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§0. Introduction.

0.1. One of the basic problems of representation theory is to find a decomposition
of an irreducible representation of a group with respect to a subgroup. Namely, suppose
that we have a representation 7 of a group G in a vector space V and suppose that with
respect to a subgroup S this representation decomposes into a direct sum of irreducible
representations:

T=@m, V=6V

Given an irreducible representation o of S one denotes by [r : ¢] the number of repre-
sentations of S equivalent to ¢ in this decomposition, and calls this number a branching
coefficient. An important problem is to compute the branching coefficients.

A special case of this problem is the decomposition of a tensor product. In this case
G =8 xS, S is the diagonal subgroup of G, V = V' ® V", where (V',7’) and (V",#"")
are some irreducible representations of S, and the problem is to compute the numbers
[7' @ : 0]

0.2. In the present paper we study branching coefficients for positive energy repre-
sentations of affine algebras. Let us recall the basic definitions in the “non-twisted” case
(r =1). See [8] for details.

Let g be a complex simple finite-dimensional Lie algebra of rank £, and let ¢(.,.) be
its Killing form. Fix a triangular decomposition § = fi_ + § + i, where § is a Cartan
subalgebra and W4 are maximal nilpotent subalgebras, and let ¥ € § be the coroot
corresponding to the highest root. Let hY = #(8Y,8Y) be the dual Cozeter number and
let (z|y) = é(z,y)/2hY be the normalized invariant form on @ The affine algebra ¢'
assoctated to § (called also the affine algebra of type . El), where X is the type of §) is
constructed as follows. Let C[t,£7!] be the algebra of Laurent polynomials in ¢, and let
us view the loop algebra g[t,t™!] = C[t,t"!] ®c ¥ as an (infinite-dimensional) Lie algebra
over C. Then

¢ =glt,t7' ] +CK

is the vaique non-trivial central extension of §[t,¢™!] by a 1-dimensional center CK.
Explicitly, it can be defined by the following commutation relations:

[z(m), y(n)] = [z, y](m + 1) + Mbm,~n(2[y) K,

where z(m) € g[t,t7!] stands for " @ z (m € Z, ¢ € @). We identify g with the
subalgebra 1 @ @ of ¢, and let §’ = § + CL” be the Cartan subalgebra of g'. Let also
ny =y + tF1g[tE!]. Then we have the triangular decomposition g’ = n_ + b’ 4+ ny.

Supported in part by NSF grant DMS-8802489 and Sloan grant 88-10-1.

AMS subject classification (1980). 20C35.
Key words. Affine algebras, branching functions.



4 V.G. KAC AND M. WAKIMOTO

An arbitrary affine algebra is a direct sum of the Lie algebras of the form g' and their
twisted analogues g'(g, s) (see below).

It is often convenient to consider g' as an ideal of codimension 1 in the Lie algebra
g =g + Cd, with commutation relations

[d, z(m)] = mz(m), [d, K] =0,

and let h = b’ 4+ Cd be its Cartan subalgebra. One extends the normalized bilinear form
(.].) from § to b by letting (§|CK + Cd) = 0, (K|K) = (d|d) = 0, (K|d) = 1.

A representation 7 of the affine algebra g’ in a vector space V is called a positive
energy representation if a) n(K) = kI, k € C, and b) m can be extended to the whole g
such that —m(d) is diagonalizable and its eigenvalues are non-negative integers.

The number & is called the level of V. The eigenspace decomposition

V = ®nez, Vin)

with respect to —n(d) is called the energy decomposition; if v € V() we say that v has
energy n.

Since [d,@] = 0, the energy decomposition is g—invariant, and we denote by 7 the
representation of @ in V{gy. It is easy to show that the map = +— (k,7) establishes a
bijective correspondence between the set of (equivalence classes of) positive energy irre-
ducible representations (r, V') such that Vi) # 0 of g’ and the set of pairs (k,7), where
k € C and 7 is an irreducible representation of § (considered up to equivalence). (Given
k € C and an irreducible representation T in V(gy, we extend 7 to gy := @[t] + CK + Cd
by letting 7(K) = klv,,, 7(d) = 0 and 7(z(n)) = 0 for n > 0, and let 7 be the irreducible
quotient of the induced representationof g in the space U(g) ®u(g,) V(o). This gives us an
irreducible positive energy representation m of g’ corresponding to the pair (k,7).)

0.3. We shall consider only the irreducible positive energy representations («, V) of
g’ such that (7, V(q)) is an irreducible highest weight representation of §. In other words,
we shall assume that there exists a non—zero vector v kX € Vi), where X €1, such that

(@) x =0, (kv 5 = X(h)vk’x for h € .

These representations are parameterized by the pairs (k,X), k € R, X € §". It is more
convenient to represent the pair (k,A) by an element A € h™ such that )‘lﬁ = X and
AMK) = k. The corresponding representation mx of g is denoted by L()) and is called the
irreducible highest weight representation of g’ with highest weight A.

The vector vy, = L%y is called the highest weight vector; it is the unique up to a
non-zero constant factor vector in L(A) satisfying equations

ma(ngYoa = 0, ma(h)va = A(h)vy for h € h'.

Especially important are the representations L(A) of g’ which can be lifted to a (pro-
jective) representation of the corresponding loop group. These are called integrable highest
weight representation. They are parameterized by the set

P ={Meb™k:= NK)€Zy, NPy, (N§Y) <k}
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Here P, C E‘ is the set of highest weights of finite-dimensional irreducible representations
of g.

The basic tool for study of integrable L(\) is the so called Weyl-Kac character formula
[6] for the function chy on Y := {v € h|Re(v|K) > 0} defined by

cha(v) = try(a)e®.

Recently a similar character formula has been established for a larger class of the L(}),
those with an “admissible” highest weight [12]. Their “normalized” characters are Jacobi
modular forms and, conjecturally, these representations are characterized by this property.
(These are also the only ones for which the Kazhdan-Lusztig polynomials are trivial.)
In the present paper we consider the best studied (see [13]), principal admissible highest
weight representations. Their levels may be arbitrary rational numbers k (called principal
admissible) such that k + kY > kY /u, where u € N is the denominator of k. In the case
when k € Z; all principal admissible representations are integrable (but all representations
of fractional level are not).

0.4. A natural class of subalgebras of the Lie algebra g’ (and similarly of an arbitrary
affine algebra) to consider is the following. Let 7 be a reductive subalgebra of g, let o be
an automorphism of § and let s € N be such that ¢* = 1. Define an automorphism & of
the subalgebra glt,t~!] + CK of g’ by letting

27in

9(z(n)) = (exp —)o(2)(n), o(K) = K,
and denote by g'(o, s) the fixed point set of 4.

0.5. We shall consider only the representations L(A) of g’ which are completely re-
ducible with respect to g'(o,s). (This is always the case when A € P;.)} The branching
coefficients of such §'(,s) in a representation L(A) of g, i.e. the numbers [L(\) : L(u)],
where L(p) is an irreducible highest weight representation of g(o,s), are almost always
zero or infinity. To get around this, let §(o,s) = Ai_ + § + #; be the induced triangular

decomposition of g(o, s), i.e. ny = ng Ng(o,s) and B =5n g(o, s}, and let
[A: pln = dim{v € L(\)(mylma(ig Jo = 0, ma(h)v = p(h)v for all h € §'}.

These numbers are always finite, and we can consider the power series

bﬁ = ¢™rw Z [A: pleg™
'nEZ+

The number m , is a rational number called the modular anomaly which is defined as
follows. Let ¢ = ¢*™7; then the above series converges to a holomorphic function in 7 for
Im 7 > 0. According to [10, Proposition 4.36], provided that A € P.., there exists a unique
number my , such that the function b")(r) is a modular function, i.e. is fixed under the
action of a principal congruence subgroup I'(N), some N. (Explicit formulas for the my ,
may be found in [11] and in the paper; of course, these numbers depend also of the g’ and
the subalgebra.)
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The functions bf;(*r), clearly, completely describe the decomposition of L(A) with re-
spect to the subalgebra in question. They are called branching functions. I [L()) : L(p)] <
00, then, of course, [L(A) : L(,u)] = lim, o bﬁ(f). In general, we study the asymptotics of
bfl‘('r) as 7 | 0 instead. Namely, since the bz(r) are modular functions, we have as 7 | 0,
provided that bﬁ #0:

BA(r) ~ a(, p)e IO

where a(A, ) > 0 and g(\, p) > 0 are real numbers called the asymptotic dimension and
growth of the branching function. Here and in the rest of the paper f(7) ~ g(r) means
that im. o f(7)/g(7) = 1.

In all known examples the growth depends only on the algebra g’, the subalgebra and
the level k of A, but this is an open problem, which we will refer to as the basic conjecture,
even in the case of integrable L(\) and the subalgebra g(1,1) (cf. [11]). Incidentally,
the knowledge of the above asymptotics allows one to compute the asymptotics of the
branching coefficients [A : p], as n — oo by making use of a Tauberian theorem (see [10]
and [11]).

0.6. An important version of a special case of branching functions are string functions
cl);, which correspond to § = h, ¢ =1, s = 1, i.e. which describe the multiplicities of
weights of L(A). Namely, given A, u € h'* of level k, we define as usual, the weight space
LX), = {v € L(A)|h(v) = p(h)v for all h € §'}, and let

Cﬁ = gMMe Z (dim L()\)‘, n L(/\)(n))qn,
ne€Z

where we let ma = [X + p|2/2(k + 2Y) — [p|?/2hY to be the modular anomaly of A (see
below) and my , = my — |f|?/2k is the modular anomaly in this case (as usual, 7 is the
half-sum of positive roots for g). This is a modular form of weight —£¢/2, and it is related
to the corresponding branching function by the equation

cu(r) = G(7) " (),

where G(7) is a modular form of weight £/2 given in §2.2.

