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Generalized invariants of groups generated by reflections.
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§0. Introduction.

The celebrated Chevalley-Shephard-Todd theorem says that for a
finite group G operating linearly on a finite-dimensional complex
vector space V the ring of invariant polynomials is a polynomial
ring if and only if G is generated by preudoreflections (g € G
is a pseudoreflection if dim(g-I)-V = 1) [2], [10].

Of course, this theorem holds over a field of arbitrary character-
istic p as long as p does not divide the order of G . Also it is
well-known [9] that the "only if" part of the theorem holds for
arbitrary p (a simple geometric proof of this may be found in [4]).
It is equally well-known, however, that the "if" part is false if pliG/,
and lately there have pgen a nﬁmber of works on the cléssification
of those finite pseudpregiection groups for which the ring of invari-
ants is a polynomial ring }see (8] and references.there). Furthermore,
if G is infinite, then the "if" part is false even over [13].

Shephard and Todd [10] (and before them Coxeter [3]) were
interested mainly in the geometry of reflection groups, while
Chevalley's interest in invariants of reflection groups arose from the
topology of compact Lie groups. It is a well-known result of
Chevalley that the cohomology algebra over @ of a connected compact
Lie group is isomorphic to a Grassmann algebra on generators of
d, are the degrees of the

1 10+ 04,
basic invariants of the Weyl group [1].

degrees Zdl-l,...,Zd -1 , where d
We came to consider invariants of reflection groups while trying

to compute the cohomology of certain infinite-dimensional analogues of

compact Lie groups (whose "Weyl group" is an infinite reflection group).

Also, we wanted to have an arbitrary field of coefficients, not just

Q@ . We have found that the answer for the cohomology in question can

be given in terms of generalized invariants, not just invariants, of

the Weyl group (see [5], [6]).

One of the versions of the definition of generalized invariants is
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as follows. Let G be a group generated by pseudoreflections L
@ € X, of a finite-dimensional vector space V over an (arbitrary)
field F . Let S = S(V) be the symmetric algebra over V and s*
its augmentation ideal. For a pseudoreflection L pick a non-zero
vector a in (ra-1)°v and define a linear operator Aa on S by:

A (P) = (P-ra-P)/a . Note that
(0.1) A,(PQ) = & (P)Q + r_(P)A_(Q) for P,Q€ S .
Put '

(0.2) J={p€ S+IA ...A (@ €5t for every a,,...,a, € X}
: o, @y 1 k

This is an ideal of S called the ideal of generalized invariants.

Elements of J are called generalized invariants, because J contains
the ideal (S+G) generated by invariants with a zero constant term,
and J = (S+G) if char F = 0 and G is finite.

The main results of the paper concerning generalized invariants

of a pseudoreflection group G are as follows.

Theorem A. (a) - J is generated by an S-sequence of homogeneous

elements of degrees, say._dl,dz,... .
(b) If G is finite, then J = (S1)® if and only if

le| =nmd
i

Note that if p does not divide |G| , then, averaging the

-

generators of J over G , we get J = (S+G) » and since elements of
a regular sequence of homogeneous elements are algebraically
independent, we recover the "if" part of the Chevalley-Shephard-Todd
theorem,

Using the comnection with cohomology of compact Lie groups [5],
[6], the degrees of basic generalized invariants for Weyl groups of
compact Lie groups have been computed in [5] in all characteristics.

An adequate language in dealing with generalized invaraints is

the language of twisted derivations. A twisted derivation of an

algebra S 1is a vector space endomorphism A for which there exists

an automorphism R of S , the companion of A , such that
(0.3) A(uv) = A(u)v + R(u)A(v) for all u,v € S .

As we have seen, given a pseudoreflection of a vector space V , one

constructs a twisted derivation of the symmetric algebra S(V) (see



(0.1))..

Other examples of algebras with twisted derivations are provided
by cohomology rings of flag varieties of compact Lie groups and their
infinite-dimensional analogoues and by relative cohomology algebras
of Kac-Moody algebras [6]. In fact the present paper was motivated by
the work [6], and may be viewed as the "algebraic part" of it.

