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Exceptional Hierarchies of Soliton Equations
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Dedicated to Professor M. Sato on his 60th birthday

0. Introduction. The connection between the soliton theory and the clas-
sical affine Kac-Moody algebras was developed in the early 1980s by Date,
Jimbo, Kashiwara, and Miwa [3]-[6], using the boson-fermion correspon-
dence in the 2-dimensional QFT.

To explain this connection, introduce some representation-theoretical
background (see [3, 15] for details). Consider the Clifford algebra on gen-
erators y; and y;, j € Z, with commutation relations

I’ny! WJ]-F— = [wi‘! w;]+ = 0! [WI‘J W;]i— = 5!‘.}1
and consider its spin representation in a vector space F with the vacuum
vector |0) such that

wil0) =0 forj <0, wi0)=0 forj>0.

The group GL, of automorphisms of the space ¥ = Z}.Ez Cy; that leave all
but a finite number of the w; fixed acts also on ¥* = ):jez Cw;, which is
identified with a subspace in the dual of ¥ via (i, w;) = dij. For meN, let

M) = Wm---y1|0) and |-m) =y, - y;|0).
For g € GLy, let m € Z,, be such that g - w_; = w_; for j > m; then we can
define a representation R of GL,, on F by

R(e)wivir - wjvj, 1= m))

=& -vilg ¥i) (&g wj)g v, |-m).
This representation preserves the charge decomposition
F=@Fm
mel
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192 V. G. KAC AND MINORU WAKIMOTO

defined by charge(y;) = — chargc(w}‘) = 1, charge(|0})) = 0.

The main object of interest is the orbit & = R(GL4)|0) of the vacuum
vector. In order to write down a system of equations defining ¢, introduce
the following operators on the space F @ F [15]:

S=Ywev, S=Yuou.
JEZ Jjez
It is easy to see that .S commutes with the diagonal action of GLo.on F@F

and that S(|0)®|0}) = O (the same is true for $*). It follows that any element
T € 7 satisfies the equation

(0.1) S(t®1):=) y-t®y; 1=0.
JEZ
(One can show that the converse also holds: if 7 # 0 satisfies (0.1), then
T €, see [16] for a proof.)
Using the boson-fermion correspondence, one can rewrite (0.1) asa system
of partial differential equations as follows. For n € Z \ {0}, let

&= Z ViViin:
JjeZ
One checks that the operators a, satisfy the canonical commutation relations:
[am,an) = Mo _p,
and that they act irreducibly on each space F™), This allows us to establish
an isomorphism, the so-called boson-fermion correspondence,
Om: FI™ 2 B = Clxy, x,...]

(where C[xy,x3,...] is a polynomial algebra on infinitely many indetermi-
nates x = (xy, X2,...)), which is determined by the following conditions:

and ona_,o,' =nx, forn=1,2....

d
dx,
The essential part of the boson-fermion correspondence is the calculation
of the operators g, ¥;0,;': B — BUm+1) In order to do that, introduce
the following generating series

v =3z, v =Yyl (zeC¥),

JEZ JEZ

om(lm)) =1;  onago,' =

and the following differential operators of infinite order

r 2z "9
+(—)—eXD—§ e

00
I'_(z)=exp E 2 X
n=1

Then a short calculation gives for 7(x) € B(™);
(0.2a) (Omse1¥(2)a,")1(x) = 2" T_(2)[4 (2)T(x) € BImH),
(0.2b)  (Om-1¥*(2)a,")T(x) = 2~ "I (2)I7 ! (2)1(x) € Bm=D),
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The operators of this type are called vertex operators.
Now, a crucial (but very simple) observation is that (0.1) can be rewritten
as follows:

(0.3) z0-term of w(z)t @ w*(z)1 =0, te FO,

We think of B(”) @ B as of a polynomial algebra C[x|,x},...;x{", x¥,...].
Then, applying g, to both sides of (0.3), we obtain a system of equations on
the orbit (aoRau_')(GLm) -1 = go() in B\, which using (0.2) can be written
as follows:

(0.4)

-1 ; Z_j a a ’ "o
z7'4term of exp ) z/(xj—x])exp— ) _ = (6_,}_’ = W) (x")7(x") = 0.
izl izl i J

Making the change of variables

(0.5a) x=3x"+x"), y=ix'-x"),
we have

(0.5b) Al 9 il

ax'  ax"  ay’
and (0.4) becomes
~lterm of [ex 22”" [ ex —ZZ—_JL t(x+y)tx—-y)=0
z~ -term o epplx,yj p)..)lja.'r’j ¥ y)=0.

Introducing the elementary Schur polynomials p; (x), k € Z, by

= =]
(0.6) Y p(x)uk =exp ) utx,,
keZ k=1
we can rewrite this equation as follows:
= ]
(0.7) LR (-5 ctx+etx -y =0,

Here and further we use the notation

08) %=Lt ) b (0 1d 18 )
(0:8) S el i Ox  \0x,’20x°3dx3"""" )"
Using Taylor’s formula, we can rewrite (0.7) once more:

09 S n w5 ) eZm I + we(x = w)ano =O.
=0

(0.9) is a generating series (with yy,,... as free parameters) of a system of
Hirota bilinear equations:

(0.10) > 2 20)pjar(=D)eX Pz 2 =0,
j=0
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Recall that for a polynomial P, the corresponding Hirota bilinear equation
on functions f and g is defined as follows:

(0.11) P(D)f-g:=P8/ou)f(x +u)g(x — t)]y=0=0.
We can write (0.10) as
> WvEPD)T(x) - 1(x) =0,
0=h=5)

where P; ; (x) are certain polynomials. Thus, the orbit GL., 1 in the space
C[xy,x3,...] is given by the system of Hirota bilinear equations

0y
This system is called the KP hierarchy. For example,

Pi(x) = 2pjy1(—%) — x1x;.

In particular, Py = =2x, 3P, = x}, 12P3 = (x{ — 4x, X3+ 3x3) — 6(x7x2 + X4).
Noting that the Hirota bilinear equation Pf - f = 0 with P(-x) = —P(x) is
trivial, we obtain that the Hirota bilinear equation
(0.12) (D} —4D\D3 +3D3)t-1=0
is the simplest of the equations of the KP hierarchy.

Taking as a basis of C[y,,y,,...] the Schur polynomials S;(y), one can

write down all equations of the KP hierarchy explicitly [21].
Putting

X=Xx;, y=x3 t=x3, ulx,y,t)=2logr(x,y,1,x4,%s,...))xx,

where x4,.xs,... are viewed as free parameters, we see after a calculation
that if 7 satisfies (0.12), then u(x,y,t) satisfies the classical Kadomtsev-
Petviashvili (KP) equation:

%“}'}' = (u — %uﬂx = %”.\'.tx)x-

In order to construct solutions of the KP hierarchy, note that the operator
w(z)w*(z') lies in the completion of the Lie algebra of GL,, acting on the
space F'%, Using (0.2), we deduce that the following vertex operator lies in
the completion of the Lie algebra of GL,, acting on the space C[x]:

F(:' 3’)= (CXDZ(ZJ_Z”}X}) (exp_z z_f}z‘—J 6%) .
-~

= izl
Using this, it is not difficult to see that if 7 is a solution of the KP hierarchy,
then (1 +al'(z, 2'))r, where a, z, z' € C, z, 2" # 0, is one as well (see [16] for
a proof). Since 1 is a solution, we obtain that
(1+anT(zy, zx)) -+ (1 + aiT(zy, 27)) - 1

is a solution as well. This is the so-called N-soliton solution of the KP hier-
archy [3].
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Using the boson-fermion correspondence, one can find polynomial solu-
tions of the KP hierarchy as well [10, 15]. It turns out that all Schur poly-
nomials S;(x) (attached to linear representations of symmetric groups) are
solutions (Sato [26]). A similar, but somewhat different, more geometric
approach, allows one to obtain “quasiperiodic” solutions [29]. It turns out
that all theta functions of algebraic curves are solutions, which links the KP
hierarchy to the Schottky problems [27].

Using the so-called reduction procedure (see, e.g., [6, 15]) one can write
down a hierarchy of Hirota bilinear equations for the orbit of the highest
weight vector in the basic representation of the loop group of SL,. We thus
obtain the KdV hierarchy (n = 2), the Boussinesq hierarchy (n = 3), etc.,
and can in a similar fashion construct their solutions.

A similar approach can be applied to the group O, obtaining the so-called
BKP hierarchy [4] and its solutions. It turns out that its polynomial solutions
are polynomials attached to projective representations of symmetric groups
[32]. The “quasiperiodic” solutions of BKP turn ocut to be the Prym theta
functions [28]. Finally, the reduction procedure applied to BKP produces
hierarchies associated to some other classical loop groups [6].

It has remained an open problem, however, how to construct the hier-
archies associated to arbitrary loop groups in a unified fashion, including
the exceptional ones (an algorithm for constructing low degree equations was
given in [11] and used in [25, 30],...). In the present paper we are addressing
this problem.

The basic observation is very simple. There is no analogue of the operator
S in general, but since (0.1) is equivalent to $*S(t® 1) = 0, we may consider
the operator §*S instead, which is the Casimir operator for GL.!

Thus we are led to the following general setup. Let g be a Lie algebra
with an invariant symmetric nondegenerate bilinear form (-|-), and let ¥ be a
representation of g that “integrates™ to a representation of the corresponding
group G. Let {u;} and {1/} be dual bases of g, i.e., (1;|u/) = &;;. We assume
that for each vy, v; € V, both u;(v,) and w/(v;) are nonzero for only a finite
number of j. Then we can define the following operatoron V@ V:

S=Z:uj®uf.
g

One easily checks that S commutes with g and hence with G. Now if 2% € V
is such that v° ® v° is an eigenvector of S with eigenvalue a € C, then the
orbit G - v? satisfies the equation

Svev)=avev) forveG vl

Applying this observation (and some other simple arguments) to a Kac-
Moody algebra g with a symmetrizable Cartan matrix, its integrable highest
weight representation L(A), and its highest weight vector v° = v,, one proves
the following
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THEOREM 0.1 [24]. Let g be a Kac-Moody algebra with a symmetrizable
Cartan matrix, and let G be the associated group. Let {u;} and {u/} be bases
of g dual with respect to a nondegenerate invariant bilinear form (-|-) on g, and
consistent with the triangular decomposition of g. Let L(A) be an integrable
representation of g with highest weight A, and let v, be its highest weight
vector. Then

(a) A nonzero vector v of L(A) lies in the orbit G - v, if and only if

(0.13) > uw)@uw(v) = (AlAw®v in L(A)® L(A).

(b) 4 vector v of L(A) satisfies (0.13) if and only if v ®@v lies in the highest
component of L(A) ® L(A).

‘Actually, more is true, equations (0.13) are essentially all equations for
G- vy

THEOREM 0.2 [13]. Equations (0.13) generate the ideal of all equations of
G - vy, in the symmetric algebra over L*(A).

In this paper we explain how to write down (0.13) in terms of Hirota
bilinear equations and its super analogue in the following situation:
DEFINITION. Consider the following data:

(i) an affine Kac-Moody algebra g,
(ii) an integrable highest weight representation V' of g,
(iii) a vertex operator construction R of V.

Then (0.13) is called the hierarchy of soliton equations associated to the data
(g, V, R).

