second case in 
parenthesis. Let p and p, be positive integers such that  p > h v and pr _> h v (resp. p' > h). 

For k E P~ -by and # E P~ '-by (resp. # E P ~ F - h ) l e t  

1 Ld_ .~(~.+p) _ ,+p(.~.p.+,v) 12 
(4.1.1) ~ ' " ( ~ )  = V(r)  ~ ¢(w)q 2 ~ 

wEW 

The connection of ~),,~ to branching functions is given by 

THEOREM 4.1. Let 9 be an affine algebra o[ type X (r) where either r = r v = 1 or r > 1, 
let A E P~ and let u C N. 

(a) I f  A E P_~ is such that A - A E (u - 1)A0 + Q, then 

b (gN) = 

(b) I f  k E Q is a principal admissible rational number with the denominator u and 
# E P~,y, A E p~,+l are such that y(A ° - #° - ( u -  1 ) A o ) - A E  Q, then 

bA®~ ), = ~),o,#o. 

PROOF: a) (resp. b)) follows from Theorem 2.1 (resp. Theorem 3.1) and Lemma 2.2. [] 

Theorem 4.1b was obtained in [12, Proposition 3]. 
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PROPOSITION 4.1. Let 9 be an attlne algebra of type X (~) and let A E P$ -h~, # E P~. '-h~ 
v p ' - h  (resp. E P$ ). One has the following asymptotics as v 1 O: 

~(~ + ~(,esp. + ~"1~) 
~Z~,~,('r) ~ (pp')-t/2lM*l-QV1-1/2 H 4sin =G+~I~) sin p, 

P 

r i N  1 hV(hV(resp, h) + 1)). 
X exp 1--~rT( - ppl 

PROOF: This follows from (1.6.8), (1.6.10) and (2.2.4), using 

(4.1.2) dimg(XN) = N(hV(resp. h) + 1). [] 

Remark 4.1. Note that the group Aut II v C Aut [}t leaves the sets P ~ + C K  invariant, 
leaves (.[.) invariant, fixes p rood CK and normalizes W, and that ~ ,u (T)  depends on A 
and # rood CK. It follows that, defining an action of G E Aut H v on P+ by ~ ~ i  miAi = 
~ i  ma(i)Ai, we have: 

~a(~,),~,(t,) = ~;~,u" 

4.2. Here we establish a connection between the functions ~ , ~  and the characters of 
admissible representations. We keep distinguishing two cases as in §4.1, putting the second 
case in parenthesis. Let 

I G(v)hv (r~,p.h) if A is not of type A ~  ), 
8(,) 

( ( , (T /2 ) , (2T) , (T ) t -2 )  :t irA = A~2t ). 

By [10, 4.2] we have: 

(4.2.1) G~(T)G(T) = q Ipl~ /2h v 

PROPOSITION 4.2. Let 

H (1 - q(A°la)) multa. 

(4.2.2) A = y.(A ° - (u - 1)(k + bY)A0) E pk u,y 

be a principal admissible weight and let z E -~ be such that (alz) ~ 0 for all a E ~ + .  Then 
the limit 

(4.2.3) CA(T) := ~i~ 8 ( , )  

exists and is equal to ~Ao ..... (r)  if  

(4.2.4) 

H (1 - ~-~"'("l"))xA(r,~z,O) 
o,E~'+ 

- - V  
< A , a  >~ l for all ~ E A , 
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and is equal to O otherwise. (ReeM1 that wu,y is defined by (1.5.16).) 

--v WA PROOF: I f <  A,~  > E / f o r s o m e a  E A , t hen r~  E andhence ~-~weWA ~(w)eW(A+P)(r, 0,0) 

= 0 for all Im v > 0. Since 1-nezx+\X+(1 - e-(~)multa(~', 0, 0) # 0, we see from (1.6.1) 
that ~A(T) = 0. Suppose now that (4.2.4) holds. Then we have by (4.2.1) 

(4.2.5) ! i ~ (  1-I (1 - e-")/Ap)('r, ez, O) = G( r ) - IG(T)  -1. 
a E~+ 

Let y = tzy,  fl • 2~/',y • W. Then (1.6.1) can be rewritten as follows [13, Theorem 3.5]: 

XA(T, Z, t )  = AAo+p(ur, r y - l f l  + y - - I z ,  U--l(t + (Z[/~) "4- rlfl[2/2)/Ap('r, t). Z~ 

Hence, by (4.2.5), 

Ca(r) = Aho+p(u'c,r~-l/~,rlfll2/2u)/G(r) = qah0, . . . .  . []  

Let k • Q be A-admissible with the denominator u • N, and let 

(4.2.6) p = u(k + hV). 