Twisted derivations of a ring S typically arise as difference
operators, as follows. Given an automorphism R of § , take

A = 1-R or a multiple of this. (An example from calculus:

£ (x+Ax)-
ACE(x)) = EEH0-EC)
An algebra S with a family of twisted derivations {Au}aex

and companion automorphisms {Ra}aex is called an algebra with
twisted derivations. We define the ideal of generalized invariants J
of a graded algebra with twisted derivations by (0.2) (the Aa and

Ra are assumed to be homogeneous). Our main results on algebras with

twisted derivations are as follows:

Theorem B. (a) Llet S be a graded algebra with twisted derivations.

L] st '
Let S Pe a graded subalgebra of S such that Au S'Cs and

RG'S'CS' , and let J' be the ideal of generalized invariants of §'.

Then S/J'S is a free S“/J'-module.
(b) Let S be a graded algebra with twisted derivations

and let J be the ideal of generalized invariants of S . Then
.J'/.I2 is a free S/J-module.

Note that Theorem A(a) follows from Theorem B(b) by making use of
a result of Vasconcelos [19].

Such freeness results, along with a strong rigidity properties
(cf. Proposition 1.1), seem to us to be the most fundamental charac-
teristics of rings with twisted derivationms.

Most of this work was done at the University Paris 6 and MSRI
during 1983-84 academic year and was partially supported by the NSF
grant MCS~8203739,
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§1. Rings with twisted derivations.

Throughout the paper by a ring we mean an associative ring with
unity and by a module over a ring a unital left module.

A twisted derivation of a ring S is amap A : S + S with

the following two properties:
(A1) A(s+t) = A(s) + A(t) for all s,t €8s ;
(A2) A(st) = A(s)t + R(s)A(t) for all s,t € S ,

where R 1is an automorphism of the ring S , called the companion
automorphism of A .

A ring with twisted derivations (abbreviated RTD) is a quadruple
(S,X, {Ai}ﬂEX'{R }. ex) ». Where S is a ring, X 1is an index set,
{Ai} jex 1s a family of twisted derivations of S and .{Ri}iEX

is the family of companion automorphisms, indexed by X . By abuse

of terminology, we will sometimes call S itself an RTD. The subgroup
of Aut S generated by all companion automorphisms is called the Wevl
group of S . A morphism of RTD's (S,X,{Ai}iex,{Ri}iex) >
(S',X',{Ai}iex,,{Ri}ﬂEX,) is a ring homomorphism ¢ : S - S' and

a bijection y : X =+ X' , such that ¢°A A'( )°¢ and

¢oR, = R' L (i )o¢ for all i€ X.

Let (S,X,{A;},{R;}) be an RTD and let W C Aut S be its Weyl
group. Let I be a W-invariant subset of S . The largest subset of
S contained in I which is W-invariant and, in addition, Ai-invariant
for all i € X, is called the nucleus of I and denoted by nucl(I)
The set I is called reduced if nucl(I) = 0 . Note that
nuel I = (s € 1., W, Ay zwlA Yy (s) €1 for every WysWpseer €W

and i, 12,... € X} .
Note also that the nucleus of a right (resp. left) ideal is a right
(resp. left) ideal.

Note that for a homomorphism ¢ of RTD's we have



(1:1) ¢'l(nuc1- I) = nucl(rb'l(I))
It follows that if I is reduced, then
(1.2) Ker ¢ = nucl(¢-l(I))

Proposition 1.1 (rigidity of multiplication). Let I be a reduced
W-invariant two-sided ideal of an RTD S . 'Then the multiplicative

structure of S is determined uniquely by the additive structure of

S , the action of W on S and the multiplicative structure of S/I .

Proof. Suppose that S: carties two multiplicative structures st
and s*t , with the same additive structure, the same action of W
and the same multiplicative structure of S/I. Then

st - s*t € I , and
Ai(st-s*t) = (Ai(s)t-Ai(s)*t)+(Ri(s)Ai(t)-Ri(s)*Ai(t)) = I.
Similarly, for any word A 1in the Ai and Ri , A(st-s*t) € T ,

hence st-s*t € nucl I =0 . O

A module over an RTD (S,X,IAi},{Ri}) is an abelian group M with
the structure of a unital S-module and an action of the Ai by
endomorphisms of ‘M gPd the R, by automorphisms of M such that the
following properties hold:_ )

ML) Ri(5°m) = Ri(s)Ri(m) for all i€X,s€S,mEM;
(M2) Ai(s-m) = Ai(s)'m + Ri(s)-Ai(m) for all i€ X, s€ S, m€E M .