Let g be a simple complex finite-dimensional Lie algebra, and let g be the
associated affine Kac-Moody algebra. Provided that § is of A-D-E type, to
each conjugacy class w of the Weyl group of § one can associate a bosionic
vertex operator construction R,, of the basic (and, more generally, every level
1) representation V of g [14]. Then the associated hierarchy of soliton equa-
tions can be written as a system of Hirota bilinear equations. In the present
paper we write down these systems explicitly in two most interesting cases.
First, when w = o is the Coxeter element, the so-called principal picture [12]
(and, more generally, the case of primitive w [14]), and second, when w = I,
the homogeneous picture [8]. Note that the hierarchies thus obtained are very
different for different realizations R of the same representation. For example,
g= Sl') has two realizations, R, and R,; the associated hierarchies are the
KdV and the nonlinear Schrédinger hierarchies. Note that even in this case
our form of the KdV hierarchy is simpler than that obtained by the reduction
procedure in [5], and (as far as we know) only the first few equations of the
nonlinear Schrodinger hierarchy have been written down (see [25, 30]). Wi
mention that the 2-dimensional Toda lattice hierarchy (see, e.g., [31]) is pan
of the [sl;. 1)-hierarchy.
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If § is of type By, then to each w one still can associate a vertex opera-
tor construction of the basic representation, but in this case an additional
fermionic field is involved. In the homogeneous picture this has been done
by many authors (see [1, 9, 20] and references there). In this paper we do
this in the principal plcture The case / = 1 produces a construction of level
2 representations of S]'! The corresponding system of equations turn out to
be a hierarchy of super Hirota bilinear equations. Its relation to the known
hierarchies of supersoliton equations [19, 23] remains unclear.

Of course, the N-soliton solutions of all these hierarchies can be con-
structed, as above, by iterated application of vertex operators to 1. We use
this method, for example, to construct the N soliton, N antisoliton, and
N soliton-antisoliton solutions of the nonlinear Schrodinger hierarchy. How-
ever, the determination of the polynomial solutions (more precisely, the orbit
of 2he affine Weyl group) remains an open problem. This problem is settled
for {s],., o) by making use of the boson-fermion correspondence [10, 15].
Another problem is to determine the theta function solutions. Recent work
[18] gives a hint that these should be certain Prym-Tjurin theta functions.

Finally, it is well known that the KP and KdV hierarchies are infinite-
dimensional Hamiltonian systems: they can be written in a Lax form, as
deformation equations of a pseudodifferential operator. We do not know
whether this can be done in our general setting. There should be certainly a
connection to the work of Drinfeld and Sokolov [7].

Throughout the paper, the base field is the field C of complex numbers.
Symbols Z, 7,44, N,Noaq, and Z, stand for the set of integers, odd integers,
positive integers, odd positive integers, and nonnegative integers respectively,
Throughout the paper we use notations and basic definition of [11] unless
otherwise specified.

1. Principal picture in the A-D-E case and exceptional hierarchies of Hirota
bilinear equations.

L.1. We start with a (realization-free) description of the principal vertex
construction of the basic representation of an affine Kac-Moody algebra g’
associated to a rank / affine matrix of type XL“ (cf. [11, 12]). Letc € ¢’ be
the canonical central element, and 4 the Coxeter number.

Let g’ = & ,cz 9, be the principal gradation of g'. The Lie algebra g can
be embedded in a Lie algebra § = o' @ (@, €d,) such that

(1.1a) [dn,80] =0

(1.1b) [dn, 9,1 C 8 +nks

(l‘lC) [dg,&]:ja fO[’ﬂEgj,

(1.1d) dndp(a) = (j + mkh)d,,n(a) forace g,

(L.1e)  [dm,dn]l = kh(n — m)dpin + (N(kh)?/12)0m _n(m® — m)c.
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We denote by g the subalgebra g’ + Cd (g is also called an affine Kac-Moody
algebra). We let

(1.2a) go=I[di,s_rlCaCyg,
!

(1.2b) h=) Cay.
i=|

Let f)" be an element in ; such that
(1.3) (@i p¥)=1 fori=1,...,1I.
Here {ag,...,} and {af,...,a)} are the sets of simple roots and simple

o
coroots respectively. Then gy = §, ® Cc = h @ Cc. For a € gy we denote by @
o

and 4 its projections on g, and h respectively.
The Lie algebra g carries a nondegenerate invariant bilinear form ( -|-) such
that

(1.4a) [a,b] = [a,b]+ h~'j(alb)c foraecg,,beg_;,
(1.4b) (c|do) = A,
(1.4c) (doldo) = (p¥|p")

It follows from (1.1c), (1.4a), and (1.4b) that g, is orthogonal to ¢ and do.
Let d be the element of g + Cdyy defined by

(1.52) (@) =0, (cld)=as, (dld)=0,
where ay = 2 for Ag) and = | otherwise. Then we have
(1.6) do=a;'hd + pV.
The connection between g, and E is given by the following formula:
(1.7) x=x-h"'(pY[X)c forxeg.
Indeed, putting x = X+ ¢c for some ¢ € C, we obtain, using (1.5) and (1.6):
0 = (dolx) = (ag'hd + p¥|X +&c) = hé + (p¥|%).
Let E (resp. E.) be the set of all (resp. all positive) exponents of g. For
each j € E, one can pick H; € g; such that
(1.8a) [H, H;] = ié; —je,
(1.8b) [dn, Hj1 = jHj nkn

The subalgebra s = Cc + 3 jee CHj is called the principal Heisenberg subal-
gebra of g’. Note that

(1.8¢) (Hi|H,) = ho, _ ;.
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Foreachi€Zand r=1,...,/, there exist elements X" € g, such that

(1.9a) X,r=1,...,1, form a basis of g,

(1.9b) [H;, X" = B,, X\, for some B, € C,
(rly _ ;y(n)

(1.90) [, X{7] = XD,

Then the elements {H;, X,”,c,d} form a basis of g. Choose Y\" € g, (i e
Z,r=1,...,1) such that

(1.10) (YO =6,.8i-5, (YNs)=0, Y ef,.
Then it is easy to see that
(1.11a) (H;, Y"1 = =B, Y7,
Ay — ;ylr)
(1.11b) Mo X =ix 0, ..

Putting X)(z) = ¥, X"z~ and Y")(z) = ¥, ¥”z~, (1.9b-c) and
(1.11a-b) are rewritten as follows;

(1.9 [H), X(2)] = 2/ B, ; X\)(z),
=41 — _ -nkh+ i i -
(1.9¢) [dn, X\ (2)] = -2 'OZX‘ /(z),
(1.11a%) [H;,Y(2)] = -2/ B,;Y")(2),
(1.11b") [dn, Y (2)] = ~z”““%}"’}{z).

It follows from (1.9b’~¢’), (1.11a’-b’) that the basic representation L(Ay)
is constructed on the space C[x] = Clx;;J € E;] and that the operators
corresponding to each element in g are given by vertex operators and Virasoro
operators:

(1.12a) Hj—a; forjeE,
(1.12b)
Xz2) = X(2)=C, |exp Y Bria- ,; exp— Y br-18) - ,
jee, jee, 7
(1.12c)
YO(z) = YO(z)=C! | exp- 3. —ﬁ""‘?"" 2] [exp ) Pr=sbi ,-; ,
jet. jeE, 7
dn = _% Z Apip— ;4 for n #0,
(L12d) =
du Ly e E d—;aj,
JEE.
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(1.12e) c— 1,

where a; = d/0x; and a_; = jx; for j € E., and the coefficients C, and C;
are given by the following formulas:

(1.13a) C = —h~1(3V|XY),
(1.13b) Cl=-h'(p¥|IY").

To prove these formulas, we compute the action of the constant term Xm
of the vertex operator X'”'(z) on the highest weight vector 1 in L(Ag), using
(1.7):

Ao (X1 = mp (XE) - 1 = A=Y (VXA () - 1
= (Ao, X§) - 1 =A=' (pV|XT) - 1 = =" (pVIX() - 1,

since (Ay, E} = 0, proving (1.13a). The proof of (1.13b) is similar.

Let G be the connected simply connected algebraic group over C with the
Lie algebra g, and let G = G(C[t,t~']), so that the Kac-Moody group associ-
ated to g is a central extension of G by C*. The group G acts projectively on
each integrable representation L(A) consistently with the action of g.

Now we can prove the following theorem:

THEOREM 1.1. Consider the basic representation of a simply laced or twisted
affine Kac-Moody algebra g of rank | and of type X H.‘] on the space L(Ag) =
Clxj;j € E.). Then a nonzero element T of L(Ag) lies in the orbit G - 1 if
and only if t satisfies the following hierarchy of Hirota bilinear differential
equations:

(1.14) {4&2;‘;4 +Zb > pE(2B,v)) ”"(—%D;)}

JEE, r= nzl

X ez;et;y’ﬂ’r.r - [],
where b, = (p |X"" )(p |Y[" and p\F'(x), n € 1., are the elementary Schur
polynomials of g defined by
(1.15) exp y_ x;z2/ = p(x)z
JEE, n=0

ProoF. According to Theorem 0.1(a), a nonzero 7 lies in G- 1 if and only
if S(r® 1) = 0. One can choose a basis {v;} and its dual basis {v'} of g as
follows (see (1.8¢c), (1.10), and (1.5)):

{v:}: V%H,- (€ ELXY +h™ (VX )buoc (1 Sr<linel), d, ¢

(v} #H_,- (FeE), ¥ 4 h‘l(fnvﬁ’ﬁ,”)dnloc (l<r<hnel), a5'c, d.
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By using these bases, the operator S on L(Ag) @ L(Ag) = C[x'] ® C[x"] is
computed as follows:!

S=h"'> {ix;®0d)+9|®jx]}
JEE,
!
+ constant term of Y {X)'(z) + h~'(p¥|Xs")}

r=1

® (Y (2) + h~' (V1Y)

+h Y (dy-pV )y 1+h @ (d) - p¥")
=S| + 85, +S;-:—S.1,
where
Si=h7' " j(xjof +xja) — ' Y j(xj9) + x9)")
JEE, JEE,
=-h~! E J(x; = x;)a] - 9f"),
JEE,

1
Sz = constant term of Y XV'(z)- ¥ (2),

r=1

! o "
= b Y {GVIYXS + (VIX) Yy )

r=1

o

Se=h" Zzb —h7l (Y + pV) = RPN (Y + V).
From (1.7), one has

! o .
= A7 Y RV~ (pV1X7)

r=1
+GVIXONTE - (V1Y)

=h7(pY + pY" =207 pVP),

and so
S3+Sa=—-h"2p" 2.
Making the change of variables (0.5a), one has
=-2h" E J_l-’;
JEE,

"Here and further, ' and " refer to the operators acting on the first and second factors of the
tensor product, respectively.
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r=1 JEE,

I
Sz = constant term of 472 b, (exp?. 3 ﬁ,,,-yj-zf)

z7/ 9
X (exp— Z ﬁr.—jT'E;‘)

JEE,

!
bl v ro=— a
=123 5,3 pE 2b,,9,)pE) (—*”’ : J,—) ;
r=1 n20 J oy

Hence

Sfeg)=(85+S5; +83+S4)(f®g)

2 .-,
= {—2-‘? J Z Jyja—y"
J

JEE,

!
+ B35, o 28,50 (~-‘“——i) } S(x+y)g(x - ).
r=1 nzl / ayj

Now, by using Taylor’s expansion

d
(1.16)  flx+y)g(x-y)= (em 5> y,-gg) f(x +8)g(x = &)le=o,
JEE, 4
one obtains the desired formula (1.14). o
The hierarchy (1.14) of Hirota bilinear equations is called the principal
hierarchy of type X/,

REMARK 1.1. According to [14], to every conjugacy class w of Aut Q, where

Q is the root lattice of A-D-E type, one associates a vertex realization R,, of
L(Ap). One starts with a “good” lifting of w to a finite order automorphism
w of E This gives a simply laced or twisted affine algebra g’ with the cor-
responding Z-gradation. Then one proceeds to construct the corresponding
Heisenberg subalgebra s,,. There are complications for arbitrary w related
to the fact that the centralizer S,, of s, in Ad G is nontrivial. If, however,
Sw is trivial, which happens iff detg(] — w) = dets(1 — &), where o is the
Coxeter element, then the construction of R, is similar to that of R,, the
principal realization discussed above. One should replace BV defined by (1.3)
by an element y,, defined by (@i, yw) =si, i =1,...,1, where s = (505 <us81)
is the type of % (and, of course, the constants B will be different). In §3,
we will discuss in detail the case w = 1, the so-called homogeneous picture,
for which S,, is as big as possible.