The A-admissibility of k is then equivalent to 

(4.2.7) p,u • N , p >  hV,(p,u) = (u , r  v) = 1. 

Denote b y / 5  k~,y the set of all A • p~k,y satisfying (4.2.4); we shall call these principal 
admissible weights nondegenerate. Given ~ • W,  let/5~ = ~k U~eK4 P~,t~" This set admits 
the following nice parameterization: 

pVu-h~ LEMMA 4.2. Let A • P~ -by, # • P~ -h~ (resp. • + /. 
(a) The map associating to the pair (A, #) the element 

(4.2.8) Ak,y(A, #) = y(A + p) -- Py(# + p(resp. + pV)) + P-A0u - p' 

establishes a bijective correspondence between the set o£ all such pairs and the set ~k. In 

particular, P~ ~ 0 if and only if 

(4.2.9) k is principal admissible and u > h V ( resp. h ). 

(b) Let k be principal admissible, let ~ ,~  • W and let ~ = ~-l~t .  Then Aks()~,#) = 
Ak,~,(A', #') ff and o.~r ff 

(4.2.10) p - l (A - ~.A') = u - l ( #  - ~ . # ' ) : =  a • 
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and 

(4.2.11) t j  e w+. 

(c) P~ and pk, either are disjoint or coincide, and they coincide if and only i f~ - l~  e W+. 

k PROOF: Let A EP~*,y, y = t ~ ,  fl E 2~/, ~ E  W. T h e n A = y . ( A  ° - ( u - 1 ) ( k + h v ) A 0 )  

(where A ° E P~ -hv ) can be rewritten as follows: 

(4.2.12) h = Aks(A °, w,, ,) .  

pt h v 
If A c b~, then since (4.2.4) implies (1.5.S), by Lemma 1.5, ~ , ,  e Y~.- (resp. C 

Vp' --h P~ ). Conversely, this inclusion implies that A defined by (4.2.12) lies in/~_k. Finally A y 

completely determines the pair: A = A °, and # is determined since y is given. This proves 
(a). 

Furthermore, if 

A = y.(£ - (u - 1)(k + hV)A0) = hk,y(A,#) 

= y'.(~' - (u - 1)(k + bY)A0) = AkS,(A',# ') ,  

then, by Proposition 1.5b there exists a E -~/, such that y~ = ytuaK. Let ct = taK. Then we 
have: a.A' = A, hence a.#' = #, and conditions (4.2.10 and 11) hold, and vice versa, (4.2.10 
and 11) imply AkS(A, #) = Aks'  (A', # ') ,  proving (b). (c) follows from (b) and Proposition 
1.5b. [] 

Finally, note 

(4.2.13) ~,k,~(~, p) = A~,~('~, ~ p). 

4.3. We turn now to the discussion of modular invariance. First,  by a general result [10, 
Proposition 4.36] all branching functions b~ " "*®" and 0x are holomorphic modular functions 
(of weight 0) in r, Im r > 0. 

In order to describe the explicit transformation formulas for branching functions, we 

need the transformation formula for characters. Recall the action of B = (a  b~) E GL2(R) 

on Y: 
+ b z e(zlz) 

B.  (r, z, t) = (~r + d' c7-+ d' (det B)-Z(t 2(cr + d) ))' 

and its right action on functions on Y: 

f(~,z,t) lB =/(B.  (~,z,t)). 

Recall the definitions of the congruence subgroups F 0 ( n ) =  { ( :  bd) C SL2(Z)Ic =-0 

m o d n }  and the the tasubgroup F0 = {( :bd)  C SL2(l)]acand bdareeven}  of SL2(Z). 
% 

Let F = F0(r) if i~ is of type X ~  ) ~ A ~  ) and F = F0 if it is of type A ~  ). The following 
statement is proved in [10] for r = 1 and is implicitly contained there in the general case. 
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THEOREM 4.3. The C-span of the set of normalized characters {XA}AEP~ iS F-invariant. 