Given a module M over a ring S and a subset I of S , one

says that the elements ml,...,mk of M are independent modulo I if

from Z s.m, € IM for some s,,...,3, € S, it follows that s, € I ,
§ 41 1 k i

v m Lievasl
Now we can state the crucial lemma.

Lemma 1.2. Let M be a module over an RTD (S,X,{Ai},{Ri}). Let I
be a W-invariant right ideal of S . If @yse.0,m are elements of

M which are independent modulo I , then they are independent modulo

nucl (I)

Proof. Suppose that
(1.3) I s.,'m, € (nuecl(I))M .
j 3 3

Then, by the hypothesis, Sj € 1 for all j . We have to show that

s —
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. 1= o €
(1.4) woAilwl Alnwn(sj) I fo; all Vo W W
and all 4i.,...,i € X .

1 n

We prove (1.4) by induction on n , which we call the height of
the element woAi "'Ai v, o Applying this element to both sides of
1 n ‘
(1.3), we have (by (M2):

s 0 o e W N iz Y !e C

? (woAi Wy Ai wn)ﬁwo wn(mj)) + I Bi(sl) m, (nuel I)M M ,

:| 1 n i _
where the height of Bi is less than n and mi €M . Applying the

inductive assumption, we get:
§ (woAilwl...Ai wn(sj))-(wo...wn(mj))e ™M ,
hence (by (M1)), applying (wo.,.wn)_l , we get:
-1
? ((wo...wn) (woAi ...Ai wn)sj) mj €.IM .
] 1 n
Therefore, by the independence mod I of the mj , (1.4) holds. C



§2. Local and graded rings with twisted derivations.

ThrOughout this secﬁion S will be a commutative ring of one of
the following two types:
(L) Local ring, i.e. S has a unique maximal ideal st .
(G) Graded ring, i.e. S = 19 S. and Sisj c Si+j ; we let

j20

S+ = ® S, be the augmentation ideal.

j>0

In the local case (L) all S-modules will be assumed to be finitely
generated. In the graded case (G), every S-module M will be

assumed to be gréded,’i.e. M= @& M (direct sum of abelain groups)
' j20
and siMj c Mi+j . A hém%morphism of graded rinés or modules will be
assumed to preserve the gradation.
We will need the foli;wing well-known surjectivity result (see

e.g. [7] for local case; the graded case is obvious).

- Lemma 2.1 (Nakayama lemma). Let S be a local or graded ring, and

let M and N be S-modules. Let ¢ : M+ N be a homomorphism such

that the induced homomorphism M/S+M d N/S+N is surjective. Then 3

is surjective. O

A sequence  LRRRTL of elements of a ring S is called an
S-sequence if S # alS+...+anS and if the image of a in
S/(aIS*...+ak_IS) is not a zero divisor, for k =1,...,n . If
S 1is graded, the ai are assumed to be homogeneous.

By a minimal generating set for an ideal J of a ring § we

mean a set which generates J but such that no proper subset generates
J ;5 1in the graded case the generators are assumed to be homogenéous.
Note that an S-sequence al,...,an is a minimal generating set of
the ideal aIS+...+anS .

The following fact should be well known.
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Lemma 2.2. Let S be either a Noetherian local ring or a Noetherian

graded ring with S0 a field, and let J be an ideal of S gener-

“ated by an S-sequence. Then any minimal generating sequence of J

is an S-sequence.

Proof. By the Nakayama lemma, a sequence X = (xl,...:xp) generates
J 1f and only if X mod sts spans the vector space J/S+J

over the field S/S+ . This fact reduces the case of a graded S to
local case by considering the formal completion of S . Let now §S
be a local ring. The above fact also shows that if X = (xl,...,xp)
and Y = (yl,...,yq) are minimal generating sequences of J , then

P = q and there exists A € GLp(S) such that Y = XA . But any
permutation of an S-sequence is an S-sequence ([7, Theorem 27]).
Moreover, if A € GLp(S) is lower triangular, then X is a S-sequence
if and only if XA 1is an S-sequence. Since GLP(S) is generated by
permutation matrices and lower triangular matrices, the lemma

follows. O

A (local or graded) ring S is called regular if it satisfies
the following properties |
(1) S 1is Noetheriaﬁ; g
(11) S+ is generatéd by an S-sequence;'

(iii) 1if S 1is graded, then S0 is a field.

Lemma 2.3. Let S be a regular (local or graded) ring, and let J

be an ideal of S such that J/J2 is a free module over S/J . Then

any minimal generating sequence of J is an S-sequence.