1.2. If P is an odd polynomial, i.e., P(-x) = —P(x), then P(D)t- 1 =0
is an identically zero equation. An equation P(D)7 -1 = 0 with even P is
called an even Hirota bilinear equation (it is always nontrivial). Since the
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orthogonal complement of L(2A) in the symmetric product S2L(A) gives
rise to all even Hirota bilinear differential equations associated to L(A), the
number N, of linearly independent such equations of degree k is calculated
by the following formula:

1
(1.17) D Nig* = 5[da()? +dr(¢)] - daa(a),
k20
where d,(¢) and d,,(q) are the g-dimensions of L(A) and L(2A) respectively.
These are given by the following proposition.
ProrosiTioN 1.1. (a) Suppose that g is an affine Kac-Moody algebra such
that its dual 'y is an affine algebra associated to the simple finite-dimensional

Lie algebra E of rank . Let E‘ be the set of exponents of E and let h be its
Coxeter number. Then for A of level 1 we have

(1.182) dn(g) =TT [T (1 =gy,
;’EE’"EZ'
(1.18b) @) =]] H (1= g/*nh)=1(] = gi+t+nths2))=1
¢ neZ,
JEE

(b) Formula (1.18a) can be rewritten in the following Jorm, which includes
the case g = A‘{? as well:

(1.18a") da@)= [T (1-g)".
Also we have for g = A{ﬁ)

(1.18b") dn@=dp@[] I  (-am
e nzizfﬁ::d 4l+6

(c) Denote by n; the number of positive roots of height j of a simple finite-

dimensional Lie algebra E and by M; the multiplicity of j in the set E of its
exponents. Then we have

(1.19a) nj+ne =1+ M,
<j
(1.19b) nj + ne =il
h+l—j
(1.19¢) nj+ ne =1-M;_,.
h42—j

Proor. From [11, §10.10] it is clear that (a) follows from (c). Formulas
(1.19a and b) are well known (see, e.g., [22]). Formula (1.19¢) seems to be
new; the proof given below works for (1.19a and b) as well (cf. [22]). The
case g = Ay, is checked by a direct calculation.



204 V. G. KAC AND MINORU WAKIMOTO

In order to prove (1.19c) recall that

(1.20&] - Hj=ﬂj'_[—-f1'{)_|,
(1.20b) Mi=M. .
h=j
Assume that formula (1.19¢) holds for j — 1: n; — I + R = L+ M.
=/
Subtracting (1.19) from this equation, it suffices to show that (nj—y —nj)+
(no — Mo )=M;_ — M;_,, ie., using (1.20a), that M;_, — M. =
h+3=j h+2—j h42—j

M;_) — M;_5, which holds due to (1.20b). O
Using (1.17) and (1.18), we deduce the following
ProvrosiTION 1.2. The lowest (principal) degree of an even Hirota bilinear
equation of the principal hierarchy of type X ﬁ" is given by the following table:
(M. 4. pib. ¢ T v e Nt) P
AP Do~ 1)y AR A DR 6
ENDR .8 ENED: 10, EM: 4.
Such an equation is unique, up to a constant factor, in all cases except for
D}”, [ > 4, In the latter case there are 2 (resp. 3) linearly independent such
equations for | > 4 (resp. [ =4). O
1.3. The vertex operators for level 1 representations of A" can be cal-
culated directly as in [11, 12] or by using the boson-fermion correspondence
discussed in the introduction (cf. [3; 11, Chapter 14; 15, 16]). We choose
here the second way.
Define a projective representation 7 of gl_, on F by (see the introduction)

HEij)=wiw] ifi#jori=j>0,
FE;) = wiw =1 ifi<0.
This allows one to consider infinite sums. Let i, j,n € Z be such that | <
i,j <1+ 1; and put
ei’j(”) = Z: F(Ei+p.;+[f+]]ﬂ+p)'
PE+1)Z
One checks easily that this gives us a representation of level 1 of an affine
algebra associated to gl;,,(C):
[€ij(n), €pqa(s)] = djpeiq(n +5) = digepj(n + 5) + g8 jpdn,— .

The affine Kac-Moody algebra g’ of type A}' is the linear span of e;(n)
(i#j,nel), Yt aei(n) (n€Z,a,€Cwith g, =0),andc=1. In
this case, the set of exponents is £ = Z\ (/ + 1)Z, and one can choose H; and

X" as follows. Let k,r, and n be integers such that 0 < k < /and 1 < r < /.
Then

(1.212) Hepann = 3 HEpkaqrimsp) = 3 €M)+ > ey(n+1),
pez ji=k J=i=k—=(I+1)
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(L216) X301 = D2 HEpksitsimep )™ 447

peZ
= > ej(ne + > eyn+ 1),
J=i=k J=i=k—(l+1)

where & = exp(2zi/(/ + 1)).

Now we fix an integer m, 0 < m < [, and consider the representation
L(A) of Ai”. It is known (see [11, 12]) that this representation is realized
on the subspace B! = C[x;;j € E,] of B"™ = C[x;;j € N] and that the
action of ¢’ is given as follows:

(1.22a) Hj=a,, JEE,
(r) o=i _ 1 —rm o
(1.22b) ZX, 27 = [ T\(2) - 1],
i€Z

where
(1.23) T,(z)=|exp Z (1—e)z/x; | [ exp- Z : _E_”z—"'-a—

: ! : J ox; |

JEE, JEE,

Let (|-) be the symmetric invariant bilinear form on g, so that (e;;(n)|e,,(s))
= On-0igdjp; then one has (Hj|Hj) = (I + 1)d;_; and (X|x7)) =
(I +1)3; -0,/ 151- So one can choose a basis {;} and its dual basis {u'} of
g as follows:

1 L vo }
;= _H,‘—’X 3 sd 3
vl {\/1+1 Y e

. 1 1 >
1 H_;, (l+1—r) ,'}.
) {\/H»l v ru e SRR

Calculating by using these bases, one obtains

S = (Am|Ap) on L(Am) @ L(Ap)

! E[m—m'+|]r

2 _ I
‘{_Hz};m‘o"_mlz (1—e)

r=1

rj [=g% £ il
x e - eyt (<=2, } it

nzl J
where pi*!(x) is defined by
(1.24) prf“’(x)z” = exp Z Xz,
n jEN

J20 mod [+1



206 V. G. KAC AND MINORU WAKIMOTO

Now, recall the following extension of Theorem O‘I(a) [13]): Let / be a
subset of {0,..., 1}, and let V' = @, L(A), v = Y icsV,- Then v =
2ies Ui lies in the orbit G- v0 if and only if all v; # 0 and

Dou(v) @ uk(v)) = (AAj v ®v;,  ijel
k

Applied to A‘E”, this gives the following
THEOREM 1.2. The element @, t; with all ©; # 0, lies in the orbit
GL..i (Clt, ') - (Der 1)) if and only if

a(m —m+1)r

{2 > JviD; +Z T—op

JEE,
; —~g"
(1.25) x Y pi0(2(1 - ey )pitY ( et DJ)
nzl J
% gzre.‘:- }"'D”fm Ty =0 forallmm' el.

EXAMPLE 1.1. The principal hierarchy (1.14) of type A|" looks as follows:

(1.26)
2 D,
ij)D—i- Ep (4y;)p2d (—D_,-) e2ieNws” T.1=0,
JENGga NEN J
where
(1.27) B3 Gey, x3, %5,04) = P 00000, 00 )

The unique nontrivial Hirota bilinear equation of lowest (principal) degree
(which is 4) is

(1.28) (D} —4D\D3)T-7=0

Putting x = x|, ¢ = x3, u(x,t) = 2(logt(x, 1,C5,C7,...))xx where the ¢; are
some constants, after a calculation we see that equation (!.28) implies that
the function u(x, t) satisfies the classical KdV equation:

U= Futly + Sitygy.

Thus, (1.26) is the KdV hierarchy. Using the reduction procedure of the
KP hierarchy [5], one obtains a different, less “economical” form of this
hierarchy.

The hierarchy (1.25) of type A" with I = {0, 1} is a hierarchy of equations
on two functions, tp and 7, where both 74 and 7, satisfy (1.26) and
(1.29)

2 ~ yiD;
{ > JviD; +3 > PR(4y))py; (h}Df)}esz w1907y = 0.

JENGaq neN
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The simplest equation of the hierarchy (1.29) is
([30} Dlzfo‘ﬂ =0.
Putting x = x|, ¢ = x3, u(x,1) = 2(logtg(x,?,¢s,...))cx, and v(x,t) =
(log(t1/70))x, we get that (as before) u(x, ) satisfies the classical KdV equa-
tions, v(x, ¢) satisfies the modified KdV equation
U= _%Ulv,\' + Uxxx,

and u and v are related by the Miura transformation (cf. [10]):

u=-v?-y,.

1.4. In order to write down explicitly the bilinear differential equations
of hierarchies given by Theorem 1.1, one has to calculate the Br; and b, in
(1.14). In the case when g is simply laced, the £, can be calculated by using
the Coxeter transformation g, since the element H; defined in the subsection
1.1 is an eigenvcctor of o with the eigenvalue exp(27ij/h) (cf. [2]). Note
that g,; = r—j- Once the B,; are known, one can determine the b, using
Pr0posmon 1.2. In this section we shall work out this procedure in the cases
of D{" and E".

ProrosITION 1.3, (a) The constants B, and b, for the principal hierarchy
of type Di” are given by the following table, where & = exp(in/6).

J\r 1 2 3 4
1 V2 Vee! V2 V2
Brj: 5 V2 Ve V2 V2
3 V2 0 V2 22
¥ V6 0 -v6 0
by =by=bs =3, by =1.
The three linearly independent equations of the lowest degree (= 6) are
(D} + 36D, Ds — 10D3 — 10D)t-71=0,
(D{D; + D} - D)r-1=0,
(D}D} - 2D3Dy)t -7 = 0.

(b) The constants B,; and b, for the principal hierarchy of type E.\" are
given by the following table, where w = exp(in/12), a = 3+ /3, ,8 = 3 -3

i\r 1 2 3 4 5

I VB VB Vaw  Jaw  V2a \/ﬁw

11 VB VB Vao' Jaw' V2a 2o
Brj: 5 Ja Ja \/Fws VB’ -2  -V2aw?

7 Va Va Bo? oS —\/If -Viaw

4 V6 -6 Ve —Vew? 0 0

8 V6 —-v6 Vewt —vVew 0 0

(¥}

&
I
=
+3
Il
el
=
=
[y

=by=1p% bs= %Bt  be=£at
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The equation of the lowest degree (= 8) is
(D} — 280V6D}Ds + 210D} — 240v2D, D7)t - T = 0.