PROOF: In notation of [10], the space Thk+h~ is F-invariant by [10, Proposition 4.5a], 
hence the space Thk+h~ is F-invariant since the action of GL2(R) commutes with the 
action of W. But Th-~+h~ is the linear span of functions Ax+p, A E P.~ and dim Thh~ = 1. 
Together with (2.1.4) this proves the proposition. [] 

Let S -- (~ o l ) ,  T -- (~ 11) E SL2(/).  An explicit formula for the action of  S o n  
the XA, A E P+, was found in [10], and its generalization to the case of the principal 
admissible weights in [13, Theorem 3.6]: 

LEMMA 4.3. Let g = ~(A) be an af/]ne algebra o£ type X~ 1) or A ~  ). Let k be a principal 
admissible rational number with denominator u and let A E pk(  A ) be a principal admissible 
weight. Then 

(4.3.1) x~ls= ~ s.,,x,,,, 
,VEPk (A) 

where 

S~ ,  = ilX+lu-t(k + hV)-~12[M*/M]-ll2¢(~~) 

(4.3.2) x e-2'~i((:~°+PlZ')+(~"°+PlZ)+(k+hV)(~l ~')) E ~(w)e-~(w(~°+P)lX'°+P)" 

w E W  

k (Here :~ E P:,~, :~' C P~,~,, V = tZy, V' = tZ,~'.) [] 

It is easy to check that (see (1.5.12)): 

(4.3.3) S~:~, = ~(w-°)¢(~)S~,.  

Applying (4.3.1) twice and using (1.6.7) and (4.3.3), we deduce 

PROPOSITION 4.3. The matrix (SAA,)A,A, Epk(A) iS a unitary (symmetric) matrix. [] 

Remark 4.3. (a) Note that XA[T.o = e2~imxxa , hence, by Lemma 4.3, the C-span 
of the set {XX}AEpk(A), which we denote by CH k, is SL2(l)-invariant in the case r = 1. 

Since S and T 2 generate F0, we see that CH k is F0-invariant in the case A~ ). In the 
remaining eases we have [13, Theorem 3.6]: 

x~,l~= ~ S.,,~k,(Tl, ',zl, ' ,t). 
,V EP'k (A) 

Here and further P ' ,  X' etc. refers to the "adjacent root system" (see [10, §1.5] or [13, §3]. 
By Proposition 4.3, this can also be written as follows: 

AEP ~ (A) 
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From these we obtain: 

XA[ST~S-I-~ E E 2~'/mx' " "C e D,k)d oi, .k' Xp,' 
~6Pk(A) .V6P'k(A) 

Thus, CH k is ST~S-l-invariant. Since CH k is also T -  and S~-invariant,  and since the 
elements STrS -1, T and S = generate the group P0(r) for r = 2 or 3, we conclude that 
CH ~ is P- invar iant  in all cases. 

(b) Let a0 = 1 and denote by CHO the C-span of {X,k}),EP~.y. Let y = t~y, and let 

(% z, t) ̂  = uy-lt_z/~ (r, z/u, t /u 2). Then 

S T S - 1  ((v, z, t)  A) = ( S T U S - l ( r ,  z, t))  ^ . 

Using this and (1.6.6) one derives the following transformation formula: 

X~IST"S-' = ~ SaoA-SA,oe="i'*~X,. 
AEP~(k+av)-hv 

k #EP~,~ 

Nevertheless, it is not true that  CH~ is £0(u)- invariant  for each y. It is true, however, 
if y = 1. To show this we use formula (1.6.6), which says that  the numerator  of Xa, A • 
pk is equal to 

fi*A+p(7", Z, t) := Aho+p(ur, r ~ - l ( / ~ )  -I- y - l ( z ) ,  u -1 (t -~- (Z[]~) -~- rift[2/2)). 

L e t g =  (~bd)•Fo(u)NF.  T h e n w e h a v e :  

-4A+p[, = Aho+p(u r, (at + b)y-l(/~) + y - l ( z ) ,  u-l( t  + a(fl[z) + a(ar + b)l~l 2 

Since Th-  is r - invar ian t ,  we see that  "4h+ol9 is a linear combination of functions 

A"°+p(uT'aTy--I(fl) + Y--I(z)' u-l( t  + (~]z) + a(ar + )), #o • p~(k+h~)-h ~ 

Assume now that y = 1, i.e. fl = 0. Then Ah+p[9 is a linear combination of functions 

Ai, o+p(ur, y - l ( z ) ,u- l t )  = A~+p(r,z,t), # • P:,I" 

Note that  our argument shows that CH~ is invariant with respect to the group { ( :  : )  • 

P [ a - 1  m o d u ,  c - - 0  m o d u } .  