Proof. Since every (finitely generated) module over a regular local
ring is of finite projective dimension, in view of Lemma 2.2., the

lemma for local S 1is a special case of a theorem of Vasconcelos [12].

Let now S be a graded ring and let S = 1 S, be the formal
320
completion of S with the unique maximal ideal S+ = T 8§,
3>0
Let Y = (Yl""’Yé) be a sequence of homogeneous elements of J such
that Y mod J2 is a free basis of the module J/J2 over S/J . We
have to show that Y is an S-sequence which generates J . By the

Nakayama lemma, Y generates the ideal J := SJ of §S . Clearly,

Y mod J2 is a free basis of the module J/J° over S/J and, hence,
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is a minimal generating sequence for J . Since S 1is local, by what

has already been shown and Lemma 2.2, Y is an S-sequence which

generates J , hence it is an S-sequence which generates J . O

We now turn again to rings with twisted derivations. An RTD
(s,X,(a;},{R.}) 1is called local (resp. graded) if the ring S is
local (résp. graded), the Weyl group preserves S+ » and the Ai and
R, are homogeneous in the graded case. We call nucl(S') the ideal
of generalized invariants of the local or graded RTD S ; we call §

reduced if nucl(s+) =0 .

Theorem 2.1. Let M be a module over a local or graded RTD S , and

let J be the ideal of generalized invariants. Assume that SO' is a

field if S is graded. Then M/JM is a free S/J-module.

Proof. Let ml,mz,...‘e M be such that the o, mod S+M form a free
basis of the module M/S+M over S/S+ . Let F be a free S-module
on generators Ei,ﬁé,,.., and let ¢ : F -+ M be a module homomor-
phism defined by ¢(mi) =m .
hence the induced homomorphism ¢J : F/JF » M/JM is surjective.
But the induced homomorphism F/SYF > M/S™ 1is obviously injective.

By Lemma 1.2, it follows that ¢J is injéctive. Thus, ¢J is an

By Nakajama's lemma, ¢ is surjective,

isomorphism. O

By a graded algebra with twisted derivations (ATD) we mean a

graded RTD (s,X,{a;},{R;}) such that S is a field and all the A

and Ri are linear over S0 . The following theorem summarizes the

most important properties of graded AID's.

Theorem 2.2. (a) Let ¢ : S > S' be a homomorphism of graded RTD's

such that ¢ : S0 -> 56 is injective, and let J be the ideal of

generalized invariants of S. Then Ker ¢ = J if S' 1is reduced.
(b) Let S be a graded ATD and let S' be a subalgebra

of S which is invariant under all the A; and R, . Let J' be the

ideal of generalized invariants of S' . Then S/J'S is a free

module over S'/J' . In particular, S 1is a free module over §S' it

S' is reduced.
' (c) Let S be a graded ATD and let J be the ideal of

generalized invariants. Then J/J2 is a free S/J-module.

(d) Let S be a graded ATD which is a polvnomial

algebra (in finite number of indeterminates). Then anv minimal
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generating sequence of the ideal of generalized invariants of S is

an S-sequence.
Proof. (a) follows from (1.2). (b) follows from Theorem 2.1 applied

to the S'-module S. (c) follows from Theorem 2.1 applied to the
S-module J. (d) follows from (c) and Lemma 2.3. -

We shall need one more statement about graded ATD.

Lemma 2.4. Let (S,X,{Ai},{Ri}) be a graded ATD. Denote by ({(
the algebra of operators om S generated by the A, R, R;l

Let J be the ideal of generalized invariants of S and let

Ql,...,QN be a sequence of homogeneous elements of S of non-in-

creasing degrees, which are linearly independent mod J over S0 .

Then
(a) There exists A € §l such that A(Q) =1 and A(Qj) =0 for

j ) l -
(b) The Qi are linearly independent over S := (s € S|Ai(s) =0

and . Ri(s) = s for all i € X} .

Proof. (a) is obvious. To prove (b), note that for A€M, s € 5%
and t € S, we have A(sf) = sA(t) . Suppose SysecesSy € Sat_and
z siQi =0 . By (a), choese A €t such that A,(Ql) =1 and

A(Qj) =0 for j>1. Then 0 = A(Z siQi) =T siA(Qi) =5 . By

induction on N , this proves (b). O

T —
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§3. Generalized invariants of groups generated by pseudoreflections.