Proor. The proof is sketched here for Eé”, the proof for Df,” being sim-
ilar. Let r;, i = 1,...,6, denote reflections with respect to aY,...,a;. Then
a = (ryrsry)(rarars) is a Coxeter transformation. The matrix of ¢ in the basis

v Vo3
a,...,a} is

0 -1 1 0 0 0
1 -1 1 0 0 O
yo|l =L 2-1 1 -1
{0 0 1 -1 1 0
0 0 I -1 0 O
0 0 1 0 0 -1
We have the following: (i) ™ (m = 1,5,7,11) is an eigenvalue of ¢ and the

corresponding eigenvector is
(1.32a) U = a(e™)ay + be™)ay + (1 +&™)ay + be™)ay +a(e™)ay +ay,
where

_ x(1+4x) (1 +x)?
T l4x4x? andl G 1+x+x2

(i1) e™ (m = 4,8) is an eigenvalue of ¢ and the corresponding eigenvector
is

(1.32b) a(x)

m_\

U =a) — &My +eMay —af.

Note that ¢” for m = 1,5,7,11 (resp. for m = 4,8) are solutions of

equations x* — x2 + 1 =0 (resp. x2+ x + 1 = 0), and that the nonzero inner
products of the v, are given as follows:

(1.33) (vilvn) = B, (vs|vr) = e, (va|us) = 6.
Define H; and f; (j=1,4,5,7,8,11 and 1 <i < 6) as follows:
H, = —iv2av,, Hy =iV2avy, Hs=iy/2pvs,
Hy = —i\/2Bvs, Hi=\2w v, Hs=2wvs,

(1.35) pr=e1, Pa=as, Py=-a, fa=-as, Ps=0a3 fo=—as.
From (1.33) and (1.34), one has
(Hi|H}) = 126412,

which shows that the above choice of H;'s satisfies the conditions of subsec-
tion 1.1. The §,; = (B, H,) are computed immediately from (1.32), (1.34),
and (1.35). )

Now, the lowest degree of an even equation of the principal Eé” hierarchy
is 8 (Proposition 1.2); hence all even equations of degree < 8 must vanish.
This gives rise to a system of 16 linear equations for 6 unknowns &,, which
determines the b, completely. O

(1.34)
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1.5. The affine algebras g’ of type D_[,”, Eé”, and E;” have a diagram

automorphism v of order 4, 3, and 2 respectively, the fixed point set g'
being affine algebras of type AP, D_(‘”, and Eén respectively; then one can
show that the centralizer of g’ in g’ contains the elements /; of the principal
subalgebra s with j =3 mod 6, = +4 mod 12, and = 9 mod 18 respectively.
These elements together with ¢ span a Heisenberg subalgebra of g’, which we
denote by s% the span of these elements with j > 0 we denote by s?. The
following proposition is now immediate.

ProrosiTION 1.4, (a) Let V = Clx;;j € E.] be the space of the basic
representation of g' of type D), E\V, and E\". Then V% = C[x;;j € E¥],
where EY is the set of positive exponents of g, is invariant under g'¥ and is the
principal realization of the basic representation of g (of type A, DY, and
Ef’ respectively). The corresponding vertex operators are X\")(z) with r = 2
Sor A(zz}, r=25,6 for Di” andr=1,2,3,4 for Eé” respectively.

(b) The principal hierarchy of type A, D), and E{?) is obtained from that
of type D", ELV, and E\" respectively by putting all D; equal to zero for j = 3
mod 6, = £4 mod |2, and =9 mod 18 respectively.

(c) The B, and b, for A{f) are as follows:

Bri=ve6e ', Bis=V6e b = i
The B, and b, for Dih are as follows:

Bra=hun= ‘/2_0' Brs= F:.? = —\/ﬁ,

_ — ﬁ4 at
B =Brn=V280, prs=p,,= -\/i;ws; by = 108’ by = 108

where &, w,a, and B are as in Proposition 1.3.
d) The lowest degree even equations for A\Y and D\ are as follows respec-
2 4
tively:
(D% +36D,Ds)t-1=0;
(D8 — 280V6D} Ds — 240V2D, D7)t - 7 = 0.

2. Principal picture for B}” and super bilinear equations.
2.1. Consider the space of polynomials

Clx] = Clx;;J € Nogq]-
Let, as before,
a;:=0/0x; and a_;:=jx; for j € Nyq.
Define the Virasoro operators on C[x] by

1
(2.1) L® .= 5% 3 iam-ja:  (nel),

JEL g4
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where 4 is a (fixed) positive even integer and :  : stands for normal order-
ing. Also introduce a vertex operator

(2.2) Viz;v) = (cxp Z E’;,‘:a_J.) (exp— Z i—fT_z__JaJ.) ,

JEMyq

where v = (v;)cz,,, is a sequence of complex numbers satisfying v, = v;.
Then it is easy to check the following relations:

(2.3) (L3, a;) = ~(j/h)ajs s
By p iy — () _ (h) h(n®—n) (h*+2)n
04 WL = - mnl, + [ Mgt ),
(2.5) [a;, V(z;v)] = u,-zj Viziv),
B prrsioa 27 [1 .0 .
(2.6) [Ly ‘V(“v)]_T{ZnR”+'8z}V(z’y)’

where R, = zls;sh‘j odd ViV—j-

Next we recall the construction of the irreducible Virasoro module with
central charge % in terms of the superoscillator algebra. Let e = 0 or {;, and
let A'®) := A(&;;j € e + Z.) be the exterior algebra over C on generators ¢&;
(J€&+1,), and y; be the operators on A® defined by

(2.7a) v =098, w_;:=¢ if j>0,
(2.7b) o := (1/V2)(& + 8/0&).
Let
(2.7¢) wiP(2) = 3 yyzh,
JEe+Z&
and
| .
(2.82) =5 30 W-¥n  (nEZn#0),
Jjee+d
1 -2e¢ ;
(2.8b) 1= 5+ E Jw—jy,.
JEE+Z,
Then
¥

(2.92) I = (1= M)l + 26,

@ Wy [0 1 dm
(2.9b) (19, yP(2)] = 2 {2 + hzdz} v (z2).

Via the operators /!, A® turnsto be a Virasoro module with central charge
3. We have an obvious decomposition: A®©) = ALL & A® ; it is known that
2 odd
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these Virasoro modules are the following irreducible highest weight modules
V(4,h), where h is the minimal eigenvalue of ;’é"" (see, e.g., [16] for a proof);

1 |
(3) § (
(2.10a) Adan=V($,0), AL =V(L,1),
0 0
(2.10b) Al =AY ~v(4, &)

2.2. We turn now to the principal vertex construction of level 1 represen-
tations of the affine algebra of type B}”. Letg= Z;ezmz g, be the principal
gradation of the finite-dimensional simple Lie algebra g of type B, (recall that
2/ is its Coxeter number). Then

g = @(H ®8jmoa2t) + Cc
jez
is the principal realization of the affine Kac-Moody algebra of type B'", with
commutation relations

(1)), v(k)] = [1,v](j + k) + j(ulv)od; _c, [e,g']1=0,
where u(j) = ¢/ ® u and (-|-) is the invariant bilinear form on § normalized

by the square-length of long roots being equal to 2.
As in §1, we include g’ in a Lie algebra ¢ = ¢’ & (2-,ez Cd;) such that

(2.11a) [dn, ()] = —ju(j+2nl),  [dn,c] =0,

2031+ 1/2)

(2.1 lb} {dm,dn] = 2!‘(!?1 T ﬁ')dm-'-n + ( 12 ?

O —n(m” —m)c,

and denote by g its subalgebra g’ + Cd.

Let 5 be the principal Cartan subalgebra of § so that 5 = 2 jez/2z 5)s
where s; = §Ng; and dim5; = 1 if j is odd and = 0 if j is even. Then
§ =3 jez.,, ! ©%;moa2 +Cc is the principal Heisenberg subalgebra of g’ [12].

Choose an element S; from each component 5; (J odd) such that (S}|S;)p =
Oj+komod2t- PUt Hj = V21t @S} moq 21 fOr j € Zoyy; then Hj (j € Zogq), ¢ form
a basis of s and satisfy the commutation relations (1.8a).

Let o be a root of § with respect to 5, and let X, = Yiczjaz Xaj be
its (nonzero) root vector. Then, comparing each component of [S), X.] =
a(S;)X, with this gradation, one has

(2. 1 2) [Sj! Xu.l’] = Q(SJI}XH.}-H‘

Now put X% :=1t/ @ X, , and consider the element
i .J mod 2/

X(z):=) X0z

JEZ
in g ® C[[z,z7']). From (2.12), one has
(2.13) [Hj, X*(2)] = V2la(S))z’ X*(z).
Note also that
(2.14) [dn, X*(2)) = z™[2nl + 288 2)X°(z2).



212 V. G. KAC AND MINORU WAKIMOTO

Now we consider the action of the Heisenberg algebra s and the Virasoro
operators on a level 1 g-module L(A). First take the representation of s on
C[x] defined by

(2.15) Hjw— ay, cr— 1,

For each root « of (g,3), define the vertex operator ¥/(z) on C[x] as follows:

(2.16)
Viz):= [ expv2I > alS)zx; | | exp—v20 ¥ Mi :
JEN N 0%
From (2.5), one sees that
(2.17) [ac, Vi(2)] = V2la(S)) 2/ V}(2)
and
(2.18) LO, v = o {mi 4 Ly
2 2,71 =5 {nttele) + =L} v,

since Rus,)) = Xicjcuy V2a(S;) - v2Ia(S_;) = 2l(ala) in our case. We
see also from (2.4) that the Virasoro operators LY associated to (s, L(A)) are

2
RS R
and the central charge is /.

On the other hand, the Virasoro operators L\ of g associated to the princi-
pal realization of L(A) can be calculated by using the formulas in [9, 17],....
Among them, the most important are its central charge z; and the energy
operator Lf}“}, and they are given as follows:

mn PR
_g—m+gdlmg,
d, Q (I+Di+1
(g) _ “0
L' =5+ g agr ™

where m is the level of L(A), g = 2/ — 1 is the dual Coxeter number, and Q
is the Casimir element of g, which is the scalar (A +2p|A).
Now we consider the coset representation of the Virasoro algebra:

Ly:= LY — L,
whose central charge is z = zg — L. In our case, the level m of the represen-
tation L(A) is equal to 1; so we have z = 1, and
_dy  Q  (I+1)(21+1) en 202+ 1
Sttt T it
_do  (A+2p|A) | 1 @
= —27 + ‘T + E = ]_.0 -

Ly
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The coset Virasoro algebra acts on the space L(A)**; since L vanishes on
this space, we have

dy  (A+2p|A) 1
(2.19) Lolrap: = 37 + g 4 6"

Recall that B}” has three level 1 integrable highest weight representations:
L(Aq), L(Ay), and L(A;); the fundamental weights A; are chosen such that
Ai(dp) = 0 and (Ap|Ag) = 0. Now we can calculate the eigenvalue of L; on
the highest weight vector v, of all L(A) of level 1:

Lo(vy,) = ftva, fori=0or 1, Ly(vy,) = 0.
From this, we have
(2.20a) LA)=Clx]®[V({, f)+] (i=0orl),
(2.20b) L(A) =C[x]®[V(,0)+--].
We can determine the structure of L(A)*+ with the help of the g-dimension
dx(g) = dim, L(A; B")). By a simple calculation using [11, §10.10], we have

_ ¢(d*)e(g*) (i=0or1),

(2.21a) dy (q) = D)o@
2y 47 220\2
(2.21b) da () = d(q*)p(g*)

d(a)p(q")p(g*)”
It is clear that

2 _ (¢
(2.22) dim, C[x] = a(a)
and the Virasoro characters are (see subsection 2.1 )
[ ma?@
(2.233) ch V{f, TG) =X ¢(x)
B(x)?
(2.23b) chiV (4, 0)@ V(4 1) = MT.}QW,

where x = g% since the height of the fundamental imaginary root with respect
to the principal gradation is equal to 2/.
From (2.20a), (2.21a), (2.22), and (2.23a), we obtain

(2.24a) L(A)=C[x]@V(}, &) (i=0or1);

and moreover, from (2.20b), (2.21b), (2.22), and (2.23b), we obtain
(2.24b) L(A)=Clx]e V(3,00 V(L 1]

Thus we have deduced the following identification

(2.25a) L(Ao) ® L(A;) = C[x] @ A©),

(2.25b) L(A)) = C[x] ® AY/2

as s @ Vir-modules.
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REMARK 2.[. The principal gradation in (2.25) is given by degx; = j,
degg, =
Now Iet us consider the action of X,(z) on the space (2.25). Put

i Vi(z) if (ala) = 2,
(2.26) vielz) = { VW) i (ala) = L,
and let
(2.27) I = 20[L + 1),
Then from (2.8) and (2.9b), we have
(2.28) Un, VN (2)] = 2220l + zd [d 2} V9(z2).