String functions for integrable L{\) were studied in great detail in [9], {10], [11] (see
also [8, Chapters 12 and 13]). The key result of this work is an explicit transformation
formula for the normalized characters

Xx:=¢"*chy, A€ Py,

under the action of the involution S : 7 — —1/7 (defined in §4.3). Here we identify
g with the function e=%(v) = ¢~¥I*) on . (This result was extended in [13, Theorem
3.6] to the case of principal admissible L()); see formula (4.3.1) of the present paper.)
One deduces from this result an explicit transformation formula for string functions under
the involution S [10, Theorem A]. Since the transformation formula together with the
polar parts of the g~expansions completely determine modular forms, this allows one to
compute the string functions explicitly in many interesting cases. Furthermore, it turns
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out that the asymptotics of the string functions c") is independent of x4, which allows one to
find this asymptotics explicitly ([10, Proposition 4.21] or [8, Chapter 13],) proving thereby
the validity of the basic conjecture in this case. (Incidentally, for admissible A the string
functions ¢}(r) fail to be modular forms [14].)

0.7. General branching functions in the case of the subalgebras of the form ¢'(1,1) =
@[t,t7'] ® CK of g' and integrable L()) were studied in detail in [11]. Again from the
tranformation formula for the normalized characters one deduces the transformation law
for these branching functions under the involution S [11, Theorem A]. One derives from
this definitive results on asymptotics (which prove the validity of the basic conjecture)
only in the case of tensor products [11, (2.7.15) and §3.4]. For general branching functions
we derive the basic conjecture from the conjectural positivity of certain matrix elements
of the transformations S in the basis of branching functions {11, p. 188].

0.8. In the present paper we consider the subalgebras

o = 0'(Lu) =gt ] e CK

of g, called the winding subalgebras. (This is the simplest case different from g§'(1,1).)
The first basic result of the paper is Theorem 2.1 which gives an explicit expression of the
branching functions 5} for winding subalgebras in integrable highest weight representations
L{A) in terms of string functions. The special case of this theorem, when the level of L(A) is
1, is Theorem 2.2, which gives a solution to Frenkel’s conjecture [4]. Theorem 2.1 leads also
to Conjecture 2.2 on the asymptotics of the branching functions for winding subalgebras.
We were able to prove only that it holds for all sufficiently large u.

0.9. Next we compare branching functions b} for winding subalgebras with branching
functions bl)‘\@" for tensor products L(A) ® L(x). It is clear from [13, Corollary 4.1 and
Theorem 3.6 that the branching functions bﬁ®“ are modular functions provided that A
is integrable and p is admissible. This is the case studied in the present paper. As in
the case of winding subalgebras, we find an explicit expression of the bf\\®“ in terms of
string functions (Theorem 3.1). Comparing Theorems 2.1 and 3.1, we see that a branching
function b} for a winding subalgebra g(ul coincides with a branching function for tensor
product L(A) ® L(p), where u = ((u™! — 1}hY,0), provided that u is relatively prime to
kY and rV (Proposition 3.2). This (still mysterious) coincidence indicates a remarkable
interplay between the integrable and admissible representations. As in the case of winding
subalgebras, Theorem 3.1 leads to Conjecture 3.1 on asymptotics of the bf\@" , generalizing
the known result in the integrable case. After this paper was completed we received preprint
[1] where Theorem 3.1 is derived in the integrable case using a free field resolution.

0.10. The remarkable feature of the theory of integrable, and, more generally, prin-
cipal admissible highest weight representations is the §Ly(Z)-invariance of the C-span of
normalized characters (in the twisted case, SL,(Z) should be replaced by a slightly smaller
subgroup I'; see Proposition 4.3), hence the SLq(Z)-invariance of the C-span of branching
functions b§®” , where A (resp. ) runs over all integrable (resp. principal admissible)
weights of fixed level. (A similar result holds for arbitrary subalgebras of the form g'(1,1),
see {11]. This follows from the S-invariance of normalized characters.) Due to the above
coincidence, this is the case also for the branching functions for winding subalgebras g{u]
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provided that u is relatively prime to kY and rV. However, in the general case we have
only the ['¢(u)-invariance (see §4.3). This is a general feature of the subalgebras g'(a, s).

0.11. The last, Section 4, contains some preparatory material for our forthcoming
paper with E. Frenkel (3]. It deals with functions ¢, ,, which are branching functions for
tensor products of the level 1 integrable representations with arbitrary principal admissible
representations (see (4.1.1) and Theorem 4.1). These functions previously appeared in this
context in [12, Proposition 3].

It turns out that the functions ¢, , can be obtained by a simple limiting procedure
from the characters of the principal admissible representations (Proposition 4.2). As will
be explained in [3] this procedure naturally appears in the quantization of the Drinfeld-
Sokolov reduction developed in [2]. As a result, one obtains that the functions ¢, are
characters of the so called extended conformal algebras, which are higher rank generaliza-
tions of the Virasoro algebra (cf. {15]). In the particular case of § = sf,(C), this procedure
is equivalent to taking the residue of the admissible characters. As was shown previously
in [16], this reproduces the Virasoro characters. It is worth mentioning that the limiting
procedure gives a non~zero result only for “non-degenerate” principal admissible weights;
in particular, the integrable characters always give zero.

The main result of this last section is Theorem 4.4 which give a transformation formula
for the p, , under the action of S, obtained from the limiting procedure (which is simpler
than that obtained from tensor products). This formula will be applied in [3] to calculate
the fusion rules for the extended conformal algebras.

Thus Theorem 4.1b means the coincidence of two theories of extended conformal
algebras at least on the character level in the simply laced or twisted case. (In the case of
BEI) they are different, as can be seen by comparing Theorem 2.2' and Proposition 4.2.)

Note that though the set of principal admissible representations of given fractional
level carries quite a few features of a conformal field theory (like modular invariance, the
unique vacuum, the involution), it can’t be a conformal field theory since, for example,
its fusion rules computed by Verlinde’s formula [17] may be negative. This makes it quite
remarkable that a “reduction” of this theory indeed produces a conformal field theory.

0.12. We would like to thank E. Getzler and M. Hopkins who pointed out that the
study of branching functions for winding subalgebras may be important for the theory of
cohomological operations in the elliptic cohomology, which stimulated our research. We
thank E. Frenkel for his patient explanations of his (joint with Feigin) work [2] and for
collaboration in Section 4. We thank D. Jerison for consultations on asymptotics.

The first author wishes to thank E. Strickland for the invitation to give a talk in
January 1990 in the Universita di Roma II on the subject of this paper, for her persistence
in having the paper written and for her lavish hospitality. The second author acknowledges
the hospitality of MIT, where during his stay in the spring of 1990 the paper was completed.

§1. Notation and preliminaries.

1.1. Let I = {0,1,...,¢}, £ > 1. Recall that an affine matriz is a square matrix
A = (aij)ijer such that a;; = 2, —a;; € Z; for 1 # j, a;; = 0 implies a;; = 0, and
there exists a unique sequence (ay, ... ,a;) of positive relatively prime integers, called the
null-vector of A, such that (ao,...,ae)(*4) = 0.



BRANCHING FUNCTIONS FOR WINDING SUBALGEBRAS AND TENSOR PRODUCTS 9

Two affine matrices are called equivalent if they are obtained from each other by a
reordering of I. A complete list of affine matrices up to equivalence is given in Tables Aff r
of [8, Chapter 4]. Affine matrices in these tables are denoted by their type X J(J), where X
is the type of the “underlying” simple finite-dimensional Lie algebra and r is the so—called
tier number. The number k = ), ; a; is called the Cozeter number of A.

Note that the transposed matrix *A is again affine. The corresponding null-vector is
denoted by (ay,... ,a}), the tier number by r" and the Coxeter number by hY. The latter
is called the dual Cozeter number of A.

Let ¢; = a}’aj—l; then the matrix (&;aij)i jer is symmetric.

We keep the ordering of I given in [8, Chapter 4]. For this ordering we have in
particular: af =1 and ag =1 (resp. ag =2) if A # Ag) (resp. A= Ag?).
In what follows we fix an affine matrix A of type X g).

1.2. Let b’ be the £+ 1-dimensional vector space over C with a basis II = {aq, ... , ¢}
and a symmetric bilinear form defined in this basis by the following formula (8, Chapter 6]

(1.2.1) (ailaj) = eiaij, 4,5 € 1.

Then I is called a root basis and (.|.) is called the normalized invariant form (for the matrix
A). The basis IV = {ay,... ,a)} defined by a;a; = a)a} is called a coroot basis. Note
that the kernel of the normalized invariant form consists of all multiples of the element

(1.2.2) K=) agai=) alaf,

icl iel
called the canonical central element.
Given a subset L of h', we let ZL (resp. Z4L, CL, etc.) denote the set of all linear
combinations of elements from L with coefficients from Z (resp. Z4, C, etc.). We also let
L* = {a e CL|(a|L) C Z}.

The lattices @ = ZII and QY = ZTIV are called the root and coroot lattices respectively.
We also let Q4 = 2,11, QY =7,1IV.

Welet T={1,...,6 CI, T={ay,...,0¢}, I ={a),...,a)},Q =10, Q =
ZﬁV,E = CII. One has [8, Chapter 6]:
— _ =V, = _=V.
QOQ ifr=1QCQ ifr>1
Define the following important lattices M and M by

V=1 M=0Q ifr'>1
fr=1M=0""ifr>1
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Since (§|QV) C Z, we have M C M C M*. We also have:

(1.2.3) |M* /M| (resp. |M/M|) are the same for A and ‘A,

(1.2.4) IM*/M|=[Q"/M|ifr > 1.
1.3. Let r; € Auth’ be the fundamental reflections, i.e.

ri(v) = v = (aifv)ay,

and let W =< r;|¢ € I > be the Weyl group. Note that @ and QV are W-invariant.
Let A™ = W(II), and A¥™ = W(IIV) be the sets of real roots and real coroots

respectively. Let AT = A™NQ4, AY™® =AY N QY. Wealsolet A =A™NQ, A =
AVTEN @V, At =A% NQ, et

If @ = w(a;) € A™, then a¥ = w(a)) € AV is well-defined [8, Chapter 3] and
oV = 2a/(ala); letting ro, = wryw™!, we have:

(1.3.1) ra(v) =v —(av)aY, vep.