Let M be a module over a commutative ring JF . Given a non=-
zero a €M and a non-zero ¢ € Hom]F (M,F) such that 1l+¢(a) is an

invertible element of IF, we define a pseudoreflection T, of M by

ra(m) =m+ ¢(m)a for mE M ,
One easilyv checks that r, 1is an automorphism of M ., Furthermore,
L extends uniquely to an automorphism Ra of the symmecric algebra

S(M) = @ s*(M) fixing TF.
k>0

Let {ra}uex be a collection of pseudoreflections of the module

"M, and let G be the subgroup of Aut M generated by it. Then the

pair (G,{ra}uex) is called a pseudoreflection group.
Let T be an integr;l domain and let M be a free module over

F. Then one easily checks by induction on k., that for P € S<() ,
there exists a unique P, € 5Lt}  sich thae P - R,(P) = PLa .
Putting AG(P) = Pl gives a twisted derivation Au of S(M) with
the companion automorphism Ra . (Note that By determines A‘_n up
to a non-zero constant factor.)

Thus a pseudoreflection group (G‘{ra}aéx) on a free module M
over an integral domain gives rise to an RTD (S(M),X,{Aa}aex,?Rd}aex),
and hence to the ideal of generalized invariants J of S(M) . Note
that J contains the ideal Jo generated by homogeneous G-invariant

elements of S(M) of positive degree.

From now on we will assume that M is a finite-dimensional vector

space over the field TF.
Theorem 2.2(d) implies immediately

Theorem 3.1. Let (G,{ra}) be a pseudoreflection group on a finite-

dimensional vector space M . Then any minimal generating sequence of

the ideal of generalized invariants J of S(M) is an

S(M)-sequence. =

LT e—
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Remark 3.1. Let G be a pseudoreflection group such that each
generating pseudoreflection has finite order which is prime to
char IF. Then the ideal J of generalized invariants can be
constructed as follows. Define by induction an ascending sequence
of ideals Jk (k = -1,0,1,...) of S(M) by putting I = {o} ,
Jk = ideal generated by {a € S(M)+/g'a-a = Jk-l for all g € G}

for k>0 ; then J = U Jk - Indeed, by induction on s omne
k>-1 =
shows that if deg x = s and Ai ...Ai (x) = 0 for every sequence
1 s’ '
i semend, € € 5 v
11, ,1S X, then x Js—l To prove that Jk cJ

k
one has to show that a homogeneous element u of positive degree of

S(M)/J , fixed by G , is zero. Let ri =1 and N#0 in T .
N
We have: NAi(u) = NAi(u) - Ai((Ri+.._+R§)u) =A (I (u—R%u))G A, (D)
i =1 i i
CJ . It follows that Ai(u) € J and hence u€ J .

In particular, we see that in this case J .is independent of the
choice of the generating set of G . This is false in general (see
Example 3.1(e)).

A nacural,problgm’iégko charaéterize all linear groups G (not

necessarily pseudoreflection groups) such that the ideal U Jk is
k

is generated by an S(M)-sequence. (If |G| <= and char F does
not divide [GI s the answer is provided by the Chevalley-Shephard-
Todd theorem.)

Note that the identity Ai(aiQ) =Q + Ri(Q) shows that over a
field of characteristic 2, if G 1is a finite group generated by
reflections (i.e. involutive pseudoreflections), then the top
graded piece of S(M)/J 1is fixed under G , and therefore

UlJ #7J. a
L K

We shall need the following simple facts about graded algebras.

Lemma 3.1. Let S be a graded commutative ring with T := S0
a field. Let I (resp. Y) be the ideal (resp. subalgebra) of S

generated by a sequence of homogeneous elements Fyreres¥, -

Let Z be a homogeneous T -subspace of S such that S =2 & I

(direct sum of vector spaces over T ). Then

(a) LAERERES is a minimal generating sequence of I if and onlv if

e o E—
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the Yy mod (S+I) form a basis over F of I mod (S+I)
(b) s=Y2.
(e} 1If SERER is an S-sequence, then Y 1is a polymonial

algebra over T on the Yy and the map ¢ : Y ﬁE‘ Z » S defined
by ¢(y @8 z) = yz is an isomorphism of Y-modules.