In view of (2.10), (2.13), (2.14) and (2.3), (2.17), (2. 28), we obtain the fol-
lowing proposition:

ProrosiTION 2.1. The map

Hiw—aj; c— 1
XU(2) = aVi(z), G
dp— 2(LT" + 1),
defines a representation of the extended affine algebra § g of type B“) on the

space Clx] @ A, which as a g'-module is equivalent to L(Ag) & L(Al) Jor
e=0andto L(N\)) fore = o

2.3. Note that B" with / = 1 becomes A}" and that its level 1 mod-
ules L(Ag), L(Ay), and L(A;) become level 2 modules L(2Ag), L(2A,), and
L(Ag + Ay) respectively. In this subsection we use this to construct all level
2 representations of the affine algebra g’ of type A{ )
First recall its principal realization. Take the standard basis of sly(C):

1 0 (01 (00
”‘(0 —1)’ X*‘(o 0)’ X"(l 0)'

Then we have
= ) CH(j)+ ) CXi(j)+Cc,
JEZeyen JEZ g

(), v(K)] = [, v](j + k) + §jtr(uv)d; e,  [c,g']=0.
We embed ¢’ into § = ¢’ ® I, Cd}, such that
(2.29a) [dn,u(j)] = —ju(j +2n),  [dnc]=
(2.29b) (dmy dn] = 2(m = 1)dpin + 10 —n(m* — m)c.
Let S = —=(X, + X_). Since [S,H] = vV2(X_ - X,) and [S, X_ - X.] =
v2H, the element

(2):= Y H()z™/+ 3 ¢ Yz

JELven JEZ g4
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satisfies the commutation relations

(2.30) [S(), X(2)] = V22/ X(2).
Also it satisfies
(2.31) [dn, X(2)] = z2"{2n + zd [d 2} X (z).

Take the principal Heisenberg algebra s = E;ezm CS(j) + Cc. Its com-
mutation relations are given by

(S, S(K)] = (4/2)6;,—xe.

As in subsection 2.2, we consider the action of the coset Virasoro algebra
(with respect to the pair (g’,s)) on a level 2 g'-module L(A). Applying the
same argument as in the case of B|", we prove the following isomorphism
as s & Vir-modules:

L(2A¢) ® L(2A,) = C[x]® ¥ (3, 5%),

L(Ao+A) =Clx]®[V(3,0)8 V(3,3
So one can put
(2.32a) L(2A¢) & L(2A)) = C[x] @ A9
(2.32b) L(Ag+Ay) = Clx]® A,
where the action of s and d,, (n € Z) is as follows:
(2.33a) S(j) — aj, c 2,
(2.33b) dy v by = 2LP + 1)

Now we calculate the action of X(z) on this space. First, take the vertex
operator

V'(z) = (exp\/i . szf) (cxp—\/i % :Tﬂ%)
b |

JEN4q

it satisfies (see notation (2.1)):

(2.34) la,, V'(2) ]_ V22 V'(z),

2
Put ¥(z) := V'(z)w!”(z); then one sees from (2.10) that

(2.35) (LY, V(2)] = z {H-i-‘d V'(z).

5 1O 42y = Z0 . d )2
( 36) [n s We (2.']]—--5- n+‘E We 'L2).
From (2.35) and (2.36), we obtain

n ‘?i z
[l Vi(2)] = = {2““(:2} Vi(2),
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which is compatible with the commutation relation (2.31). Thus we have
proved (as in subsection 2.2) that the action of X(z) on the space (2.32) is
given by

(2.37a) X(z) —aV(z)

where a, is a nonzero constant,

The constant g, can be determined by calculating the coefficients of z/
(/ = 0,%1) in the vertex operator Vi(z). Put

(2.37b) X(z)=)_ Xyz" and aV(z) =Y V2"
nel nel

First note that one can choose the Chevalley generators of the affine algebra
g = A" as follows;

e = X.(1), e =X_(1),

Jo=X_(-1), Si= X (-1),

af = H(0) +¢/2, af = —H(0) +¢/2.
Then one has

Xo=ag—c/2, Xi=f—fi, ,X_i=¢ —e.

We note that f; + f; = V25(~1).
Case (1). L(2Ag) + L(2A;) = C[x]® A®). By a simple calculation, one has

(2.38a) V(1@ 1) = %(1 ®&),
(2.38b) V(1 ®&) = %(1 ®1).

So the eigenvalues of ¥; on the 2-dimensional space spanned by 1 @ 1 and
1® ¢y are +ay/v2. Now consider the action of Xo on the highest weight
vectors vy, of L(2A;) (i =0,1):

(2393) XQUJM = {2!\0, Cl'af = CfZ}“UgAD = Uapys

(2.39b) Xovaa, = (A1, af — ¢/2)vyy, = ~vyy,.

By comparing (2.38) and (2.39), one has ay = =v2. We choose ay = V2;
then we have

(2.40) Uiy = 1@ (1 + &),  vap, = 1&(1=&).

Case (2). L(Ao + A1) = C[x]® A2, We compute (¢/2 — aY) fovy in two
ways, where we put A = Ag+ A, and v, = | ® 1. On the one hand, it is clear
that

(2.41) (/2 —aY)fovy = (Ag+ Ay - ag,¢/2 — ay) fovy = =2 fyu,.
On the other hand, by using the identification (2.37b) we have
So=3(VIS-D+ X)) = X+ 4V, c/2-af =H(0) =,
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so that, using

nae=ap(188&),  A1e1)=Jzxel+(@p/2)(18¢),),
we obtain
(2.42) Wh(1®1) = —aya(1®&) + (@},/V2)(xi @ 1).

By comparing (2.41) and (2.42), one sees that afp_ = —2. We choose a,); =

VZi.

Summing up the above, we obtain the following

ProrosiTION 2.2. Let X_,H, X, be a standard basis of sl,(C), let S
7'5(X+ +X_), and let

X(z)= ) HPz7+ Y (X_ - X))z
JE€Zeven JELoga

Fore=0or i, let

Ve(z) = (CXD\/@ Z z‘lxj) (cxp—\/i E ZT_JaixJ) (z sz_zj) ’

JENa JENGas jeer

where y; are defined by (2.7a,b). Then the map

S(J) — aj, 2,
X(2) ~ (=1)5V2V,(2),
dn — 2(LP + 1))

defines a representation of the extended affine Lie algebra § of type A\" on the
space C[x]® A, which as a g’-module is equivalent to L(2Aq) + L(2A,) for
e=0andto L(Ag+A) fore = % the highest weight vectors being 1 ® (1 +&)
and 1 @ 1 respectively. O

2.4. Let g be the affine Kac-Moody algebra A{,” in its principal realization
(see subsection 2.3). We choose a basis {u;} and its dual basis {u'} of g as
follows:

{u) = {im(k) + X_(K)), = (X (k) — X. (K)),

V2

N

1 c
= (H(k)— 5‘5'”‘) ,d.c},
('} = {lm(—m x_(—kn,\'/—%(x-(—k) _ Xa(=k)),

V2
% (H(—k) - %(sm) ,c,d},



218 V. G. KAC AND MINORU WAKIMOTO

where d = —{dy — %{aY is the usual energy operator. Let A,, = 2Ag or
Ao+ Ay, and L, = L(2A¢) + L(2A) or L(Ag + A;) according as & = 0 or |

We have
A := (AglA)) = —¢.

We wish to calculate the operator

== |A{el|2 - (E U ® ltf) o |Afc}|2

on the space

L. ® L, = (C[x']® A©(&) ® (C[x"] @ AD(EM).

Using Proposition 2.2, S is written as follows:
§= Z 9 @ kxy + Z kx; @
kEN44 kENL
+ coefficient of z% in 1(a,V'(z) - 1)(a,V"(-z2) - 1)
+2[=lp + (X5 — D)+ 2[= 1 + H(Xg - 1))
= Y Ko{ex{+x,0d8)

KENGq
+ coefficient of z% in i[a,V'(z) - 1][a . V"(-2) - 1]
+ coefficient of z° in (a./2)[V'(z) + V"(-z)] - 20 - 20f — !

== > kXi-x@ -9 -2 Y v+l

KENL4 JEe+Z,
+ coefficient of z% in (a2/2)V'(z)V"(-z) - 1,

since
.Y . Il 1 ”
=3 Y kxpoi+ Y jvlvl, If =5 Do okxpol+ Y jwiwl,
KEN JEe+Z, kENGas jEe+Z,

where d; and 9;’ stand for 9/dx; and d/dx respectively. Now making
change of variables (0.5), we obtain

V& (z)y " (~z) = (exp\/f > (x;-—xj-*)zf)

JENa

x(exp -2 E 7 d}‘))

JE€NGaq

= (expi!w/i Z y;-:-:f) (exp—\/i Z %{%)

JEN g
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So we have
=-23 kw—— -2 Y L+
kEN 4 jEe+Z.
. . at -
(2.43) + coefficient of z° in -zi exp2v2 Z vz
JEMN4a
exp—v2 Y - wi(2)w)'(-2) - 3.
J 0y
JENd
Note that

Wi (-2)=w((z) and a§=2 ife=0,
Wia(=2) = —¥ijp(z) and afp=-2 ife=

b=

So (2.43) can be rewritten as

(2.44) S=-2> kyka——Z Y il v+ )

K EN 44 JEe+Z,

+ coefficient of z° in (epo\/f >, yj-zf)

JENGa
|

X ( ) vi(2)we'(2) = 5
JEN 4

We recall the polynomials p3%d(x) defined by (0.6) and (1.27). App.lying the
argument deducing (0.9) from (0.7), to (2.44) we obtain the following

LEMMA 2.1.