We have the following homomorphism a +— ¢, of §' into Auth’ with kernel CK
[8, Chapter 6]:
(1.3.2) ta(v) = v+ (v|K)a — ((vla) + 3(ala)(v|K)K.

For a subset L of b we let t1 = {ts]a € L}.
We have [8, Chapter 6):

(1.3.3) W=tyxW,

where W =< r;|i € I > is a finite subgroup of W (we shall write: w = o).
The sets of real roots and coroots are invariant with respect to the group W :=t o x W
containing W. Let Wy = {w € Wlw(II) = I}, and let

J={j€lIlaj =1 (resp. af =1)if r =1 (resp. r > 1)}.

Then {10, §4.8] the group Wy is isomorphic to M /M, acts simply transitively on
{a; e I|: € J}, and one has:

(1.3.4) W=W,xW.

The group W, can be described more explicitly as follows. Let W, be the subgroup of W
consisting of the elements preserving the subset {ap := agag — K, @1 1= aq,... , G := ay}
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of Q. This group acts simply transitively on the set {@;|j € J}. Denote by w; the element
of W such that @;(@) = @;. Then

Wy = A A W

is the element of Wy such that w;(aq) = a;.
Note also the following useful formulas:

(1.3.5) |M /M| =],

(1.3.6) |M*/M|=|J|ifr=r¥=1o0ray =2

1.4. Define the fundamental weights (resp. fundamental coweights) A; € b'* (resp.
AY ev™*), i el by:

<Ay af > (resp. < A 0;>) =6, jel.

Let P = ) .crZAi, PV = 3 . ZAY be the sets of integral weights and coweights and
Py =311y Ai, PY =311 AY the sets of dominant integral weights. Let

p:ZAi, pV=ZA2/.

i€l icl
Note that

1.4.1 <pV,K >=h, <p,K >=h".
P

The number & =< A, K > is called the level of A € h'*; the set of all A of level k is
denoted by h"**. The following map 4 sends h'* to h™** (since < Ag, K >= 1):

(1.4.2) 7(A) =X — (< \, K > —k)A,.

Fix u € N relatively prime to ao. It is easy to see from [8, Chapter 6] that the element
do = a5 (u — 1)K + aq lies in A% and the element & := (u — 1)K + oy lies in AYTe.
We let

M) = {6, &; := a; (i € T)},
Iy = {&y, & == o) (i € 1)},

Wi =<raliel>.

Then I, and Hf; are root and coroot bases with the same normalized bilinear form as

for IT and IIY. We shall indicate the objects associated to I}y by an overdot. For example,
the canonical central element for My is
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(1.4.3) K:=) aid] = uK,
i€l

the fundamental weights are

(1.4.4) Ai = Aj + (w7 —1)aY A,

hence

(1'4'5) pi= EAI =p+ (u_l - l)hVAU’ |P|2 = Iplz,
i€l

(1.4.6) to = tuas

(1.4.7) W= VV[u] =tuM xW.

The following lemma, the proof of which is straightforward, will be useful in the sequel.
LEMMA 14. Ify € W, vy € H* and w € yW[u]y‘l, so that y = t4y for some 3 € M and
y €W, and w = yt,o wy ™! for some a € M and @ € W, then

wyt,y lwl =ty 3¢y O

1.5. Let k € Q and let u € N be the denominator of k (i.e. ku € Z and (ku,u) = 1).
We say that k is principal admissible if
(1.5.1) u(k+2Y)>hY and (u,r¥) =1
Given k € Z, we let Pf = Py nh™*. Given a principal admissible k, we let Pf =
k(P :+R)=1Y) " (Note that when k € Z., the two definitions of P} coincide.)

Given X € b, we let

R*={a € AV™| <\ +p,a>€ 1}, R} = R* nAY™,

and denote by $* the set of o € R} which do not decompose into a sum of several elements

from R}. Let W* =< rq|a € R} >; one can show that W* =< rqja € $* >.
We call A € h™ an admissible weight if it satisfies the following two properties:

(1.5.2) —<A+pa>¢lyforall ae AY™,
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(1.5.3) QR = QII".

A weight A is called principal admissible if in addition to (1.5.2 and 3) we have:

(1.5.4) the matrix (2(a|8)/(816))a,secs> is equivalent to A.

Note that all dominant integral weights are principal admissible.
_ Werecall now the description of the set of all principal admissible weights. Given y €
W, denote by P, , the set of all admissible ) such that $* = y(Hff‘]); let Pf’y = P, ,Nh"**.

Denote by Pk(A)~the set of all principal admissible weights of level k. Finally, recall the
shifted action of W:

wA=w(A+p)—p.
PROPOSITION 1.5. [13, Theorem 2.1 and Proposition 2.1].
(a) P¥, # 0 if and only if

(1.5.5) k is principal admissible and u is the denominator of k,

(1.5.6) y(I,)) C AY™.

(b) If (k,u,y) and (k,u,y') are two triples satisfying (1.5.5 and 6), then the following
statements are equivalent:

(1) P,;’:,y n Pf’;y, #0,

() Puy = Fuy, |

(iii) y(H[u]) =Yy (H[u]);- 5

(iv) there exists 0 = t,7 € W, such that y' = yt 0.

(c) If (1.5.5 and 6) hold, then
PE, =y PE = {y.00 = (u—1)(k +AY)Ao)|A € PREFI—ATY
(d) P*(A) # 0 if and only if k is principal admissible.

(e) P¥(A) = U, P}, where u is the denominator of k and y satisfies (1.5.6). [

PRrROOF: We shall prove that (iii) is equivalent to (iv). The rest of the statements are
proved in [13]. Indeed, (iii) is equivalent to y~'y' € ﬁ/+. But t,6 € W, if and only if
tuad €W, O

Remark 1.5. (a) If k € Z, then P¥(A) = Pf.
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(b) Admissible weights are classified completely in [13]. In the case A = Agl) this
is precisely the set P(A) of all principal admissible weights. For all other affine matrices
there are admissible weights which are not principal admissible, and their levels need not
be principal admissible.

For A € Pf’y, let A% = 771y~ L), ie.
(1.5.7) A=y.(A = (u—=1)(k+r)Ap). |
0 P k u(k+hY)—hY
The map A — A° defines a bijective correspondence between P/, and Py .
Note that
(1.5.8) W* = yWy,y~" for A€ Py .

The set P*(A) admits an important involution A —*) defined as follows. Let A €
P,f,y, y=1tagy, PE M, 7 € W. First, note that W/\ := W>NW is the Weyl group for the
finite root system A :=A'N R Denote by @ the longest element in w (so that w°

iS the longest element in [’[’ - Recall that we haVe: w A = —‘A and w = 1. Deﬁne
-+ +

(1.5.9) wh(v) = —TM(v) if v € h, w(K) =K, w(d) =d.

Note that w*AY"™ = AY™. If A € PP (m € Z4) is a dominant integral weight, we let

(1.5.10) tA = w'(A)(= ~w°(A) + 2mA, € PY).
Let
(1.5.11) F=g0'0°, y=1t_p '7.

Finally, we let
(1.5.12) O =ty (%) = (u = 1)(k + RY)Ap).

It is easy to check that this is an involution that maps Pf’y onto Pf,'y’ and that more
invariantly this involution can be defined by

(1.5.13) A =wr(A+p)—p.
We clearly have
(1.5.14) R = w(RY).

The following lemma will be used later.
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LEMMA 1.5. Lety =ty € W, where 8 € M, y € W, and let u € N be such that
(1.5.15) y(II},)) C AY™\AY.

Define w, 4 by

(1.5.16) wuy+p(resp. +p¥) =uho—g *(B)ifr =r¥ =1orr > 1(resp. ifr =1, r¥ > 1).

Then w, 4, € Pi_hv (resp. € PY"™").

PRrROOF: We shall consider the caser =r¥ = 1orr > 1. The proofin the case r =1, rV >
1 is similar. It is clear that w, , € P*~*” 5o one has to show that (wy ylay) 2 0. For
i > 0 we have: 0 < y(&) = ya) — (Fa/|B)K, hence (o) [y7!8) < 0 and (wy,ylay) > 0.
Finally, 0 < y(ay) = (v — 1 = (ay [y 8))K + yay implies that (uAg — 5 '8|ay) > 0. In
the case of equality, y(ay) =y(ay)— K € Zi, which contradicts (1.5.15). O

1.6. Let g' = g(A) be the affine Kac-Moody algebra associated to an affine matrix
A of type XI(\;) and let h be its Cartan subalgebra. Let g’ = [g, g] be the derived algebra.
Then §' = g’ N is the space introduced in §1.2. The bilinear form (.|.) extends from b’
to the whole g(A) to a non-degenerate bilinear invariant symmetric form (.].) (not in a
unique way). We pick an element d € b, called the scaling element, such that

(dlaj) = boj, j €I, (d]d) = 0.

Then h = ' 4 Cd. The space h'* will be identified with a subspace of h* via extending a

linear function A on h' to §j by < A,d >= 0. Since the restriction of the bilinear form (.|.)

to b is non-degenerate, it induces an isomorphism h—=h*, and we shall identify h and h*

via this isomorphism. Note that d is then identified with agAg. The action of the groups

W and W extends from b’ to § by (1.3.1 and 2), and the bilinear form (.|.) is W—invariant.
Introduce the following domains in b:

Y = {v € h| Re(K|v) > 0},
D = {v eh| Re(ailv) >0, : € I}.