As in [12], Lemma 4.3 together with (3.1.2) give us a t ransformation law for /a®g 
where A • P ~ ,  m • N, and # • Pk(A), A • Pk+m(A) are principle admissible weights 
(and 9 is as in Lemma 4.3): 

(4.3.4) :~ - 7 )  = 

Since 

E 
A'6P~ 

~'EPk(A) 
A'Epk+m(A) 

-~ .A'®p' 

we obtain  the following corollary of (3.1.2), Remark 4.3a and Proposit ion 3.2: 

A®/l T ( + 1) = 
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COROLLARY 4.3. Let g = g(A) be an arlene a/gebra of type X ~  ) and fix m • N. Then 
a) Given a principal admissible k • Q, the C-span of the set 

{b~h®"(r)]h • P g ,  # • Pk(A),  X • P~+m(A)} 

is F0 (r/ao)-invariant. 
b) I£u • N is such that (u, h v) -- 1, then the C-span of the set 

{b~IA • Pg', ~ • p_~m} 

is ro(r /ao )-inrariant. 
c) Given p,p' • N such that p > h v, p' > h v (resp. p' >_ h) and (p,p') = 1, the C-span of 
the set 

{ ~ , , ( r ) l  ~ • P~-h~, , • P ~ ' - ~  (resp. • P p ' - h ) }  

is ro(r/ao)-invariant. [] 

Proposition 2.4 shows that the conclusion of Corollary 4.3b fails if (u, h v) ~ 1. In 
general, however, the subspace considered in Corollary 4.3b is at least P0(u)-invariant. 

(u ° ) .  Then we have: Indeed, let an = o 1 

(4.3.5) Po(~) = SL2(Z) ffl a ;1SL2(Z)au,  

(4.3.6) X~ = X~I~.. 

Hence for fl = a~l-fa~ E F0(u), where 7 • SL2(I) ,  we have: Xxl~ = Xx]~{,., and by 
Proposition 4.3, the C-span of the Xx is P0(u)-invariant. It follows from (2.1.8) that the 
C-span of the set {b~lA • P~', X • P ~ ' ~  is P0(u)-invariant. + J 

4.4. Formula (4.3.4) and Theorem 4.1b give a transformation formula for the ~o~,~(r). 
However, a much simpler formula may be obtained by using (4.3.1) and Proposition 4.2. 

PROPOSITION 4.4. Under the assumptions of Lemma 4.3 we have: 

(4.4.1) e x ( - 1 ) = ( - i ) I K + I  E SXX, Cx,(T). 
X'EP~(A) 

In particular, in the basis {¢~}xepk(A ) the transformation matrix is unitary. 

PROOF: Let )~(v)  = lim~._,0 l-LeK+ (1 - e2'~i(~l~))xx(r, ez, 0). Note that (4.3.1) gives: 

x~( 1,~z ~:(~lz). 7 '  ~ }= ~ &~,x~,(~,~z,O). 
X' E pk  (A) 

This can be written as follows: 

1 - e -27ri(alez) 1 ez e2(z]z). 
H i - - ~ )  H (1-e-2"i{~l '~/r) )x~(  r '  r '  ~ ) 
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= I I  • 
A' EP k (A) aE~+ 

Taking limit of both  sides as e ~ 0 we obtain: 

(4.4.2) TI~+I~x(--1) = ~ S~,.x,:~x, (r). 
A ' E P ~ ( A )  

Since, by definition (4.2.3), CA(r) = 0(r))~x(r) ,  the proposition follows from (4.4.2) and 
transformation properties of r/(r). [] 

Remark 4.4. Proposition 4.4 can be extended to the remaining cases, aor = 2 or 3, 
using [13, Theorem 3.7]. The result is that  on the r ight -hand side of (4.4.1) one should add 

the factor rlK+01, replace r by r / r ,  [M*/M[ by IM*/QV[ and P k ( A )  by P'k(A) .  Here, as 
before, P'k(A)  refers to the adjacent set of weights associated to the adjacent root system. 

p~ 
LEMMA 4.4.. Let p mad p, be relatively prime positive integers and let A • P~_,A j • P~ 
be regular weights. Then # := p'A - pA t + pA0 is a regu/ar weight. 