Proof. (a) follows from the Nakayama lemma. (b) is clear‘by using
the grading. (c) is proved by induction on r , by considering

S/(yl) o B

Now let (G.(ra}) , etc., be as in Theorem 3.1, and let Pl’P2’°‘°

be a minimal generating sequence of the ideal J of generalized
invariants. By Lemma 3.1(a), the di := deg Pi , ordered by
d -f_dz < «+. , are independent of the choice of PisPyseee o By

1
Theorem 3.1 and Lemma 3.1(c), we find that the Poicaré series of the

graded algebra S(M)/J is
d,
-dim M T (1-t 1)
i

We will need the following two well-known properties of the.

(3.1) (1-t)

action of a finite linear group G on a finite-dimensional vector
e r .

space M : )
(3.2) Fract S(M) = S(M) Fract sa)C .

(3.3) dim Fract S(M) = |G| .

Fract (s %)
(Here and below, Fract stands for the field of fractionms.)
By Lemma 2.4(b) and (3.3), we have:
(3.4) dimS(D/J < le| .
That is, by (3.1):
(3.5) md, < le| .
Now we will prove the following theorem.

Theorem 3.2. Let G be a finite pseudoreflection group on a finite-

dimensional vector space M and let dl’dz"" be the degrees of a

minimal generating sequence of the ideal J of generalized invariants

of S(M) . Then |G| =T d; 1if and only if J = Jo » Where J, 1is
i

the ideal of S(M) generated by the homogeneous G-invariants of

positive degree.
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Proof. Put D=1 di . By (3.1) and (3.4), choose a sequence
Ql""’QD of homogeneous elements of S(M) forming an TF -basis of
S(M2 mod J , with deg Ql > deg Q2 > e

Suppose J = JO . By Lemma 3.1(b), the S(M)G-mddule S(M)
is generated by the Qj . Hence, by (3.2), the (Fract S(M)G)-module
Fract S(M) is generated by the Qj g Hence? by (3.3) D> |G| , so
that D = |G| by (3.5).

Now suppose D = |G| . Then, by (3.3) and Lemma 2.4(b), the Q.
form a basis of Fract S(M) over Fract(é(M)G) . We will prove thag
the Qj form a basis of S(M) over S(M)G . This granted, the Qj
span S(M)/.I0 over TF . Since Iq C J , this forces J0 = J , proving
the theorem.

It remains to show that the Qj generate the S(M)G-module S(M).
Let Q € S(M) be given. Since the Q. generate the module
Fract S(M) over Fract(S(M)G) 5 thereJexist LS SERERTE S € S(M)G

satisfying

(3.6) Q== riQi .
We must show that r divides all the rg
-
If not, let r divide r

sk but not divide r, . We

_ 1’0 k-1 k
may assume that Iy = eee =1, 0= 0 . By Lemma 2.4a, choose A€
‘such that A(Qk) = 1 but A(Qj) =0 for j >k . Applying A to
both sides of (3.6), we get rA(Q) = rk , so that r divides L

a contradiction. This proves the theorem. a

Remark 3.2. Let G be a finite pseudoreflection group operating on a
finite-dimensional vector space M over a field TF of characteristic
p. If p' is a prime differnt from p , and H 1is a p'-Sylow
subgroup of G , then (by averaging) one can choose a minimal generat-
ing sequence Pl’PZ"" (of degrees dl’dz"") of the ideal of
generalized invariants J to be in S(M)H ., Let R = E‘[Pl,Pz,...]
Then we have: Fract R C Fract S(M) C Fract S(M) . It follows from
(3.3) and Lemma 3.1(c) that [|H| divides Td, . Thus, we have
i

(3.7) J%L- divides E'di , where p°l|G| .

P

€

We conjecture that always |G|=p I d, , where t >0 .

1

Example 3.1. Let V be a vector space of finite dimension n over a

P —
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field TF, and let p be the characteristic of IF . Let R1 and RZ

be distinct pseudoreflections on V such that Rle is of finite

order m and R2 = R2 =1 . Let G be the subgroup of GL(V)

1 2
generated by Rl and R2 . Let VG = {v € V[g(v) = v for all
g €G}l . Let a1,0, € V satisfy (I-Ri)V =Fa, , and define
operators AI’AZ on S(V) by u-Ri(u) = aiAi(u) . Let J be the
" ideal of generalized invariants of S(V) associated to G and
Al,A2 . Let JO’JI’JZ"" be the ideals of S(V) associated to G

defined in Remark 3.1 and let J =U Jk . Let Gﬁ} be the IF -algebra
k

of operators on S(V) generated by A1 and AZ . A detailed
calculation then verifies: '

(a) If m is odd, assume that a, = (RlRZ)%(m_l) @y Then
oto is the unital T -algebra on generators Al and Az with defining

relations:

Ai = A% =0, and

(3.8) élAzAl"' f A2A1A2,.. (m factors on each side).