Note that D C Y and recall that D, the closure of D in Y in metric topology, is a
fundamental domain for W in Y (see [8, Chapter 3]).

Given A € b, we denote by e* the function on h defined by e*(v) = el?), The
function e~ ¥ will usually be denoted by g.

Define a holomorphic function R on Y by

R=¢" H (1 _6—a)mult o

a€Ay

Here Ay = AFUNK, mult a =1if o € A, mult rjK = £, mult jK = (N - £)/(r—1)
if r > 1and j # 0 mod r (see [8, Chapters 6 and 8] for details).
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Given A € b*, let L(A) denote the irreducible highest weight module over g(A)} with
highest weight A (see the Introduction). With respect to d we have the energy decomposi-
tion:

L(A) = ®jez, L(A)a(a)-4)

where L(A)(,) is the a-eigenspace of d in L(A). We shall say that elements from L(A)a(a)-j)
have energy j. Let

chpv = trppye’ == Z multA(/\)e(M"), vEbD,
A€ER*

be the character of L(A). By [8, Lemma 10.6b and (11.10.1)], this series converges in D
to a holomorphic function. The following result is a special case of [12, Theorem 1}:

PROPOSITION 1.6. Let A be a principal admissible weight. Then in the domain D, chy
is given by the following formula:

(1.6.1) chy= Y e(w)e”®/R. O

weWA

Of course, a special case of (1.6.1) when A = 0 is the Macdonald identity

(1.6.2) Y e(w)e™® = R.

weW

Remark 1.6. Both the numerator and the denominator in (1.6.1) converge to holo-
morphic functions in Y and the denominator R does not vanish in D.

Define the modular anomaly of A € h"** by

L

(1.6.3) A= A~

and the normalized character by

(1.6.4) xa = e ™K chy.

Note that x5 depends only on A mod CK. Another advantage of introducing the normal-

ized character is its modular invariance properties which will be discussed later. Note that

using (1.6.1) functions cha and x4 can be extended to meromorphic functions in ¥, which

are analytic at least on the set of regular elements Y5 = {v € Y|(a|v) # 0 for all o € AT}
Introduce coordinates (1, z,t) on Y as follows:

Y = {(r,2,t) :=2mi(~1Ao + 2 + tK)|7,t € C,Im 7 > 0, z € §}.

Then
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For A€ P}, u €N, let

(1.6.5) Ay = gi* /2 Z e(w)e*™.
weW

This is holomorphic function on Y (which is identically zero if A is not regular).
Let A € P¥,, y = tsy. Formula (1.6.1) may be rewritten in terms of the functions
A, as follows [13, Theorem 3.5]:

(1.6.6) xa(7,2,8) = Apoq (uf g pu(T, 2/u, t[u?)) A, (T, 2, 8).

Using this formula, it is straightforward to derive the behaviour of the characters under
the involution A —'A:

(167) X“(T,Z,t) = E(EA)E(UO)XA(Ta _zat)'

For u € *™, m # 0, we have the following simple but useful identity:

2
(168) A;\(m'r, _Tﬁv‘r'l:_l) = Z E(w)qﬂzﬂ-|."4‘ﬂ_.'%‘2'
m weW

Now (1.6.8) for i = p and (1.6.2) give the following identity:

(1.69) A(RVr, =7, Tlp[*/2hY) = ) e(w)ghh e el /2eht
wew

Y a—upl? v
- q|h A—upl®/2ub H (1 _q(,\|a))mult o
aEld g

Here and further, given A € §*, we denote by X € h the restriction of A to §. Finally, [13,
Lemma 3.1] gives us the following asymptotics as 7 | 0:

Ax(mr, —7E, T|u|?/2m) ~ (um) ™| M* /M |"1/? H 4sin#)-sinz(—#la—)

= m
(1.6.10) a€Ry
. v
X (—ir) =% exp - i h dlmg(XN)y
127 rum

where R, is defined by

(1.6.11) Ry=A)ifrY=1and =&, ifr¥ > 1.
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§2. Branching functions for winding subalgebras.

2.1. Let u € N be relatively prime to aq, and let y € W satisfy (1.5.6). Denote by
O[u,y] the subalgebra of the affine algebra g generated by  and the root vectors attached to
the roots from +y(Ilj,), and let gfy] = g[u,11- The subalgebras gj, ;) will be called winding
subalgebras.

Example 2.1. Let A be of type X 51). This is usually referredto as the non-twisted
case. Let g be the simple finite-dimensional Lie algebra of type X,;. Then

g=9(A)=C[t,t"|®cg+CK +Cd
with well-known commutation relations (see the Inroduction), and one has
g = C[t*,t7*]® 3 + CK + Cd.

One of the main objectives of the paper is to describe the decomposition of an inte-
grable g-module L(A) with respect to the subalgebra gj,,,). It turns out that this can be
obtained in terms of the so called string functions. Recall that, given A € h*, the string
function ¢} of the g-module L(A) of level k is defined by:

2
(2.1.1) 4 =¢™ ' S multa (A — nK)g".
nel

(Recall that ¢ = e~X.) This series converges to a holomorphic function in ¥ [ , Chapter
11]. Note that ¢} depends on A mod CK, that ¢} # 0 implies A— X € @, and that ¢?, = ¢}
forweW.

Let k¥ € N and let A € Pf. Then by [8, Proposition 11.8], the g-module L(A)
decomposes as a @[, y-module into a direct sum of integrable irreducible highest weight
modules L()) of level uk (by (1.4.3)), each appearing with a finite multiplicity. Denote
by [A : A] the multiplicity of the occurrenceof L()) in this decomposition. Introduce the
branching function by = b’;(g[u,y]) for the winding subalgebra, where A € Pf, A € y(PrY),
by

(2.1.2) By =g™ ™ Y (A (A - nK))g"
nel

This series converges to a holomorphic function in Y. Note that as before, b‘} depends on
A mod CK. Note also

2.1.3 b 5 0 implies A — A € (u — 1)kAq + Q.
A

By the Weyl-Kac character formula (which is a special case of (1.6.1) when A € Py)
we have for an integrable g-module L(A):

(2.1.4) XA =AA+p/A‘,.
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Similarly we have for an integrable @[, y~module L()\)
(2.1.5) )'()‘=Ay(;\+ﬁ)/Ay(‘-,),

where for p € P{, p =3 ;miA;,onelets o= 3, miA;, and A; and p are defined by (1.4.4
and 5), and where

. al? - .
(2.1.6) Ay = B E Z e(w)e? VA,
weyWy—1
Note that
(2.1.7) = p+ (u—1)sA,.

Finally, by the very definitions we have

(2.1.8) XA = Z bl Xa-
AePyt

We can prove now the main result of this section.

THEOREM 2.1. Let g be an affine algebra of type X](\;), let v € N, (u,ap) = 1 and let
y € W satisty (1.5.6). Let A € P and let A € P}*. Then

BY(uk+hY) w(rAtp) 2
(2.1.9) By @) = 2 swhg T T 0 ke
weW

PROOF: In view of (2.1.8) and (2.1.5), it suffices to show

. A
(2.1.10) Aypxa = Z by Ayt
,\EP:"

where bl,,\()\) is given by the right-hand side of (2.1.9).
Recall that by definition of string functions we have [8, Chapter 12]:

2
(2.1.11) XA = 3 3 q'%'k—eu(ocg

EEA+Q+CK vEM
mod (kM+CK)

The left-hand side of (2.1.10) is equal to
1512

(2.1.12) e K ST g(w)er @y,

weEyWy=1
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We can write w = yt, oWy~ !, where « € M, @ € W. Letting v = gwv', £ = wly~1¢
and using Lemma 1.4 and (1.4.3-6), we can rewrite (2.1.12) as follows

ulp|? 12 . ’
H YT Y due g,
weyWy=1 €' €(wy) *A+Q+CK 7EM
mod (kM+CK)

" 2 2 .
- qJ,er Z E Z E(w)q'-‘%"f’-‘—ewy(p+f+k7)c{;£‘

wEyWy-1 €y~ 'A+Q+CK YEM
mod (kM+CK)

(2.1.13)

We may assume that y(p + € + kv) is regular with respect to yWy~1. Then there exists
a unique element ¥ from the set y(P¥¥) of dominant integral weights of level uk for the
basis nyf‘]y‘1 and a unique o € yWy~! such that
(2.1.14) y(p+ £+ ky) =¥+ y(p)) + aK, where a € C.
Plugging (2.1.14) in (2.1.13) we obtain:
(2.1.15) > % Yo @)t

wEyWy—1 s€yWy~1 vey(Pyt)

where

lo(@ +yp) = yp + aK[* | ulpl?

b=—at 2k 2hY
_ Lo +yp) —ypl® | ulol?
2k 2hV
_ WYk ) o +yp) _y(B)|* i+l
2k uk + Y hY 2(uk + RV)’

Plugging this expression of b in (2.1.15) and putting w' = wo, ¥ = y~1¥, we obtain:

. A (uk4+hY) oy (b 45 3
(2.1.16) >y E(U)Ay(,;_*_i,)qJ_"_l’ i ‘L»(sl"c{,‘y(,.,ﬂ.,)_yi,.
I’IEP_;‘_" sEYyWy-1

Using (2.1.7) completes the proof. O

Since ¢} = cg( ") for w € W, we obtain, in view of (1.3.4), the following corollary of
(2.1.9):



BRANCHING FUNCTIONS FOR WINDING SUBALGEBRAS AND TENSOR PRODUCTS 21

COROLLARY 2.1. Decompose y € W according to (1.34): y = jw, j € Wy, w € W.
Then

() = b M), O

This corollary allows one to reduce the study of branching functions for the subalgebra
O[u,y) to that for the subalgebra gjy).