PROOF: We have to show that  (#[a) ~ 0 for any a • A+. Let a = 7 + n K ,  where 
7 • ~ + ,  n • l + .  Then: 

(#[a) = p'(A[7) - p(A'[7) + pn, 

hence p divides (A[7) if (#la)  # 0,which is impossible since 0 < (A]7) < p for any 
7 • A + .  [] 

Let p,p'  be relatively prime integers > h v. We define a map of P~ -h~ x F f  -by into 
I 

itself, denoted by (#, # ' )  ~ (/5,/5'), and e , , , , ,  c , , , ,  = +1 as follows. Due to Lemma 4.4, 
p p _ h  v ~ tt pl h v W t there exist a unique/~ • , + , • P~_ - and unique w, • W such that  

p'(# + p) - p(#' + p) - w(-~ + -~) • p M  and 
t p(#'  + p) - p'(p + p) - w (# + -fi) • p 'M,  

and we let 
: =  : =  

~ 

In particular,  for the pair (#,p'A0), we denote #W = A, eW(#) = ¢~,Wa0. 

Note also that  for an integer p > h v and A, A' E P~_ -by formula (4.3.2) turns into 

(4.4.3) 
2 x i  - -  _ - - t  

Sxx, = iI-K+lp - t l2 IM*/MI  -xlz ~ e(w)e -T(w(x+o)lx  +~.  

w E W  

We can rewrite now Proposition 4.4 in a form more suitable for applications. 
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THEOREM 4.4. Let tt = 9( A) be an a~Tme a/gebra associated either to a symmetr ic  matrix 
A or to A = A~=~ ). Let p and p' be relatively prime integers such that p,p'  > h and let 

_ p'  - -h  v A~P~_ hV, A' ~ P~_ . Then 

, 1 
(4.4.4) ~0;~,;~ (-7) = ~ S(.x.v)(.~,.,)~'.,~,, 

(.,.,)eP$_ - ' v  x~$. ' - ' v  =oa i~+ 

where 

(4.4.5) 
I~+ 112 ' = ( - 1 )  lal e. , ,  ~,,,,.,s.>,~s;,,,~, 

S(.>..x,)(.,,,,) = (-1)i~+l%,(A)~v(p')lJl*/~e2~'~(('X+Ph"+P)+(~'+pl'V+P))&¢,&,~,; 

PROOF: Using tha t  T~,,~, = ~o~,,;~ we may assume tha t  p'  is odd (we shall need this in the 

proof for A~2t)). Note tha t  (4.2.3) can be wri t ten as follows, using (4.2.8): 

(4.4.6) ~o~,~, = ~bn~m(x,~,)(7 ) for any ~ C W.  

Hence we have by Proposi t ion 4.4: 

~.>,,:,,(-l/r) = (_i)lX+l ~ ~ SA,,,(~,~,,),A~,~(,<,,~,,)~,,,,,,(r). 
p t  h v (,u,,u')EP v-hv ×P~ - rood IYff+ y E ~  

Hence we need to prove 

(4.4.7) S(~:v)(~,) = (--/)IA+ISA k I(~,;V),Ak ~(#,~')' 

By (4.3.2) the r igh t -hand  side of (4.4.7) is equal to 

e(y)(pp,)-e/2 jM,  /Mj-1/2  e-2~i((~+vlp')+(,+plZ)+(v/v')(Zl~')) 

y E W  
(4.4.8) 

x ~ etw)e" "-2"iV'(w('k+P)l#+P)*' 
w E W  

where/7 = p'A0 - A ' - p ,  /7' = p'A0 - y ( # ' +  p). Subst i tut ing 17 and fl' in (4.4.8), we obtain: 

(pp ' ) - t  /2 i M* / M i-1/2 e 2~i( ( :~+ v[~' + v)+ ( s,' + pl~ + v ) ) 

× ~ e(y)e -2"'('/'')(~'(~'+p)It`'+p) ~ e(w)e -2"'(''/')(''(~'+P)I"+p). 
y E W  w E W  

This gives us (4.4.4) with the first expression of S(xx,)(~,) in (4.4.5). To get the second 

expression, we rewrite e 2=i(a+plÈ'+v) = e=~i(~(a+v)l~ '+v) = e ~  x(w(j'+p)[~'+e), and similarly 
for e 2~i(~'+vl"+p). By (4.4.3), (1.3.5) and the definition of the map  (#, # ' )  ~ (/5,/5') and 

, IX+I ~/~ , the ev , , ,%. , ,  this is equal to ( - 1 )  IJI ev.,%,,Sxa&,r.,. [] 