(b) The following cgnditions are equivalent: dim(v/v®) = 2 ;
J = JO 3 Glo acts faithfully on sl3 «

(c) Jz = J3 = J4 = L., .
We also have:
(d) Jo is generated by an- S(V)-sequence of homogeneous elements.

If dim(V/VG) = 2 , then the degrees of J/VJ = 15/V3, are: d =1,
l1<i=<n=2;4d = 2 ; dn =m . If dim(V/VG) = 1 , then the degrees

n=-1
of J/VJ are: di =1,1<1i<n-1; dn = 2 ; and the degrees of
JOIVJO are: e, = 1,1<1i<n-1; e = 2m .

(e) Let 3 be the ideal of generalized invariants of S(V)
associated to the set of all pseudoreflections in G . Then 3 = JD
if G 1is generated by semisimple pseudoreflections. (In particular,
J#J if p#2 and dimv/v®) =1 .)

. (f) Consider the following Condition A: If U 1is a subspace of
Vv , then GU := {g€G|lg=1 on U} is generated by at most
dim(V/U) pseudoreflections. Then the following implications hold:

|G| #0 in F => Condition A =>J = J, . ;

(8) If p=2 and A (a))A,(a;) # 0, then (JO,Sm(V)) =J -

PO —
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J2 = ,.. j in particular, none of J1 = J2 = ,,. =J 1is generated by

an S(V)-sequence of homogeneous elements.

Questions. Do (e) and (f) hold for arbitrary pseudoreflection groups?
If G 1is generated by k pseudoreflections, is it true that

= = = ?
Jk Jk+l Jk+2 P O

In view of their importance, we indicate a simple proof of the

"braid relation” (3.8) in (a).

Proposition 3.1. Let S be a ring with unity. Let Aj,A, be twisted

derivations of S with companion automorphisms RI’RZ . Let W be

the subgroup of Aut(S) generated by Rl and R2 . Let m be a

positive integer, let k € {1,2} satisfying k-m € 2Z , and put
T= R1R2R1 ... (m factors). Assume:

(1) For 1i=1,2, Ai = 0 , and there exists Ai € center(S)

satisfying Ai(ki) =1,
(i1) AjA, and AA kill W(A) , and A,T(A) = -1 .
(iii) A2A1A2 eee = 0 (m+l factors).

Then:
: = 2
= - Z = =
(a) For i 1,27, AiRi Ai RiAi . Ri

for all z € S , there exist unique x,y € Im Ai such that

=1, Im A, = Ker A, ;
i i

z = Aix +v .
(b) A1A2A1 ces = A2A1A2 ... (m factors on each side).

Proof. Put a. =i, = R, (A.) , so that a, € center(S) . Let z € S .
——— i i 1L i

Since Ai is a twisted derivation and Ai(ki) =1 , we have
(1) Aiczli) = Ai(Z):\i * Ri(Z) s
.(2) Ai(liz) =z + Ri(li)Ai(z)
Equating these we have
(3)2 z - Ri(z) = aiAi(z) 5
Since Ai =0, (3) gives Ai = RiAi .
Since Ai 0, (2) gives Im Ai = Ker Ai .
By (1), AiRi(z) = Ai(Ai(zli) - AiAi(z)) = -Ai(li)Ai(z) = *Ai(z) since

Ai is a twisted derivation, Ai =0 and Ai(ki) =1 . Hence, bv (3),

2 = - = = - =
Ri(z) Ri(z) aiAiRi(z) Ri(z) + uiAi(z) Ri(z) + (z Ri(z)) z
By (1) and Ai =0, for every v € S there exist t,u € Ker Ai such

that v = Ait + u ; moreover, if v =0 , then 0= Ai(v) = Ai(\it+u)

= Ai(li)t =t forces t =u=20 . This proves (a).
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We now prove (b). We first show that for X € W(Ak) and z €5,