— Al t(x', & (x",&")

1 ~
= {_z > kyDy+e-5 2K

kEN g

DK Ziemgy Vi D .
+ 57 3 p3(2V2y)pts, (-V2D)K, }} SNt Dit . 1,

keZ, rel
where
K9:= 3 vy, K9:= 3 jlvwj+viyf}) 0

[jEe+Z JEe+Z,
i+j=r

Now let us consider the case of L(Ag + A;) = C[x] ® Al//2), We are going
to prove the following
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THEOREM 2.1. For an element f = f(x,&) = ¥ fi.; ()&, ---&, in
L{Ag + Ay) = C[x] @ AW2), put

STOGE) =3 i ()i, i
Then [ is contained in the G-orbit of 1® 1 if and only if f satisfies the system
of super bilinear differential equations:

(2.45)

{—’ . J’.Vj‘a_ 2K+ 3 5 pet(2v2y;)peid, (_j@;_uj) K,}

JEN4 neZ, re

In

»® e-—.‘.ud;’g‘juyezfiafaﬂ;ezmdfdﬁffr(x £ u, o +}?)f(x — U, — ﬁ)|u.n.;‘?=0 = 0,

where forr e I.:
d 7]
K= f — —
> i (ogm gy )

JE2+Z,
1 a @ d ad
K == Z etk Z (C_,- =i ) B
2 JKEL[24Z, Bty 3By JEI2+Z. Ot 0Bjr
Jrk=r
a d
K., :=2 Z Nk + E (‘:Hr__' — Njsr _") .
ke, jeljzrz, Oa; 9B;
J+k=r

Proor. By Lemma 2.1, we already have the following formula:

(2.46) (S~IA12)(f®3J=[ -2 ) jyiDj-2K

JENGay

- Z Zp“"d 2\/_.1’}9;; 2 ﬁﬁ)i&r
nel, reZ
x e®iDi f(x! &) - g(x",&"),
where A = Ag+ Ay, K = K2 and K, = K'/2,

We shall write A(¢) instead of Al//2)(&) for short. Note that L(Ag+Ay) =
Clx', x"1@ A(&',&") is a tensor product of a polynomial algebra in x* and x”
and an exterior algebra in &' and &”. Define an automorphism T of A(&’, &)
by

TG, - CL8h - Shn) =&l & & -8
For operators X = Voo Wawy, W, wy, we let X% = X in all cases except for
X =y ¥, with p > 0 when we let X° = —Y. Then one checks directly that

(2.47) ToX=X°0T,

Now we make a change of spinor variables:

G=3E+EN, m=E-en, vi= 3w+ y)),

=

=vi-v)), Jei+i..
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The new operators act on A(&,&") = A(E, ) as follows:
vj=38/8¢, w_;j=¢&, 6;= 30/0nj, 6-;=n;, JE3+1,,
and satisfy the following commutation relations:
(Wi el = 39—k, [0,,0k)s = 36, &, [w),0:): =0

Furthermore, we have forre Z.,

(2.48a) Ko=2 3 jly_,uj+6-,0)),
JEI 24T,
(248b) K7f=2 > yi0+2 Y (WoiWer—0-;0.),
LKkEL2+Z, JEIf24Z,
J+k=r

(248¢) K%, =2 > 0 px+2 3 (-jmrt; - 0-,-.6)).

SKEL24+T, JEL24Z,
J4k=r
We also need the following super Taylor formula:
(2.49) 219192 f(q)| om0 = f(£).

From (2.48) and (2.49) we obtain
(2.502) K°fT(x',&"g(x",&")
= Ke™12/00,0En0128, (T(x! o 4 B)g(x",a - e, =05
(2.50b) K2fT(x',&"g(x",&")
- Krezg,a,:aa,esq,waﬂ,fr(x;‘a + ﬁ)g(x”,a _ ﬁ)!u,ﬂ:ﬂ'

Applying ¢ to both sides of (2.46) and using (2.50) completes the proof, due
to Theorem 0.1(a). O
ExAMPLE 2.1. The coefficients of y{' y3’ ---§ ‘5‘ in (2.45) are as follows:

d
1 andiuz: 0; Miy2: _28,31;';;
< 5 d a
Si2Myz and yy: =2 (Df - mm) :
8 J
D = 2P D)+ 2(j+ k) D2js
SiMk Pajvk) (D) (J 8 dﬂ; ngqj 2(j—s)(D ('}Crs EYR
% E p"{k‘-s](D)
Ocs<k Oa ()ﬁ;

where j;(D) := p2%(—/2D). In particular, we have

1 5 0 ad d d
i — = | D} + 4D Ds + 3D2- , -12 - }
Sarahz 3 { : T Y9ay, 0B ) dasy; P2

1 a d d d
fiﬁfh{fg: ‘-‘*S—[D?+4D]D3— 12 ]

3D} - - -
Yoy 2 0By ey 9 Py
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Defining a super bilinear equation P(D,, D%, Df)r. 1 = 0 by
9 9 9\ 5 _
P (d_l? 3o’ B—E) T(x+ua+ Br(x —u,a— Bu=0,a=p=0 = 0,
we write the equations of lowest degree of this hierarchy as follows:
(D} = Dy,Df )e -t =0,
(D} +4D\ D3 +3D{ D), DY), — 12D,D¢ v .1 = 0,
(D} + 4D, Dy - 3D1D}), D, - 12D}),D5,))t - 1= 0.

These may be viewed as super KdV equations. Unfortunately, their relation
to the known super generalization of KdV [19, 23] is unclear.

3. Homogeneous picture: The nonlinear Schrédinger and the 2-dimensional
Toda lattice.

3.1. Let g be a simple finite-dimensional Lie algebra of rank / with a
symmetric Cartan matrix (type A-D-E). It can be constructed starting from
o

its root lattice Q with the (Weyl group invariant) symmetric bilinear form
('), normalized by (aja) = 2 for a shortest nonzero vector a, as follows [8,

14]. Choose a (nonsymmetric) bilinear form R: E} X é — Z such that
(a|lB) = R(a, B) + R(B, a).

(R may be constructed, for example, by introducing an orientation on the
Dynkin diagram labeled by simple roots a;, putting R(a;,a;) = 1, and
R(aj,a;) =0 for i # j in all cases, except for a; — a;, when R(aj,a;) = —1,
and then extending R by bilinearity.) Put

ela, f) = (_I]Rtn.ﬁl‘

Let f; be the complexification of Q, and let

o

A={a€Ql(ala)=2}; g=he) CE,
uE;
with the following commutation relations:

[6,0]=0, [ E.]=(alh)E, forheh,
[EaEgl=0 ifa,feAa+tpeAu{o)
(EeyE—ol = ~a, [EaEpl=e(c;B)Enrs ifc,fa+pea.

The bilinear form (-|-) extends from ;’:} to I; by bilinearity, and to the whole
g by

(§|ZCE,,) =0 and (E,Ep) = -4, _,.
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The associated affine Kac-Moody algebra g is considered in this section in
the following (homogeneous) realization:

g=Clt,t"']|®g®CcaCd,
with commutation relations
[u(j), v(k)] = [u,v](j + k) + j(u|v)d; _kc,
(d,u()] = ju(j), le,g]1=0,
where as before u(j) stands for / @ u. .

Choose a basis {u;} of E and let {¥/} be the dual basis of h with respect
to (-|-). The homogeneous realization of the basic representation L(Ag) of g
is constructed in the space

L(Ao) = Cx]1® C[Q] := Cx; 1 < j < Lk eNj® ¥ Cer,
a€Q
where g acts as follows:

(3.1a)  wi(—k)=kx{, w(k)=0/ax), 1<j<lkeN,

(3.1b) H(O)(f@eP)= B(H)f@e? for He,
! ) 1
(Bl  d(fee)=- (Z Ekxif’va—{.} + jlﬁlzf) ®e,
k>1i=1 dx;
(3.1d) E,(-k)(f®¢eP)=¢e(y, B)Xi(7)(f®€P) foryeA,
where
X(.2) =) Xe(y)z*
kel
— 7|?[!f2 M exp — M) ®(’?Za”
=2z (expg ; )(x ; ;

is the vertex operator defined generally for any element y in Q. (Recall t}_m
z(f@ef) = zFIV) f@el ) From (3.1c), one sees that the space L(Aq) carries
a natural Z,-gradation defined by dege” := 1(#|8) and degx”’ := k. We let,
for brevity, x = (xﬁj)}lsjﬁ;_keh;.

For each y € Cuz and n € Z,, we define polynomial functions P} and Q) of
degree n in C[x] by

" g
(3.2) ZP,}'(x)z" =cxp22(}’,uj)xf]zk,

n>0 k=1 j=1
I‘ a
(3.3) S Qix)z"=expy Y (r,ul)x{ 2k,
n=0 k=1 j=1

3.2. Now we are going to prove the following theorem:
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THEOREM 3.1. An element t = EB 578 ® e? of L(A) = C[x] ® C[Q] is
€

contained in the G-orbit of the vacuum vector 1 @ ° if and only if it satisfies
the following hierarchy of Hirota bilinear differential equations:
(3.4)

i
f f 1 v, 1) sl
- 2 E Z: kyl'{()]D}:” o+ §ra o B[z euh Dl T - Tﬁ

k=1 j=1
‘. g LA ]
+d era=-p> Q2P i tapy(—D)e P 1, 2y =0
o n=0
7EA -

-]
Jor every a, f € Q.

Proor. We write simply r‘geﬁ for 7p ® e#. We shall calculate here the
operator S on the space

L(Ao) ® L(Ao) = (C[x'] ® €[Q')) ® (C[x"] & C[O"]).
We have the following dual bases of g:

{vib: W(k),k>0,1<j <l uj(~k),k>0,1<j<l:
E,(k),y e z,k ez, ¢ d;

] ]

{0} u(-k)k>0,1<j <l Wk)k>01<)<l:
—E_(-k),7€AkeL, d
Take f = E'ﬁf'e‘ﬁ’ and g = 3" ggue?’. Let S =¥, v, ® v'; then
S(fpe? ® ggue?")
= ) Wk fp @ uj(-k)ggn)e? @ et

k>1
1<j<1

+ ) (=K fp® w (k)gpn)e? @ e?"
1S

+ 2 ((0) @ wW(0)(fpe? @ gpne?”)

1)<t

=D D (B (k) ® E_y(=k))(fpe® ® ggneP”)
=

o keZ
ea "€

+ fpe? ®d(gge?") + d(fpef')® gguet”

3 ) i’ 3 v "
= E ‘—-ijg.- ® kx}f} 8 + kxi‘” fa- @ '_-Wg'gﬁ eﬁ ® (’ﬂ
k=1 9% ax;;
1<7<1

+ 3 BB (W) fpet @ gyt

<<l
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— coefficient of z% in E e(y, Be(=y, B
vea )
x (X(7,2) ® X(=7, 2))(fpe? @ ggueP”)

ad a By a
-4 Yk i1 (.],+x§j’ - u}")
51 axy dxy
1<jst

1

+ (Iﬁ."z + |ﬂ”I2) (f:e*f?‘ﬂ‘ @ gﬂueﬁ”)

]

=)+ coefficient of z° in (II),,

@
yEA

where we put

i ) K]
Y _ e i
0= & -4 (55
1<j<!

1 : "
+518"~ B¢ (fye? ® ggne?”)

and
(1), = —&(3, B' = B")(X (7, 2) ® X(=7,2))(fpe? & ggne?”).

Changing the variables

i L r o -)ir
(3.5) xP = 4D+ 2y, Y = L) - 1),
we have
- 9 @ 9 o _ 9 _ o
3 ax " ax T axP" gy ax!"  axV
and so
(3.7)
()= ={2 Y kpf 2 218~ B} U (x +9)gpe(x ~ e @ P,
‘ k>1 ayy 2

1<j<l
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By using (3.2), (3.5), and (3.5), (IT), can be rewritten as

(M), = —e(y, '~ B") (

exp2 Y 2CKIZ )( N, 5 i

X

k>1
(z- 20180 g 2.