Since bﬁ(gm) = 0, we obtain another corollary of (2.1.9). For A, A € P_f_ one has:

AV(k+aY) witp) 2
(2.1.17) Z 5(w)q Tk |‘k+—vl,," wrl Cg()‘+p)—p = ba .

weW

2.2. In this subsection we consider the special case k = 1 of Theorem 2.1. Recall the
following

LEMMA 2.2. ([10, 4.6], [8, Chapter 13]). Let g be an affine algebra of type XI(J) where
Xn is of type Ay, Dy or Ey, and let A,M € P} + CK. Then either A — M ¢ Q and
A =0,or A—M € Q and

CAM - qu—|A]2/2 H(]‘ _qn)—mult K
neN

Using Lemma 2.2 and (1.6.9), formula (2.1.9) can be rewritten in the case A € P} as
follows:

THEOREM 2.2. Let g be an afline algebra of type XJ(VT), where Xy is of type Ax, Dy or
Ey (ie. eitherr =7 =1orr > 1), andlet A€ P;. Let u € N, let A € P¥, and consider
the subalgebra g, of g. Then either A — (A — (u—1)A¢) ¢ @ and [A: (A = nK)} = 0 for
alln, or A— (A —(u—1)A¢) € Q and

2_ A2 o
q(IAl A1%)/2 HaeA+(1 . q(A+p| ))mult «

(2.2.1) STA:(A—nK)g" =

. O
ps HnEN(]‘ _ qn)mult nK

This result was proved in the case of Agl) in [4] by a quite complicated method and
was conjectured there for the simply laced case (except that the power of ¢ is missing
there).

COROLLARY 2.2. Let g be as in Theorem 2.2 and let u € N.
(a) If A € P} and A € PY are such that A — A € (u — 1)Ag + Q then the minimal n
for which [A : (A~nK)] # 0 is equal to (J]A|> —|A]*), and [A : (A — L(]A]? = [AP)K)] = 1.
(b) In the g—module &, eP} L(A) viewed as a gfu] -module all integrable highest weight
modules of level u occur,the minimal energy of occurring of the highest weight vector of
L()), X € P}, being equal to L(]X* — [A]?). O

According to Corollary 2.2b, given g as in Theorem 2.2 and u € N, for each ) € P}
there exists a canonically defined 1-dimensional subspace in the space V = @,¢ P} L(A),
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which we denote by V)Eu], whose non-zero vectors are all highest weight vectors of weight
A for qu] of lowest energy. (Comparing this with [8, Exercise 12.17], we see that V)[‘u]\{O}

is also the set in V of highest weight vectors of weight X for f{ of lowest energy.) Since all
weights of L(A), A € P}, are of the form t,(A) — nK, v € Q, ne1,, we conclude that

(2.2.2) V,\["] = L(A)¢,(p), where A — A = (u — 1)A¢ + v mod CK.

Let N' = N for A = XI(\;) except for A = A;i)—l and Dﬁ)l, when welet N' = £2+1
and 2£ — 1 respectively. Introduce the following function,

G(T) — qN'/24ao H(l _ qn)mult nK_

n>1

This function, along with the related values of |§V /M|, is given by the following table:

r —_—V
TypeXy G(r)  1@'/M|
Xﬁl) or Ag? n(r)t 1

AR L a(n)tger) 2
DE  m(men)tt 2t
EY n(r)?n(2r)? 4
DY n(7)n(37) 3

Then formula (2.2.1) can be rewritten as follows:

A q[hv)\—up|2/2(u+hv)hv H A (1 _ q(A‘H)Ia))mult o
2.2. by = St
( 3) A G(T)

Remark 2.2. Formulas (1.2.3), (1.24), (1.3.5) and (1.3.6) together with the above table
allow one to compute the values of |M*/M|, |M/M]|, etc.

Later we shall need the following asymptotics as 7 | 0:

-1 Y a2\ miN
(2.24) G(r)™ ~1Q /M| / (—ZT)/ €XP 19
which can be deduced either by using the above table and the asymptotics of n(r)7!, or
by using the asymptotics of the string function cﬁg [8, Chapter 13].

There is one more case when branching functions for winding subalgebras have very
simple expressions: g is of type Bgl) and k = 1. In this case all (up to equivalence and
symmetry of the Dynkin diagram) non-zero string functions are given by the following
formulas [10, 4.6]:

(2.2.5) cﬁg + cj\\g = g™ho H(l )1+ "y,
nEN
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(2.2.6) Cﬁﬁ = gmac—lAd’/2 H 1-¢") 41 +q").
neN

THEOREM 2.2. ' Let g be an affine algebra of type Bgl) and let A € P} = {Ao, A1, As}
Let w € N, XA € P} and consider the subalgebra gj,) of g. Then either all branching
coefficients [A : (A — nK)] are zero, or A € ulg + Q (resp. € Ay + (u — 1)Ag + Q) and we
have respectively:

Do A=nK)lg"+ Y [Ar: (A —nK))g"t/?

n n€Z
(2.2.7) EZ|,\[?/2 (z\+P|otE) mult o ny—¢ n—1/2
g2 I (1= gO¥eledymite e TT (1 - M) (1 4+ g7/,
Q€A neN
(2.2.8)
> Ae: (A—nK)lg"
n€Z
_ q (A2 —|Ae|?) /2 H (1 _q()\+p|a) mult o H(l (1 +qn)
a€Ay neEN

Proor: Formula (2.2.8) follows from (2.1.9), (1.6.9), (2.2.6) and the fact that any non-
zero string function of the form cﬁ‘ is equal to ¢j!.
Adding up formulas (2.1.9) for A = Ay and A;, we have:

(2.2.9)
Bo 40t = 3 e(w)g TR S

weWw

O ) =p=(u=1)0 T Cutrk ) —p—(u-1)a):

Since w(A +p) — p— (u—1)Ae € P, it is Q-congruent to Ay, hence is W—conjugate to Ag

A A .
or A;. Hence cw%)\-l-p)-fp—(u——l)Ao + cwt)\+p)_p_(u_1)A cye + cA or = CAO + c , which
are equal. Now we can apply to (2.2.9) formulas (1.6.9) and (2.2.5). O

2.3. In the section we discuss the asymptotics of the branching functions b3 (gju}; 7)
as 7 | 0.
Introduce the following notation (see (1.6.11)):

A +pla)

(2.3.1) a(A) = (k+ hY)" 2 \M* Q| % 11 2sin P12 k -~ , Ae P¥;
a€R+
k dim g( X )
(232) Cp = _W’ ke Q.

We can state now the following
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CONJECTURE 2.2. Let g be an affine algebra of type XI(J), let ke N, A € P_f_ and let
u €N, u>1, A€ P} be such that A\ — A € (u— 1)kAg + Q. Then

e

1217

(2.3.3) b‘}(g[u]; T} ~ |Ja(A)a(X) exp (cx ~ u™ ).

Note that asymptotics (2.3.3) is obtained from (2.1.9) if one replaces thoughtlessly
the string functions by their asymptotics (given in [10, §4.7] or [8, Chapter 13}):

—V*

(2.3.4) A~ |TQ T /MY M* M| a(A)(~ir k) 2emies 2T i A — X € Q,

and then uses (1.6.8 and 10). This procedure gives however a wrong result when u = 1. A
more careful argument using the second term in the asymptotic expansion of the ¢} shows
that (2.3.3) holds for sufficiently large u. More precisely, let

b = i 2k(A|p) — AV [A[2)k?
k Aepi\r{gg’jen( (Ale) [A[F)E*,

and let, as usual, b} denote the same quantity for the adjacent root system ({10,§1.5] or
[13, §3]). (Note that by = b}, if r =1 or ag = 2. Recall also that b; > 0 [10, Proposition

4.14]. For example, b = £(k — 1)/k? for Agl), k > 1.) Then (2.3.3) holds if
12agbt/(k + AY) > dim g(Xn)/(uk + RY).

Note also that (2.3.3) holds for k =1 if r = r¥ = 1 or r > 1. This follows from Lemma
2.2 by making use of the “thoughtless” argument.

2.4. In this section we will assume (for simplicity) that r = 1, hence g’ =
Clt, 71 ®c g + CK as described in Example 2.1. The well-known Sugawara construction
extends any representation of g in a vector space V with K = kIy and with spectrum
of d bounded below, to the semidirect product Vir x g’ (see e.g. [11, §3.4] where this is
described also in the twisted case). Recall that Vir is spanned by operators L, (n € Z)
and I, which satisfy the usual Virasoro relations:

ma—m

12 Ck,

[Lm’ Lﬂ] = (m - n)Lm+n + 6m,—n

where the central charge ¢; is given by (2.3.2), and that [t™ ® z,L,] = mt™*" @ z.
We fix u € N and let

L,=uL .+ S o(u — u e /24.

These operators satisfy the Virasoro relations with central charge uck, and for z(um) € g{u]
we have: [z(um), L,] = mz(u(m +n)) € 8lu- {Recall that z{m) stands for t™ @ x.)
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Let L, (n € Z) be the operators given by the Sugawara construction for the gfu]—
module V. They satisfy Virasoro relations with central charge c,;. Hence the coset
Virasoro operators

(2.4.1) =i -,
satisfy the Virasoro relations with central charge
(2.4.2) c[k"] 1= UCE — Cyk-
This is a variation of the well-known coset construction [5).
The operators LY commute with gfu], hence act on each subspace U(A, A) of highest
weight vectors with weight A € PF* for g{u} in a g-module L(A), A € P§. This represen-

tation of Vir in U(A, A) is unitary with central charge c[k"] and with the lowest eigenvalue

of Lgu] equal to
(24.3) hE‘"Y]/\ =u"tmy —my + c[k"]/24 +uln,

where n is the lowest energy of d in U(A, ).

Using the above facts it is easy to compute the branching functions in terms of Virasoro
characters X(r:';) in the case when cgc"] < 1, using the method explained in [11] (we use
notation of [11]).