(3.9) AZAI(AAZ(z)) = Az(Rl(l)AlAz(z)) and AlAZFAAl(z)) =
Al(Ri(A) AzAl(z)) ‘
Indeed, since Al is a twisted‘derivation, Al(AAz(z)) = Al(k)Az(z) +
Rl(l)AlAz(z) , and since 2A2 is a twisted derivation, 'Az(Al(A)AZ(Z))
= AzAl(A)Az(z) -+ RzAl(k)Az(z) , which is 0 by (i) and (ii). This
verifies the first equality; the second is verified similarly. Now
suppose m = 2r and z € S .. Applying (2) and (iii), we have
r _ + _ o r
(AZAI) (z) = (AZAl) (Az(lzz) RZ(XZ)AZ(Z)) (AzAl)r(Rz(kz)Az(Z))
But by applying (3.9) successively, we obtain (AZAl) (Rz(kz)Az(z))
- r-1 _ - r r
.(AzAl) Az(Rle(lz)AlAz(z)) T ... Az((R-le) (kz)(AlAz) (z)) ‘
Using (iii) and the fact that A2 is a twisted derivation, we see that
, r r ’ r
this equals AZ(RIRZ) (lz)(AlAz) (z) which equals (AIAZ) (z) by
(11). Combining these verifies (b) if m = 2r . Similarly, if
r = - r = =
m = 2r+l ,rthen (AzAl)rAz(z) (AZAl) Az(Rl(ll)Al(z))r i
- - r =
AZ((RIRZ) Rl(ll)(AlAz) Al(z)) Az(RlRZ) Rl(ll)(AlAz) Al(z)
r
(AIAZ) Al(z) . This proves (b). O
To prove the prai@.qglation (3.8), it therefore suffices to
verify the hypotheses (i), (ii) and (iii) of Proposition 20 GO (S 14
is clear. The first part of (ii) is trivial and the second not
difficult. If dim(V/VG) = 2 , then the assertion (d) about JO of

m
the Example 3.1 implies that S(V) = S(V)G z Sk(V) , which implies

k=0
the hypotheis (iii). If dim(V/VG) = 1 , then the _assertion (d) about
m-
J0 of the Example 3.1 implies that S(V) = S(V)G T Sk(v) . If
k=0
3
= = i e N =
m = 2 , then this forces A2A1 2 0 since AIAZ(S () v Im Al
V N Ker A=V N Ker A2 . Suppose m > 2 . One can show that there

exists B € VG such that AZAI(Im AZ) - BZIm A2 « If z & Sk(V) "

0 <k <2m-1, it follows that A2A1A2'°'(z) ((m+1) factors) is an
element of Sa(V) divisible by Bb ,2where b >m-1l>a, and

m—
hence is 0 . Since S(V) = S(V)G T Sk(V) , we obtain
k=0

AZAIAZ"' = 0 (m+l factors). This verifies the hypothesis (iii) of

Proposition 3.1 and so proves the braid relation (3.8). O

Example 3.2. Let El""’En be the standard basis of the vector

space Qn and let MZ denote the lattice over Z spanned by
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and ¢ = € Let W be the'group generated by

o=
I 9

€yseess__ .
1 n-1 i=1 i

all permutations of the. € and all changes of the signs of the s
M,
Let le be a field of characteristic 2, put M = MZ QZ 11"2 , with

is the weight lattice and W the Weyl group of type Bn .)

the action'of W induced by linearity. Let pz,...,ﬁn be the

elementary symmetric functions in the €5 of degrees 2,...,n , and

put
q = it (8 +21i¢€e)
6 S R . | ok
=k =

Then S(M)W = IF2 [pz,...,,pm,q] . However, the ideal of gener%lized
invariants is generated by the minimal sequence 92’“"9:1’62 i

where r 1is defined by n < 5% <2n .

Example 3.3. Let el,...,sn be the standard basis of Z°" and let

Mzz denote the sublattice of Z" consisting of vectors with-zero sum
of coordinates. Let W be the group of all permutations of the e
(MZZ is the root lattice and W the Weyl group of type An—l o)

Let n-'p be a field of- ct:;ac:eriscic pln , let M = Ho By IFP ,
and extend the action of "W by linearity. Then the degrees of basic
generalized invariant.; are 1,2,...,p 5...,0 , where k is such .that
pklln[-f)] . Furthermore, the-algebra S(‘M)‘w is a polynomial algebra

genérated by invariants of degrees 1 and 6 if n =p = 3 , and S(M)w

is not a polynomial algebra if n =p =5 (R. Steinberg).
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