Using Theorem 4.1a and the fact tha t  S00 = 1, we obtain the following corollary of 
Theorem 4.4: 
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COROLLARY 4.4. Let g be as in Theorem 4.4 and let u E N be relatively prime to h. 
For each A • P~_ choose the unique A • P~ such that A - A • (u - 1)A0 + Q, and let 

b~(~) = ~ ( ~ ) .  The~ 

b),(- 1) = e,,(O)eh(.X)lJI 1/~ ~ e2'~i(x+"l")sx.,.b.(r). [] 
,~P~_ 

Note tha t  ¢~(0) is the generalized Legendre symbol [7]: 

~(plo<)/sin ~(~1<~) TI" s i n  
• . hV / ~v 

c ~ +  

In a similar way, using Proposi t ion 4.4 and Remark 4.4 one can derive the following 
t ransformat ion formula valid in all cases: 

t aoT (4.4.9) ~ x , x , ( _ l )  = ~ S(xx,)(, , ,)  ~ , . , ,  ( - ~ - ) ,  
ip  h v 

# E P ~  - 

,u' E P  ' v '  - h v ( r e s p  E p V v '  - a ) 

where 

s(~.,)(..,) = (-1)lZ+l(a~) I~+" I~p, (A)S..,., 

x IM*/~vl]/2~p(~')~2"i((~'+PI~"+P')+("+P'P"+P)S~.,; 
• ] / 2  v , 2 ~ i ( ( ~ + p l # + p v ) + ( . + p l ~ ' + p  v) v 

,v (resp. × IM IMI ~p(v )~ . . .  ). 

pVF-h  v ¢v(A) as follows: there exists a unique w 6 W and Here for A E + we define )~p and 

p v v - h  such that  p ' ( ~ +  ~v) _ w(A; +-fi) E pM,  and we let ¢v(A) = ¢(w); a u n i q u e A  v C , +  

p v v ' - h  we let (cf. (4.4.3)): for A, A I E - + 

S'~:,, = ilX+lp'-<121M*lMI]12 ~ e(w)~-~ (''(x+~)lg+~v). 
w E W  

In conclusion, note the following useful proper ty  of the map (A, A') ~ (~, A'): 

LEMMA 4.4. Let p,p' E N be such that p,p' >_ h v and (p,p') = (p , r  v) = (p' ,r  v) = 1. Let 

A,# E P~ -hv and A',#' C P f  -hv.  Then (A, A') = (/~,/~') i f  and only i f  there exists ~ C IV+ 
such that 

A + p = ¢ ( # + p )  and A ' + p = a ( # ' + p ) .  

PROOF: The "if" par t  is clear by the definition. Suppose now tha t  A =/2 .  Consider the 
principal  admissible weights 

(4.4.10) h = t#.(A - (p' - 1)(k + hV)Ao), A' = t#, .(# - (p' - 1)(k + hV)Ao), 
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where/3 = - ( ~  +~) ,  /3' = - ( ~  +~) .  T h e n  by  the  definition of ~ and/2,  p ' ( A + p )  • W ( ~  +p )  
and  p ' (A '  + p) • W(/5 + th), hence 

(4.4.11) A' + p = w(A + p) for some w • I4( 

Bu t  the  corresponding simple coroot bases are ta , (II[ , ] )  and  wtz(II[~]). Hence, by Propo-  

s i t ion 1.hb, there  exists a = t a ~  • 14r+ such t h a t  

(4.4.12) t _ # w - i t a ,  = t p , ~ .  

From (4.4.10-12) we obtain:  

tp ,a~ . (#  - (p' - 1)(k + hV)A0) = A - (p' - 1)(k + hV)A0. 

Bu t  the  l e f t - h a n d  side of the  last  equali ty is equal  to c~.# - (p' - 1)(k + bY)A0, hence 
= ~r.#. Similarly, A t = a t . f ,  and  it remains  to show t h a t  a = a ' .  

Le t t ing  w = tT~,  we ob ta in  f rom (4.4.12): 

t_fl+-~-l(fl,_.r)W -1 = tp, c~-ff. 

Since 7 e M ,  it follows t h a t  p ' a  + /3  - / 3 '  E M.  Since also/3 '  - / 3  = a ' ( f  + p) - (# '  + p) = 
-~(#'  + p) + p 'a ' ,  we derive t h a t  p ' ( a  - a ' )  e M .  Similarly, p ( a  - a ' )  • M ,  and  since 
( p , f )  = 1, we deduce t h a t  a - a '  • M .  It  follows t h a t  ~ = cr I. [ ]  
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