PROPOSITION 2.4. Let g = g(A) be an affine algebra associated to a symmetric matrix A

and let u > 1. Let c = cgcu] < 1; then k =1 and v = 2, and all these cases are listed below

(in all formulas b = b(7) and x = x(27)):

0) Agl), c=13:

By, = D53, = Xani BAbea, = X0+ Xa-

1) Egl), c=1:

b2, = x5s bae =i byt = ().

2) E§l), c= 1

B3R, = B3R, = xadi DAY = AT = X505 Bheia, = X2+ x50 WAL = X 4+ X6

3) Agl), c=%:

A A A 3 3 A
bpp = byi = byz =X(4,% + () o
4) Eél), c=3:
A A A (4) (4) ;A A A 4 4

byry = b2a, = b3, = X21 + Xas bag = by, = by = ng + X‘(i,g’
A _ 1A _ A _ (4)

batens = Unora, = bagen, = Xa3. O

_ M _ A _ 1) (3)
0,0 Oaten, = Oangn, = basia, = Xo2 X3

Remark 2.4. Comparing (for A of type Egl), A = Ag, XA = Ay) formula (2.2.1) with
Proposition 2.4, we obtain the following curious identity:

Ha€A+(Eg1))(1 — g(Artele)ymult o

HnEN(l —‘1")8 = H(1+q2”).

n€EN
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§3. Comparison with branching functions for tensor products.

3.1. Let g = g(A) be an affine algebra of type Xl(\;)' Let m € N, let k € Q be principal
admissible, and let A € P*, y € P*(A) (see §1.6). Then by [13, Corollary 4.1] the module
L(A) ® L{p) decomposes with respect to g into a direct sum of irreducible highest weight
modules L)), where A € P™t¥(4) + CK, each appearing with finite multiplicity. Denote
by [A ® u : A] this multiplicity. Define the branching function 6% as follows:

bj;@” — qu+m,.-—m>‘ Z[A Qu: ()\ _ nK)]q".
n€Z
Note that b3®# = 0 unless A+ — ) € Q.
We have seen already in §2.1 that the branching functions for winding subalgebras can
be expressed via string functions. We will show now that this holds for tensor products as

well. Recall the map A — X° defined by (1.5.7).

THEOREM 3.1. Let g be an affine algebra of type Xg), let meNand A € PT, and let k
be a principal admissible rational number with denominator u and p =
y.(1° —(u—1)(k+hY)Ao) € PE,. Then b}®* £ 0 implies that X € P%* and in this case

one has:

(EthY)(mtk4hY) ) w(A04p) 40452

AQu ™ | —£32 A

(3.1.1) = E e(w)g 2 mERERY TRFRY L (304 0) — (10 p) = (u—1)mAo)
weWw

PROOF: By the very definitions we have:

(3.1.2) xaxu= Y, B®¥xa
Aep itk

By (1.6.1 and 2) we have

(3.1.3) Xu = AutolAp,
where
”0 2
(3.14) Apyp= qi"‘_:% Z e(w)e*#+e),
waWy'l

A similar formula holds for x». Using (3.1.2 and 3), it suffices to show

(3.1.5) XAfiu+p= Z bl;®u-‘4/\+p’
Axepnt*

where 53®* is given by the right-hand side of (3.1.1). Using (2.1.11) and (3.1.4) we can
rewrite the left-hand side of (3.1.5) as follows:
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+0)? 2
(3.1.6) q—rsz:’ ) 3 T w3 qlzi'm—eme)c?_
EEAHQHCK  yeyWy-1 YEM
mod (mM+CK)

Recall that w = yt,,wy~'; let v =7 Wy and { = W 7¢'. Then, using Lemma 1.4, we can
rewrite (3.1.6) as follows:

[
(3.1.7) qzrk-:‘:y) Z Z Z E(w)ew(#+9+y(5 +m~ )) 1&! +:‘v

weyWy-1 £ €y~ (A)+Q+CK 7' EM
mod (mM+CK)

ey v(€')"

We may assume that g 4 p + y(€' + my') is regular with respect to yWy~. Then there
exists a unique dominant integral weight ¥ of level u(m+k+hY)—hY for the simple coroot
basis y(IIj,}) and a unique o € yWy~! such that
(3.1.8) (p+p+y(l' +m7')) - o(? +y(p)) € CK,
where p is given by (1.4.5).

We can write y~1(¥) in the form:

y () = Zm;[\i, m; €Ly, Za}/mi =u(m+k+hrY)-hY,
where the A; are defined by (1.4.4). Let v+ p = 7+ y(p). Then we have by (1.4.4 and 5):
(3.0.9) vt p=y(P +p— (u— 1)(m+ b+ FY)Ao),

where 1° = Tm;A; ’hence vE P'";Lk
Using (3.1.9) we can rewrite (3.1.8) as follows:

(3.1.10) p+pt+yll +my)=0o(v+p)+akK, a€C.

Since the string functions are invariant under translations by elements from mM, we see
from (3.1.10), that

A _ A
(3.1.11) Cy(e") = Ca(v+p)—(p+p)
Plugging (3.1.10) and (3.1.11) in (3.1.7) we obtain
(3.1.12) E Z 6(0)A,,+quc‘;(v+p)_(,‘+p),

VGP,Z';“‘ sgeyWy-1

where
be gy lotp) —(utp) vaKP W +of [v° +pf
2m 2k +hY) 2(m+k+hY)
) B V)] S i G Ui 7 s
2m 20k+hY) 2(m+k+hY)
Furthermore, we have: o = yt, ooy 1, a € M, T € W. Hence, using (3.1.9), we obtain:
(3.1.13) o(v+ p) = y(tad(+° + p) — (u — 1)(m + k + hY)A¢) mod CK.

Formulas (3.1.12 and 13) prove (3.1.5) and the theorem. O
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CONJECTURE 3.1. Let g be an affine algebra of type XI(\;), let m € N and A € PJ*, and
let pe P;, and X € P'""’k be such that A+ p— A € Q. Then

T
(3.1.14) b£®“(1') ~ |J|a(A)a(X%)a{u®) exp m(cm + ¢k — Cmtk)-

Note that asymptotics (3.1.14) is proved in the case k € N [11, (2.7.15)]. As in the
case of Conjecture 2.1, one can show that (3.1.14) holds for sufficiently large u, namely,
when the following inequality is satisfied:

12a4b!, S Y dim g(Xn)
m+hY " w(k+hV)m+k+RY)

3.2. We shall compare now Theorems 2.1 and 3.1.

PROPOSITION 3.2. Let g,m and A be as in Theorem 3.1. Let u € N be such that (u,hY) =
1and (u,rV) = 1. Let k = (u"'=1)kY and let y € W satisfy (1.5.6). Then (by Proposition
1.5) Pf'y = {p = y.(kAo)}, and for any X = y.(A—(u—1)(m+u~1hV)A) € P,:"‘;'k (where
A € P¥™) one has:

(3.2.1) B8 = b (g(u,y))-
PROOF: Just compare formulas (3.1.1) and (2.1.9). O

§4. Functions ¢, , and modular invariance.

4.1. Branching functions for winding subalgebras are intimately related to the func-
tions @y , defined as follows. As in Lemma 1.5, we shall distinguish cases 1) r =rV =1
(i.e. A is symmetric) or r > 1, and 2) » = 1 but r¥ > 1, putting the second case in
parenthesis. Let p and p’ be positive integers such that p > hY and p' > hY (resp. p' > h).

For A € P_f_hv and u € P”'_hV (resp. UE PVP’_h) let

gL W(X+p! u+p§resp +oV )12
G( ) Y e(w)g 2 ! "
weW

The connection of ¢ , to branching functions is given by

(41.1) Pau(T)

THEOREM 4.1. Let g be an affine algebra of type XJ(\',') where eitherr =rV =1orr > 1,
let A € P} andlet u € N.
(a) If X € P} is such that A\ — A € (u — 1)Ag + Q, then
b (a) = ero-

( b) If k € Q is a principal admissible rationa] number with the denominator u and
AE P’c+1 are such that y(A® — u® — (u — 1)Ag) — A € Q, then

A@u
b)‘

uy7
= (,0)‘0,”0-

PROOF: a) (resp. b)) follows from Theorem 2.1 (resp. Theorem 3.1) and Lemma 2.2. O
Theorem 4.1b was obtained in [12, Proposition 3].
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PROPOSITION 4.1. Let g be an affine algebra of type X](Vr) andlet ) € P_‘rhv, e P_ﬂl"'hv
(resp. € Pj_’pl_h). One has the following asymptotics as 7 | 0:

- . AV~ 7w +Pla) . w(E+ plresp. + 7Y|e
ean(r) ~ (o) @ 12 T 4sin ( ppl ) . T(E+plresp. +7"|a)

!
a€§+ P
N hY(hY(resp. h) +1)
X exp 12”_(1 - p ).
ProOF: This follows from (1.6.8), (1.6.10) and (2.2.4), using
(4.1.2) dimg(Xy) = N(hV(resp. h)+1). O

Remark 4.1. Note that the group Aut IIY C Aut b’ leaves the sets P{*+ CK invariant,
leaves (.|.) invariant, fixes p mod CK and normalizes W, and that ¢ ,(7) depends on A
and ¢ mod CK. It follows that, defining an action of o € Aut IIY on Py by ¢, m;A; =
> me(i)Ai, we have:

Po(A),o(u) = PAp-

4.2. Here we establish a connection between the functions ¢, , and the characters of
admissible representations. We keep distinguishing two cases as in §4.1, putting the second
case in parenthesis. Let

& { G('r)hv (resp-h)  if A is not of type Agi,),
T) =
(n(r/2m(2r)n(r)t =) A = A%,
By [10, 4.2] we have:
(4.2.1) G(1)G(r) = goF/2" [ (1 gheledymaite,
GEA+\K+
PROPOSITION 4.2. Let
(4.2.2) A=y (A° = (u—1)(k+RV)Ao) € PF,

be a principal admissible weight and let z € b be such that (a|z) # 0 for all « € Ay. Then
the limit

(4.2.3) Pa(r) = g% é(r) 11 1- e_z"‘(“]"))x/\(r, ez,0)
a€Ay

exists and is equal to wpo ,, (7) if

(4.2.4) <Aa>¢Zforallach’,
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and is equal to 0 otherwise. (Recall that wy y is defined by (1.5.16).)