= —¢&(y, B’ — p")z*+0IE-B") (exp

where

=

X

g

)= kZ(, wyd, k) :

J=1

By using (3.3), this can be rewritten as

(H)? =

where

(3.8)

k=1

it Je—?)(eﬂ’ ® eﬁ”)

I=k)zk
229( k)Z)

k=1

(fpr® gﬁ,,](eﬁ‘ﬂ ® e;?"—?),

)(f,s' @ ggn)

!
Z?,uj) 0 for k € N.
Ii=1

—e(p, ' - B) OB (Z 2z S P%(_éy);’")

n=0 m=0

X (fﬂ’ @ gﬁ,,)(eﬁ'-i-? ® eﬁ-‘;_r)

—e(y, B = ")z 01B - p") (
n

> QU(2y)PL(-d,)z""

,m2>0

X (fpr(x + ) gpn(x — y))(e?*7 @ eh"-7),

s (1o
d}-.—(za’?,lgjghka‘l)

From this, one sees that

the coefficient of z° in (II),

= =61, 8= B") 3 Qh2V)PY 0 10— gy (~B)

nz0

X (fp(x +)gpn(x = ))(e? 7 @ ")

)
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Thus, from (3.7) and (3.8), one obtains

(3.9)
S(feg)
= 3 “) 2Iﬁ?‘ B"1* | Jpr(x + y)gpe(x = y)
ﬂ'.,&“Eé 1;2?2!
B Za(}" -8 -2 E 0:(2 n+2+[f|ﬂ’ ﬂ”—!ri(_{j")
= n=0
FEA
X fp—y(X +9)8pray(x =) p ¥ @ "
1 L} 113
= > 1-l22 % y‘” U, + 518 = B | for(x +)gpn(x ~ y)
o 1<j<t
BﬁB"EQ k)
= ZE(?’ ﬁ’ - ﬁ”] E Qg(zy)P:—Z-H}'w’uﬁ"J(_5}'}
2 n=0
yEA -

X fp—y(X +Y)gpriy(x —y) p e @eF”.

By Theorem 0.1, we know that T = §_ 75e# belongs to the G-orbit of the
vacuum | ® €° if and only if S(7 ® t) = 0 (recall that (Ag|Ag) = 0), which,
due to (3.9), is equivalent to

Lo
(3100 (2 kyma w + 518 = B | 1 (x + ¥)Tpu(x = y)
1<<!
k=1
+Za(; B —B")Y QH2)PI_,, 1pr—pmy(—0y)
n=0
?Ga

x Tﬁr_}.(x +.V}T,6”+y(x —y) = 0 f()l' every ,3,,}3” (S Q.

Using (1.16), (3.10) gives us the desired formula (3.4). O
The hierarchy (3.4) is called the homogeneous hierarchy of type X"

REMARK 3.1. Given 4 € Q, the transformation o« — a+4, f — f+4 leaves
the hierarchy (3.4) unchanged. Such type of transformations are called in the
soliton theory the Schlesinger transformations.
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Lower degree equations of hierarchy (3.4) are given below. The constant
term:
| 3 ) ~
Iu,ﬂ 'i[a = ﬁ[hrafﬂ + Zﬂa(}”a = ﬁ)Pf;h,_m_z(_D)Ta-? “Tpey =0
yea

The coefficient of y,”':
(zk + lra - ﬁ|2) D, .1,

(/) _ ~
Hki::-.ﬂ " z &t {2 }’, i ) [}'Ia Bi+k— ‘( D)
rea
+ Ptl;lu-ﬁ}—i(‘D)Di”}rn—? “Tpay =0
The coefficient of y{/)%:

UK, (2k+4ja- gD, 7

+2Z }';(l"‘”ﬁ){(yy } [‘,|ﬂ ﬂ}+k ‘)( ﬁ)D.f[cj)
?GA
+{r.u)*F, Ola=gys2k—2(— -D)

1 pi 12
+ iPljapy2(=D)D }Tu—y “Tgyy = 0.

The coefficient of y{/y\"", (j, k) # (j', k'):

(")
v, kra.8

(2(k + k') + Lo~ BR)DY' DYz, - 1,
+st= BR2y, )Py i o(~D)DY
?Ea

+2(n,u')P, (lapysks—2(=D) D
+4(y, “j} (v, )ﬂ;’n—.ﬁ]+k+k—‘_2(*5)

+ Pljamp)-2

We use these equations to derive a system of partial differential equations
for the functions

o

=logty and gq,:=1,/15, acA.

For simplicity of notation we let (k=1,2,...):

P !
xe =Y xM e, Dl = Z (a, ur;);}J
Jj=1 k

j=1

(~-D)DY' DY N2,y - 14,y = 0.
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Below we write explicitly some special cases of equations I-IV (noting that
Pg(-D) = LDV - D{)):

1
Lma: 5T = DEze to+dtatat 3 11y =0,
;'E;
a+?ES

Lpla+pe 3): (DI — DNz 7, 5 + 3e(a, B)Taty
+ ) el@=7,B+7)TamyTps, = 0.

o

FEA
o
a=yEA
o
B+yeA

!
Moo= E(ﬂ'. Hj)ll(l‘!l‘oi z &(y,a)Ta1yT-y = 0.

@

J=1
YEA
L]
at+yEA

Mya0:= Y (o u)lIy) o

J=1
2D[0] + D{"] )To * Tq + e(y,a) Dl"H]T,..,. Ty = 0.
v ¥
}'EA
a+yEA

;. D7+ E{y, fryy =10
?Ed

_ o 1
my,: 2DY 1010+ [{y, w)DY) + (r,0/)3

-]
7EA

WVaol #7): DYDYt 10+ Y (r )y, 0/ )17, = 0.

(DI — Dy 7, -7, =0,

?E;
VYool # J): 4DYDY )74 7
+ 3 (1 w)DY) + (3, VDY + 20,0 (3,0 P}(-D)]r_, - 7, = 0.
sea
IV{z{.'I{CI],UI 3D;“I)DEJ‘)TQ *To
+ Z[{;J, u")DE"‘} +2(7, @)y, w )P (=D)]r-, - 1, = 0.

o
yEA
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Letting
ML+ 1V) 0= 30 (@t} (Boup)IVEL) o+ 3 (o) (B up)Y)
1=4'2! 1= <!
IS

and IV, 00 := ZJ ,Z; e i) (B, uy )IV{IM, we have:
(ML +1V), 1000 DYIDPI2g - 20+ Y (alp)(Bly)7,7-, = O,
7EA
(I +1V); 5.0,
4D\ plly, . ¢,
. [(amng‘” +(BI7)DE!+ 2aly)(Bl7) (DY - Dé‘*‘l)} Ty 7 =0,
yeA
WVai00: 3DEIDWI7, . 74 +Z

yea
Thus we have deduced a system of bilinear differential equations for Tay

a€Au {0}. (Note that L, , is a special case of (IIl + IV), .0, since Dlelg,.

79 = 0 is trivial.)
Now we rewrite these bilinear equations as partial differential equations

by putting

)(D¥ - 2(8ly)DP)z_, - 7, = 0.

T
u(x,t) :=logto(x,t,c3,¢c4,... ), q%(x,t) = —t" (X, 8,03, 05--.),
0

where x,f € F; and ¢3,¢y,... are any (constant) elements in F}
We use the fol]owing notation for a function f(x, r) (x,te E) and u € F):
Julx, 1) = dc (x+&u,1) oo and  fu(x,1) == déf(x L+ Cn) oo’
and a lemma from [25, Appendix DJ:
LEMMA. Let q(x,t) := ¢ and u(x,t) := log F; then
F! G'

(1) F =4 =4t quy
@) i, L g 200 gl + 1),
(3) —GF: = Gut + Qe + GUx + Gl + qUiy,

(4) i;; = Uy + Uglly,

st

o @ gy
where ' 1= iz and - =

Using these formulas, we obtain the following
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o . -
THEOREM 3.2. Functions u and q°(a € A) satisfy the following system of

partial differential equations (in these equations a, f§ € A):

o a—y ¥
Logla+BeA): q'7F =3e(a. B)g°q + Z (a—7.8+7)g" 7",
:’EA
a—YyEA
ﬁ+?63
00 208 — (g0 +2¢°Uaa) + D (e, 7)g577q77 =0,
veh
a+yed

(M +1V), 1000 2uap+ D (al?)(Bl7)a7a™7 =0,

res

(ML +1V), 5000 dug; =D [(alr)gia™ + (Bl7)aiq™"]

yEA
+3 (al)(BIV)laha ™" +ala™" —aiay7 +a'q Tuy] =0,
rea
WVai000  3ugg - Z(GIH 549 "+ZZ (aly)(Bl?)ajqa " =0. O
?Eﬂ rEd

Plugging u,, given by (IIl 4+ IV); 1,00 for @ = § (in the form given by I, _.)
into Il,, 0 we deduce

THEOREM 3.3. Functions q“(a € Z\) satisfy the following system of partial
differential equations (1,5 with a + f € A and (1 + 11)2,,0):
aeth =3e(e, p)g°a? + Y. ela-7 B+ ",

o
7EA
a—y,f+rEA

297 — g5, +8(¢°) ™" + Z q77(29°¢" + &(a, 7)g2*) = 0. O

yea
°
a+yEA

EXAMPLE 3.1. g = 4\". Then Q = Za,, and &(may, nay) = (=1)™". We
take u; = ay, u' = Jay, and put 7,(X) = Tna, (X), (X) = (X1, X2,...). We have

P (x) = pa(£2x), 7% (X) = pa(#x),
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where p,(x) are given by (0.6). Then the hierarchy (3.4) looks as follows
(m,nel):

(3.11)
(2 Z kyka + (m = "”2) e“:*ENﬂD‘ Tn Tm
kem
+ (=1)™" Z: pk(2."’)pk—2{m—-n+l}(_Zﬁ)ezierqy*n‘rn-—l * T+l
keZ,
+(=1)"" 3" pe(=29)Pksaimen—ry(2D)eBennDig, | .z, 0.
keZ,

The simplest equations of this hierarchy are as follows. The constant term:
Mam:  (n=m)1, T + (=)™ " D2nm=1)(=2D)Tp—y - T
+ (= 1) P a1y 2DV Tns Tt = 0.
The coefficient of y,:
Mgmm: 2k + (n = m)?)Dyty - T
+ (=1)"""{2P2(n—mysk-2(=2D) + Pa(m-m)~2(~2D) Dy} - Taya
+ (=1 =2D2(m-n+k-2(2D) + P2(m-n-22D) Dy} tns1 - Ty = 0.
The coefficient of y2:
(IMgnm:  (2k + L(n —m)*)Dity - T
+ (=1)™"{2P2npmysk-2(—2D) Dy, + 2D3(n—my+26~2(—2D)
+ %Pz{n—m;—zf—zs]ﬂﬁ}%—t T+l
+ (=" =2P2(m-n)+k~2(2D) D + 2D3(m— s 20-2(2D)
+ 3D2m-m-2(2D)D} tnyt - Ty = 0.
The coefficient of y;yy, j # k:
(IV)jkimmt (20 + k) + (n = m)*)D;Dyty - T
+ (=1 ""{4P2n-m+j+k~2(~2D) + 221+ j-2(~2D) Dy
+ 202(n-m)+k~2(=2D)D; + Pa(n—my-2(~2D)D; Dy} T - Tsy
+ (=1 {4P2mnys j+k-2(2D) = 2p2mny1;—2(2D) Dy
- -pzfm—n}+k—2(2D}DJ’
+ D2m-m-2(2D)D; Dy} Triy - Ty = 0.
Note that (I) and (II) give trivial equations for k = 1 and m = noran+l.
Takingk =1, j=2and m=norn+1in (IT) and (IV), we get the following
bilinear dlﬁ'crenual equations;
(1) ;.02 Dty Ty + 2T, Tpy =0,
(I pnsr: (Df+D2)ty - Tpyy =0,
(IV)2mn: DiDaTn Ty = 2D Ty_y - Tney = 0.
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Note that in some cases, the constant term (1), ,, gives a nontrivial equation;
for example, by putting m = n + 2 in (I), one has
(I)n,n+2: (2D12 +D2)thst - Tast +4Th - Tay2 =0,

which is just the same as (III)}., , since D21, - 754 = O trivially.
Now we fix an integer n and, following [25], put

T+l

g(x,t) = (x e TP

q‘(x,f) = (xsrsc"),("‘h-”)!

n

u(x,t) =logt,(x,t,c3,€C4,...).