PRrROOF: If < A,a >€ Zfor some o € ZV, then ro € W and hence Ywewn e(w)e*A+0(r,0,0)

= 0 for all Im 7 > 0. Since HaeA+\Z+(1 — em)multe(r 0 0) £ 0, we see from (1.6.1)
that p5(7) = 0. Suppose now that (4.2.4) holds. Then we have by (4.2.1)

(4.2.5) lim( J] (1~ *)/4,)(7,62,0) = G(r) 7 G(r)™".

o EK+

Let y = t37,8 € M,5 € W. Then (1.6.1) can be rewritten as follows {13, Theorem 3.5]:

XA, 240) = A0, 7T 4T 2,07+ (218) +118P/2) [ 4,020,
Hence, by (4.2.5),
$a(r) = Apog,(ur, 7571 B, 7|81 12u) /G(7) = @po, ,- O
Let k € @ be A-admissible with the denominator u € N, and let
(4.2.6) p=u(k+hrY).
The A-admissibility of & is then equivalent to
(4.2.7) p,u €N,p > hY,(pu) = (u,r¥) = 1.

Denote by f’f’y the set of all A € Pf’y satisfying (4.2.4); we shall call these principal
admissible weights nondegenerate. Given 7 € W, let 15?1: = UﬂeM f’f’tﬂ. This set admits
the following nice parameterization:

LEMMA 4.2. Let A € P2, e P**" (resp. € PY*~*).
(a) The map associating to the pair (A, 1) the element
(4.2.8) Az w) =T+ 0) = By + plresp. + p¥)) + 2ao -,

establishes a bijective correspondence between the set of all such pairs and the set ny In

particular, 135 # @ if and only if
(4.2.9) k is principal admissible and u > h¥(resp. k).

(b) Let k be principal admissible, let §,5' € W and let ¥ = §~'5'. Then Ax3()\,pu) =
Az (N, p') if and only if

(4.2.10) p AT XN)=u W pu-Fu)=aeM
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and
(4.2.11) taT € Wi
(c) Isik and ]55’“, either are disjoint or coincide, and they coincide if and only if '3 € W .

PROOF: Let A € P¥,, y =157, B € M, € W. Then A = y.(A" — (u — 1)(k + h")Ao)

(where A® € Pi’_hv) can be rewritten as follows:
(4.2.12) A = Ap5(A% wyy).

IfAe€ }355, then since (4.2.4) implies (1.5.8), by Lemma 1.5, w, 4, € Pf_l_hv (resp. €
PX" '_h). Conversely, this inclusion implies that A defined by (4.2.12) lies in 13?" Finally A
completely determines the pair: A = A®, and p is determined since 7 is given. This proves

(a).
Furthermore, if
A=y.(A=(u—1)(k+h")Ao) = Aeg(A 1)
=YV = (= 1)k B ) = A (N, ),

then, by Proposition 1.5b there exists o € M, such that ¥’ = ytuod. Let 0 = t,7. Then we
have: 0.A' = )\, hence 0.4’ = p, and conditions (4.2.10 and 11) hold, and vice versa, (4.2.10
and 11) imply Ag 5(X, p) = Ay 5 (X, u'), proving (b). (c) follows from (b) and Proposition
1.5b. 0O

Finally, note
(4.2.13) Arg(O0 p) = Akeg(PAF ).

4.3. We turn now to the discussion of modular invariance. First, by a general result {10,
Proposition 4.36] all branching functions 4} and b§®" are holomorphic modular functions
(of weight 0) in 7,Im 7 > 0.

In order to describe the explicit transformation formulas for branching functions, we
need the transformation formula for characters. Recall the action of B = (Z 3) € GL,(R)

onY:
ar+b z

cr+d er+d’

and its right action on functions on Y:
f(r,z,t)|p = f(B-(1,2,t)).
Recall the definitions of the congruence subgroups I'¢(n) = {(': 3) € SLy(L)|e =0

mod n} and the theta subgroup I'y = {(': Z) € SLy(Z)|ac and bd are even} of SLa(Z).

Let T' = Iy(r) if g is of type XJ(\;) # Ag‘? and I' = Ty if it is of type AZ)' The following
statement is proved in [10] for r = 1 and is implicitly contained there in the general case.

(det B)(¢ — 272 _y)

B-(r,z,t) = er + )
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THEOREM 4.3. The C—span of the set of normalized characters {XA}AEPJ’; is I'-invariant.

PROOF: In notation of [10], the space Thy4pv is T-invariant by [10, Proposition 4.5a],
hence the space Th;+h\, is P-invariant since the action of GL,(R) commutes with the
action of W. But Th,;hV is the linear span of functions Axyp, A E P_f and dimTh,, = 1.
Together with (2.1.4) this proves the proposition. O

Let S = ((1) _;l) , T = ((1) i) € SLy(Z). An explicit formula for the action of S on

the xa, A € Py, was found in [10], and its generalization to the case of the principal
admissible weights in [13, Theorem 3.6]:

LEMMA 4.3. Let g = g(A) be an affine algebra of type Xt(l) or Agi). Let k be a principal
admissible rational number with denominator u and let A € P*( A) be a principal admissible
weight. Then

(4.3.1) als= Y S,
NEP(A)

where

Sax = i +Hu=4(k 4 BY) )M M e ()

(4.3.2) % e~ 2 +a|8)HN +p1B)+(k+hY)(818")) Z e(w)e—k—fﬁlr(w(x°+p)lx°+p)‘
weEW

(Here A € Pl’f,y, MNe Pf,y,, y=tgy,y' =tgpy.) 0O
It is easy to check that (see (1.5.12)):

(4.3.3) San = s(ﬁo)e(fv‘)‘)g)‘,\u

Applying (4.3.1) twice and using (1.6.7) and (4.3.3), we deduce

PROPOSITION 4.3. The matrix (Sxx)a xep*(a) is a unitary (symmetric) matrix. [
Remark 4.3. (a) Note that xi|reo = e2™™ry,, hence, by Lemma 4.3, the C-span

of the set {xa}repk(a), which we denote by CH¥, is SL;(Z)-invariant in the case r = 1.

Since S and T? generate 'y, we see that CHF is y-invariant in the case Agi). In the
remaining cases we have [13, Theorem 3.6]:

als= Y. Sawxh(r/r,z/nt).
N EP*(4)

Here and further P', x' etc. refers to the “adjacent root system” (see [10, §1.5] or [13, §3].
By Proposition 4.3, this can also be written as follows:

1 z

'
(=, —=
X/\( TT’ TT’

t - (22/—7_2)) = E g/\A’XA(T) Z,t).

AEPk(A)
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From these we obtain:
Xalstrs-i= ) Y @V S S
HEPk(A) MEP(A)

Thus, CH* is ST"S '<nvariant. Since CH* is also T- and $2?-invariant, and since the
elements ST™S™!, T and S generate the group I'y(r) for r = 2 or 3, we conclude that
CHF is T-invariant in all cases.

(b) Let ap = 1 and denote by CH} the C—span of {XA},\ep'fy. Let y = 47, and let
(1,2,)" = uy " _gsu(7, z/u,t/u?). Then

STS (1, z,t)™) = (ST*S~(r, 2, ).
Using this and (1.6.6) one derives the following transformation formula:
XAlsTus-1 = > SxoaSau0e’™ ™A,

Aepu(k+hv)—hv
REPS,

Nevertheless, it is not true that CH, 5 is To(u)-invariant for each y. It is true, however,
if y = 1. To show this we use formula (1.6.6), which says that the numerator of x4, A €
PF | isequal to

u,y
Antp(rr2,1) 1= Ao (ur, 77 (B) + 771 (2),u™ (4 (18) + 7187 /2)-
Let g = ('; 3) € I'g(u) NT. Then we have:

alar 2
Anrly = Apoaylu, (ar + BT (8) 4 77(2) ™ (E + a(Bl2) + <—§—”)'ﬂ’—>>\(

a ub\’
c/u d)
Since Th™ is T-invariant, we see that As, olg is a linear combination of functions
_ — - +0)I8/? u(k+RY)—
A”o+p(u7',a7'y 1(ﬂ)+y 1(2)7 " 1(t+(ﬂ|z)+9-((”—2)|"i)), “0 g pulk+h?) s

Assume now that y =1, i.e. #=0. Then AA+p|g is a linear combination of functions
AM°+P(uT7y_1(Z)7u_lt) = App(1,2,1), p € P:,l'

Note that our argument shows that CH : is invariant with respect to the group {(‘: 3) €
IFla=1 mod u, c=0 mod u}.

As in [12], Lemma 4.3 together with (3.1.2) give us a transformation law for b’:®“,
where A € P{*, m € N, and € P¥(4), A € P**™(A) are principle admissible weights
(and g is as in Lemma 4.3):

1 —_— ' 1
(4.3.4) b§®"(—;)= D SanSuwSanby O (7).
AepPp
W EPH(A)
,\'EP’H'"'(A)
Since

bﬁ®"(r + 1) — 62“(m1\+m"_m)‘)b§®“(7'),

we obtain the following corollary of (3.1.2), Remark 4.3a and Proposition 3.2:
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COROLLARY 4.3. Let g = g(A) be an affine algebra of type XI(J) and fix m € N. Then
a) Given a principal admissible k € Q, the C—span of the set

{63®#(1)|A € PP, u€ P*(4), A€ P*™(4)}

is To(r/ag)—invariant.
b) If u € N is such that (u,hV) =1, then the C-span of the set

{8}|A € P7, X e PI™}

is To(r/ag)-invariant.
c) Given p,p' € N such that p > h¥, p' > hY (resp. p' > h) and (p,p') = 1, the C—span of
the set N - ,
{oan(MA e P pe PP (resp. € PYP'7%)
is To(r/a¢)-invariant. O
Proposition 2.4 shows that the conclusion of Corollary 4.3b fails if (u,kY) # 1. In
general, however, the subspace considered in Corollary 4.3b is at least I'o(u)-invariant.

Indeed, let o, = (: g) Then we have:

(4.3.5) To(u) = SLy(Z) N a 1S Ly(T)ev,

(4.3.6) X = Xalay-

Hence for 8 = a;'ya, € To(u), where v € SLy(Z), we have: Xalg = Xalya., and by
Proposition 4.3, the C—span of the x is I'y(u)-invariant. It follows from (2.1.8) that the
C-span of the set {b4|A € P]*, A € P§™} is T'g(u)-invariant.

4.4. Formula (4.3.4) and Theorem 4.1b give a transformation formula for the ¢ ,(r).
However, a much simpler formula may be obtained by using (4.3.1) and Proposition 4.2.

PROPOSITION 4.4. Under the assumptions of Lemma 4.3 we have:
1 -
Y = (—p)a+l J s
(44.1) a(=2) = (=) Y Sawa(r).
NEP(4A)
In particular, in the basis {{)x}xepr(4) the transformation matrix is unitary.

PRroOOF: Let xa(7) =lim,o ] (1 — e?miale)y ) (1, 2,0). Note that (4.3.1) gives:

QEK+
1 ez £(zz)
XX(_;) —7:’)_ or )= Z S)\)‘IX,\I(T,EZ,O).

N EPk(A)
This can be written as follows:

1 — e—2ri(alez) —omi(ales 1 ez €22
I =S I] -1, 2,268,
aE—A—+ GEK+
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Z S,\,\I H (1 - 6-2"i(a|“))x,\l (T, €z, O)

MNeEPr(A) aeK+

Taking limit of both sides as € — 0 we obtain:

— ~ 1 .
(4.4.2) (-2 = > Savia(n).
MEP*(A)

Since, by definition (4.2.3), ¥a(r) = G(7)%(7), the proposition follows from (4.4.2) and
transformation properties of (7). |

Remark 4.4. Proposition 4.4 can be extended to the remaining cases, agr = 2 or 3,
using [13, Theorem 3.7]. The result is that on the right-hand side of (4.4.1) one should add

the factor r14+| replace 7 by 7/r, |M*/M| by |M*/—Q_V| and P¥(A) by P'*(A). Here, as
before, P'¥(A) refers to the adjacent set of weights associated to the adjacent root system.

LEMMA 4.4.. Let p and p' be relatively prime positive integers and let A € P}, X € Pi’
be regular weights. Then p:=p'A — p)\' + pAy is a regular weight.

PROOF: We have to show that (ula) # 0 for any o € Ay. Let @ = v + nK, where
v € A4, n€1,. Then:

(sla) = p'(Aly) = p(N'|y) + pny

hence p divides (Aly) if (ula) # 0,which is impossible since 0 < (Aly) < p for any
¥ € A+. 0

Let p,p’ be relatively prime integers > hV. We define a map of P_‘;_hv X Pf_l_hv into
itself, denoted by (y, ') — (u i), and 5,, # €y w = £1 as follows. Due to Lemma 4.4,

there exist a unique i € Pp i e P’J and unique w,w’ € W such that
P'(n+p) = p(i' + p) — w(ft + p) € pM and
p(H' +p) = p'(u+p) —w'(F +7) €' M,
and we let
Epp = E(w), €y, = e(w').

In particular, for the pair (g, p'Ao), we denote piy = :\,6},/(;1) = € pihe-
Note also that for an integer p > AY and A\, )\ € Pf;-hv formula (4.3.2) turns into

(4.4.3) San = il +Hp=t/2| 0% 0|12 Z e(w)e” - (wGH+PIX +7)
wE—W7

We can rewrite now Proposition 4.4 in a form more suitable for applications.
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THEOREM 4.4. Let g = g(A) be an affine algebra associated either to a symmetric matrix
Aorto A= Agi). Let p and p' be relatively prime integers such that p,p' > h and let
Ae PP x e PP Then

1
(4.4.4) %\,,\'(—;) = Z SN () Py
(u,u')EP_’;__hv xPi’_hv mod W+
where
(4.45) Sownuny = (DI ey (Nep(u)| T 2emiOt el 4ot telN oD g, g,

= (_1)|A+||J|1/25uu’5;¢p'5>\ﬂ5)\'ﬁ'~

PROOF: Using that ¢y » = @i x We may assume that p’ is odd (we shall need this in the
proof for Agzl)). Note that (4.2.3) can be written as follows, using (4.2.8):

(4.4.6) PAN = 1/)A,,,7(,\,A')(T) for any 7 € W.
Hence we have by Proposition 4.4:
an(=1/7) = (=i)/+! > 2 ShuaGx s (7)
(p,p')EPP-HY ><P+"L""V mod Wy YJEW
Hence we need to prove
(4.4.7) Soonusny = (%4188, L) Ay 5w
By (4.3.2) the right-hand side of (4.4.7) is equal to
Z e(y)(pp') ¢ /3| M* [ M|~V 2 e 20 pl8)+ (ke B)+(p/2') (B1BT)

yEW
(4.4.8) 2 i
% Z s(w)e_—z'r (w( +P)'ﬂ+ﬂ),
wEW

where 8 =p'Ag— X —p, ' =p' Ao —y(p' +p). Substituting 5 and #' in (4.4.8), we obtain:
P
(pp')—l/2|M*/M|—1/2627"'((r\+plu'+p)+(f\’+p|/t+p))
x Z e(y)e2mip/2) (¥ (N +)ln'+0) Z £(w)e 20 (D) (wOto)lute)
yEW weWw
This gives us (4.4.4) with the first expression of Sx\x)(uuy in (4.4.5). To get the second
expression, we rewrite e2m{Atele'+p) — 2milw(M+p)lu’+0) e%("w()‘ﬂ’)l”l""’), and similarly
for 2™\ +olute) By (4.4.3), (1.3.5) and the definition of the map (u, p') — i, ii') and
y —_—
the €upr, €}, this is equal to (—1)1A+1|J|*/2e,, e, SxzSnp. O

Using Theorem 4.1a and the fact that Spo = 1, we obtain the following corollary of
Theorem 4.4:
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COROLLARY 4.4. Let g be as in Theorem 4.4 and let u € N be relatively prime to h.
For each A\ € P choose the unique A € P} such that A — A € (u — 1)Ag + @, and let
br(r) = b3(r). Then

1 Ti
ba(—2) = (@2 Yo OIS, b (7). O
uEP;

Note that ¢,(0) is the generalized Legendre symbol {7]:

£.(0) = H sin 7ru}(f\)/|a) sin W(}fla).
a€A L

In a similar way, using Proposition 4.4 and Remark 4.4 one can derive the following
transformation formula valid in all cases:

1 apT
(4.4.9) ‘P,\,,\'(—;) = Z 5(,\,\')(,1,/)801,,#/(7),

pepP*"
#Ieplp’—hv(respepv;:’—h)

where

- =
S(M’)(uu’) = (_1)|A+I(%)|A+'lsp’(/\)sz\,zx
X |M*/@V|1/25P(#')62ﬂi((»\+p|u’+p’)+(u+p’|A’+p)SW;

(resp. x ]M*/M]]/Ze;f(/z')ez"i((’\““’l” +o7 )+ (ntplN +p )S;\t/u;,")'

Here for A € P)? "~ we define Ay and €Y(}) as follows: there exists a unique w € W and
a unique ) € PY*™" such that p'(X +5Y) — w(XZ +7) € pM, and we let ]/(\) = e(w);
for A, X' € PY”' ™" we let (cf. (4.4.3)):

St = iSHy A MY e(w)e” TP,
weW
In conclusion, note the following useful property of the map (X, \') — (X, V):

LEMMA 4.4. Let p,p' € N be such that p,p’ > kY and (p,p’) = (p,7¥) = (p',7V) = 1. Let

A€ PP and X, 4 € PP Then (3,3') = (i, i) if and only if there exists o € Wy
such that

Atp=0c(p+tp) and N+p=o(u'+p)

PROOF: The “if” part is clear by the definition. Suppose now that A = fi. Consider the
principal admissible weights

(4.4.10) A=t (A= D)k +2)N), A =tg.(u—(p' = D(k+EY)A),
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where f = —(X +5), ' = —('+5). Then by the definition of X and /i, p'(A+p) € W(3+p)
and p'(A' + p) € W(ji + 5), hence

(4.4.11) A' + p=w(A + p) for some w € W.

But the corresponding simple coroot bases are tg (Ilj,)) and wtg(1l;,}). Hence, by Propo-
sition 1.5b, there exists o = t,& € Wy such that

(4.4.12) t_gw Mg =tpa0.
From (4.4.10-12) we obtain:
tpaT.(p— (0 — D)(k+hYV)A) = A~ (p' = 1)(k + hY)Aq.

But the left-hand side of the last equality is equal to o.p — (p' — 1)(k 4+ hY)Ao, hence
A = o.pu. Similarly, M = ¢'.p, and it remains to show that ¢ = ¢,
Letting w = t,W, we obtain from (4.4.12):

—1 _ —
bprmr - =1pal

Since v € M, it follows that p'a+ 8 — ' € M. Since also 8/ — = o'(p' + p) = (4’ + p) =
(4 + p) + p'o!, we derive that p'(a — ') € M. Similarly, p(a — a') € M, and since
(p,p') =1, we deduce that @ — o' € M. It follows that s =¢'. O
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