Then just by the same calculation as in [25], the above bilinear differential
equations take the following form:

(IH)’l nn - Urx = —qq",
(T} 0 = G+ Gux + 2que = 0,
(IH)’I n— Q." + q_:_r + Zq‘“xx = 0;
(IV)3,1m U —qqy + qxq” =0.
From the first three equations, one obtains
(3.12a) —qr = —gxx +2¢°¢",
(3.12b) a7 = —q5. + 299"

It is easy to see that the last equation is compatible with (3.12a), (3.12b),
and (III)}., ..
Imposing an additional constraint
q*(x,it) = q(x, it) (resp. = —q(x,it)),
and letting g(x,t) = g(x, it), we see that both equations (3.12a) and (3.12b)
turn into the classical nonlinear Schrédinger equation:
(3.13) ig = —gu + 2x|g)%e,

where k = 1 (resp. = —1). For this reason, (3.11) is called the NLS hierarchy.
We note here that (III),., , gives also the Hirota bilinear differential equa-
tions of the 1-dimensional Toda lattice; actually by putting

Tn+
Un(x) = log = L(x,¢2,€3,...),

one obtains (cf. [30]):
(314) (“n)xx — E’""_"““ oo e“n-l—l-‘s_

We shall explain now how to construct soliton type solutions of the NLS
hierarchy. First, one checks that if 7(x) is a solution, then (1+aX (zxa, z))t(x)
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isoneas well (aeC,z e C*). The proof is the same as, for example, in [16,
p. 78]. Thus the functions

(%) 1= (1 + an X (xa, zy)) - - (1 +a1X(+a,2))-1®1,

T (x) = (1 + by X (—a, wy))(1 + ayX(a, zy))
(L + b X (—a,w)) (1 + @ X(a,21)) - 191,

are solutions of the NLS hierarchy, where a;,b; € C, z;,w; € C* are com-
plex parameters such that [z)] < |wy] < |z2] < |ws| < ---. The function t*
(resp.t= or t77) is called the N soliton (resp. N antisoliton, or N soliton-
antisoliton) solution. Here are explicit expressions for these solutions (pa-
rameters z; and w; can be arbitrary such that Z; # wy, using analytic contin-
uation):

Ti = Z ela ® Tf(."),

nez
etc., where
ik e { Z[S:’,<-v-~::’.5;\' hoin L0<N<N, =1 ifn= 0,
+n = i
0 otherwise,

ISji<<js <N

{ 25 XAgivci gl €N i iveniivgs 1f (] SN,
- esen Wy

T =

0 otherwise,

and the functions /%, f*~ are defined as follows:

ff“' =da;z;exp Zxsz'{ , f;_ = b,"u-’;' exp | — Z xkfu:.\' ’
k21 k>1
Jlr‘r- = { (Hlﬁp(qgn(:i', - :!'qu,}/;:' tr f;: if n> 0,
LIpee 1 ifn= 0;
f_ s nlgp<qgn(wjp = wj,)zf;-_ i f:«,‘_ if n> 0,
Jivfa = 1 y -
ifn=0;
ros
e'r:,:.:j,‘...‘;, = IIIH( T~ wi‘w)_z ‘fl‘:;!'}ﬂl_]i
q=1g=1

In particular, putting

: - 5 P20y f 5 2
Ji(x, 1) = ajexp(z;x + iz2t), (6, 1) = H (zi,~ 22| f i
1<p<q<n
and
- r 3 —
St (%5 1) = H H(.‘-:;-p + 7}e)_2 J'r;r.----!}fh.,...j,s
p=1g=1
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we obtain the following solutions
VIO R L R
IS/i<<is SN

T Di<iee<i N (ED foroiidiods

ISji<-<j SN

(3.15) gM(x, 1) =

of the NLS equation (3.13) with the coupling constant k = +1.

ExaMPLE 3.2. A" (I > 1). Choose a basis and its dual basis of b as
follows:

ui=a/ and u'=4A; (1<i<l)

then, as the coefficients of the (principal) degree 2 terms in ¥y, we get the
following bilinear differential equations:

(3.16) The coefficient of y}): 3" 7,4, 7., =0,
yesu
supp y21
The coefficient of y{"?: D2z, . ¢, =0,

The coefficient of y{"y{/) i # j:

Df”DE”ra “Ta+2 Z Tayy Ta—y =0,
rea,
supp ¥34.J
We consider the special case a = nu and (i, j) = (1,/), where i = ay +
*+++qy is the highest root in A. Then (3.16) turns into
(3.17) DEL)DE”TM T+ 2T Tn—1)u = 0.
Put 7,(x,y) = tp, .tf” =y xi” =y, and other x,(c'j) to be constant; then the
T, satisfy the equation
(3.18) DyDyty 1y + 2104 - Ty =0,
which is known to be the Hirota equation of the 2-dimensional Toda lattice:
actually by putting [31]

Tne1(X, )

r.rl (X }y J ’
one sees easily that (3.18) is equivalent to the classical 2-dimensional Toda
lattice equation:

up(x,y) = log

(Un)xy = eV¥n~¥n=1 _ pltinsi=ln_

REFERENCES

1. D. Bernard and J. Thierry-Mieg, Level one representations of the simple affine Kac-
Moody algebras in their homogeneous gradations, Comm. Math. Phys. 111 (1987), 181-246.

2. E. Date, On a calculation of vertex operators for Ef,” (n = 6,7,8), Adv. Stud. Pure
Math., vol. 4, North-Holland, 1984, pp. 255-261.



236 V. G. KAC AND MINORU WAKIMOTO

3. E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, Operator approach to the Kadomisev-
Petviashvili equation. Transformation groups for soliton equations. 111, J. Phys. Soc. Japan 50
(1981), 3806-3812.

4. ——, A new hierarchy of soliton equations of K P-type. Transformation groups for soliton
equations. 1V, Phys. D 4 (1982), 343-365.
5. —, Transformation groups for soliton equations. Euclidean Lie algebras and reduction

of the KP hierarchy, Publ. Res. Inst. Math, Sci. 18 (1982), 1077-1110.

6. —, Transformation groups for soliton equations, Proc. Res. Inst. Math. Sci. Sympo-
sium, M. Jimbo and T. Miwa, eds., World Scientific, 1983,

7. V. G. Drinfeld, V. V. Sokolov, Lie algebras and equations of KdV type, Itogi Nauki i
Techniki 24 (1984), 81-180, (Russian)

8. I. B. Frenkel and V. G. Kac, Basic representations of affine Lie algebras and dual reso-
nance models, Invent. Math. 62 (1980), 23-66.

9. P. Goddard and D. Olive, Kac-Moody and Virasoro algebras in relation to quantum
physics, Internat. J, Mod. Phys. A 1 (1986), 303-414.

10. M. Jimbo and T. Miwa, Solitons and infinite dimensional Lie algebras, Publ. Res. Inst,
Math. Sci. 19 (1983), 943-1001.

1. V. G. Kac, Infinite dimensional Lie algebras, Progress in Math., vol. 44, Birkhiuser,
Boston, 1983; 2nd ed., Cambridge Univ. Press, 1985,

12. V. G. Kac, D. A. Kazhdan, J. Lepowsky, and R. L. Wilson, Realization of the basic
representations of the Euclidean Lie algebras, Adv. in Math, 42 (1981), 83-112.

13. V. G. Kac and D. H. Peterson, Regular functions on certain infinite dimensional groups,
Progr. in Math., vol. 36, Birkhiuser, Boston, 1983, 141-166.

14, . 112 constructions of the basic representation of the loop group of Eg (Proc. Conf.
Anomalies, Geometry, Topology, Argonne), World Scientific, 1985, pp. 276-298.

I5. —, Lectures on the infinite wedge representation and the MKP hierarchy, Sém. Math,
Sup., vol. 102, Presses Univ. Montréal, Montreal, 1986, pp. 141-184.

16. V. G. Kac and A. K. Raina, Bombay lectures on highest weight representations of infinite-
dimensional Lie algebras, Advanced Ser. in Math. Phys., vol. 2, World Scientific, 1987.

17. V. G. Kac and M. Wakimoto, Modular and conformal invariance constraints in repre-
sentation theory of affine algebras, Adv. in Math. 70 (1988), 156-236.

18. V. Kanev, Spectral curves, simple Lie algebras and Prym-Tjurin varieties, Preprint, 1988,

19. B. Kupershmidt, 4 super KdV equation: an integrable system, Phys. Lett. A 102 (1984),
213-217.

20. J. Lepowsky and M. Prime, Standard modules for type one affine Lie algebras, Lecture
Notes in Math., vol. 1052, Springer-Verlag, 1984, pp. 194-251.

21. 8. Lu, Explicit equations for the KP hierarch v, this volume,

22. 1. G. Macdonald, Affine root systems and Dedekind’s n-function, Invent. Math, 15 (1972),
91-143.

23. Ju. I. Manin and A. O. Radul, 4 supersymmetric extension of the KP hierarchy, Comm.
Math. Phys. 98 (1985), 65-77.

24. D. H. Peterson and V. G. Kac, Infinite flag varieties and conjugacy theorems, Proc. Nat.
Acad. Sci. U.S.A. 80 (1983), 1778-1782.

25. G. Post, Pure Lie algebraic approach to the non-linear Schradinger equation, Preprint,
1985,

26. M. Sato, Soliton equations as dynamical systems on infinite dimensional Grassmann
manifolds, Res. Inst. Math. Sci. Kokyuroku. 439 (1981), 30-46.

27. T. Shiota, Characterization of Jacobian varieties in terms of soliton equations, Invent.
Math. 83 (1986), 333-382.

28. —_, this volume.

EXCEPTIONAL HIERARCHIES OF SOLITON EQUATIONS 237

29. G. Segal and G. Wilson, Loop groups and equations of KdV type, Inst. Hautes Etudes

Sci. Publ. Math. 63 (1985}, 1-64. o
30. A. D. E. Ten Kroode and M. J. Bergvell, The homogeneous realization of the basic

representation of Atl” and the Toda lattice, Lett. Math. Phys. 12 (1986), 139-147.
31. K. Ueno and K. Takasaki, Toda lattice hierarchy, Adv. Stud. Pure Math., vol. 4, North-

Holland, 1984, pp. 1-95. o .
32. Y. You, Polynomial solutions of the BKP hierarchy and projective representations of

symmelric groups, Preprint, Mass. Institute of Technology, 1988.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY



