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DEFINING RELATIONS
OF CERTAIN INFINITE DIMENSIONAL GROUPS
BY

V.G. KAC and D.H. PETERSON

In our papers [8], [4], [5], we began a systematic study of the “smallest”
group G(A) associated to a Kac-Moody algebra and of its “unitary form”
K(A]. The groups G(A) and K(A) are connected simply-connected topo-
logical groups, in general infinite-dimensional. A complex semisimple (resp.
compact) connected simply-connected Lie group G (resp. K), and a certain
central extension by C* (resp. S!) of the group of polynomial maps of CX
into G (resp. S* into K), provide the simplest examples of such groups G(A)
(resp. K(A)).

In the present paper, we define the groups G(A) axiomatically, without
reference to the corresponding Kac-Moody algebras. We then give a detailed
exposition of the structure theory of the group G(A) sketched in [8]. For
that, we develop a theory of “refined Tits systems” (§3), which are groups
satisfying certain axioms which describe the groups G(A4) more adequately
than the axioms of usual Tits systems. In a similar, axiomatic fashion, we
study the groups K(A).

The second objective of the paper is to establish presentation theorems
for the groups G(A) and K(A). In fact, both are special cases of a general
presentation theorem for certain subgroups of a group with the structure of
a Tits system (THEOREM A). The presentation theorem for G(A) states that
this group is an amalgamated product of its “standard parabolic subgroups
of rank < 2 ” (this follows also from a theorem of T1Ts [9]). On the other
hand, one can reduce the problem of explicit presentation of G(A) to that
of the “Borel subgroup” of G(A) in terms of its generating 1-parameter
subgroups. We solve the latter problem in the rank 2 case (PROPOSITIONS
3.5 and 4.3) and state a conjecture in the general case. As an application



166 V.G. KAC and D.H. PETERSON

(CoROLLARY 3.5), we generalize a theorem of NaGao [9].

The presentation of K(A) is especially simple and elegant (THEOREM B).
It is achieved by decomposing K(A) into a disjoint union of “cells”, which
also provides a solution to the word problem. Loosely speaking, our presen-
tation is a “real-analytic” continuation of a presentation of an extension of
a certain Coxeter group W (A) by a power of Z/2Z. More precisely, we show
that K(A) is an amalgamated product of compact groups of semisimple rank
one and two, and moreover, write the relations among the subgroups of rank
one explicitly.

The “cellular decomposition” of K(A) mentioned above may be regarded
as an algebraic fact underlying the cellular decomposition of the associated
flag variety. This decomposition plays a key role in our forthcoming work on
the topological structure of the groups K(A) [7].*

A weaker form of the presentation theorem for compact groups was ob-
tained in [2] by making use of a topological argument, which does not gen-
eralize to the infinite-dimensional situation. THEOREM B shows that the
definition of K(A) given in [2] coincides with ours.

THEOREM B was presented at the conference “Combinatorics and alge-
braic groups” in Oberwolfach in June 1983 and in a lecture course by the
first author at the University of Paris in the fall of 1983. After writing this
paper, we learned about the paper [13], where a presentation theorem for
compact Lie groups is proved by a similar method.

It is a pleasure to acknowledge the two main sources of inspiration during
our work on this paper : the book of STEINBERG [10] and the lectures [12]
by and discussions with TITs.

1. Coxeter systems

Let S be a finite set, and let (m4 ¢)s tes be a Cozeter matriz on S, i.e.,
a symmetric matrix of non-negative integers such that m,,; = 1 if and only
if s = t. Let W be the associated Cozeter group, i.e., W is the group on
generators S with defining relations

(st)™st =1 for s,t € S.

(Note that for s = ¢, this relation gives s> = 1.) The pair (W, S) is called a
Cozeter system. If J is a subset of S, then W; denotes the subgroup of W
generated by J.

* A description of some of the results of this work is contained in the paper of the first
author Constructing groups associated to infinite-dimensional Lie algebras, MSRI publications
# 4, Springer-Verlag, 1985.
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Given w € W, an expression w = 8y --- 8, where s,...,5; € S, is called
reduced if k is minimal possible, and one writes {(w) = k.
The following two operations on words on S are called elementary :

(E1) delete a consecutive subword ss;
(E2) replace a consecutive subword sts--- (ms, factors) by tst--- (m,,

factors).
Now we can state the first crucial lemma of the paper.

LEMMA 1.1. — Any two words on S representing the same element of
W can be transformed to a common word by elementary operations.

Proof. — This follows from [1, Ch. IV, §1, n°® 1.5, PROPOSITION 4 and
LEMMA 4]. |

COROLLARY 1.1. — If R and R’ are reduced expressions of an element
of a Cozeter group W, then R' can be obtained from R by elementary

operations of the form (E2). 1

Let A = (as,t)stes be a generalized Cartan matriz, ie. as s = 2, ay;
is a non-positive integer for s # ¢, and a,; = 0 implies a;, = 0. Put
més = 1 and, for distinct s,t € S, put m;‘*‘t = 2,3,4,6 or 0 according as
astars = 0,1,2,3 or > 4. Let (W(A), S) be the Coxeter system associated
to the Coxeter matrix (mg},).

Let Q@ and Q" be free abelian groups on symbols @, and a?,s € S,

respectively. Define a bilinear pairing @ x Q¥ — Z by (a¢, o) = ag ;.
LEMMA 1.2. — The formulas
(1.1) 80 =0y — Gy 10 ; s-af = af — a0

define faithful actions of the group W(A) by automorphisms of Q and Q*
respecting the patring ( , ).
Proof. — See e.g. [3, ProPosITION 3.13|.

Remark. — If every off-diagonal entry of a Coxeter matrix is 2,3,4,6 or
0, then the associated Coxeter group is called crystallographic since then, by
LEMMA 1.2, it has a faithful reflection representation by integral matrices
(the converse is also true). These are precisely the Coxeter groups appearing
in the sequel as the Weyl groups of certain infinite-dimensional groups G(A);
the lattices @ and Q" will apear as the root and coroot lattices of the group
G(A). The Coxeter system (W(A), S) and its action on @ (or Q¥) determines
the group G(A) uniquely.
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2. The group G(A)

Let A = (as,4)s,sres be a generalized Cartan matrix. We associate to A
a group G(A) as follows.
For t € C* and u € C, introduce the following elements of SL;(C) :

w=(4 5). =w=( 1) =1 9)

Let € denote the compact involution of SLy(C), i.e. €(a) = '@, so that the
fixed point set of € is SUs.

The following axioms (G1), (G2) and (G3) determine, up to a unique
isomorphism, a group G(A) and homomorphisms ¢, : SL2(C) — G(A) for
s € S. Here and further on, ¢,(h(t)), vs(z(u)) and ¢s(y(u)) are denoted by
hs(t), zs(u) and ys(u), for short.

(G1) There exists a faithful G(A)-module (V,n) over C such that each
SLz(C)-module (V,m o ¢,) is a direct sum of rational finite-dimensional
submodules.

(G2) a) h,(t)ze(u)hs(t)™! = ze(t*ss'u) and

ho(t)ys (u)hs(t) ™ = yor (t~ “5:5"w)
forall s,s' € S,t€ C* and u € C;
b) zu(u)yi(v) = o (0)as(8)
for all distinct s,s’ € S and all u,v € C.

(G3) If a group G and homomorphisms ¢/, : SL2(C) — G(s € S) satisfy
(G1) and (G2), then there exists a unique homomorphism % : G(A) — G
such that ¢, =y op, foralls€ S.

Put G, = ¢,(SLy(C), s € S. It follows from the axioms that the
subgroups G, s € S, generate the group G(A). Put H, = {h,(t)|t € C*},
and let H be the subgroup of G(A) generated by the subgroups H,. Since
the z(u) and y(u) generate SLy(C), (G2a) implies

a b —1 a t%s.s'h
@) mes (2 5 m0 7 =pu (-0, CUY).

In particular, H is abelian.

In order to proceed, we need a digression on Kac-Moody algebras.

Recall that the Kac-Moody algebra g'(A) associated to a generalized
Cartan matrix A is the Lie algebra on generators e, fs,a?, s € S, with
the following defining relations :

(1) [af,ec) = aseee; [al, fi]l = —asife; s, fi] =0 if s #t;

(82) [es, fs] = aF;  [af,af] = 0;
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(23) (ades)'"%site, =0, (ad fo)! ™ %tf, =0 ifs # L.

Then the o} are linearly independent [3, Chapter 1] and the group W(A)
acting on the coroot lattice Q¥ = ZaGS Zay by (1.1) is called the Weyl group
of g’(A). For brevity, we write, W for W(A),if J CS8S.

The Lie algebra g’(A) admits a gradation g/(A4) = ®aeQ g, by the free
abelian group @ on symbols a,, s € S, which is called the root lattice, such
that go = @, Cay, go, = Ce, and g_,,, = CJ, [3, Chapter 1]. The height
of }° ksa, € Q is 3 ke ‘

Let A = {a € Q | g« # 0,0 # 0} be the set of roots of g'(A);
it is W(A)-invariant [3, Chapter 3]. Put Z, = {0,1,2,...} and Q, =
YsZias C Q. Elements of Ay := Q4+ N A are called positive roots. One
knows that A = A, LU —A, (U denotes a disjoint union). Elements of
At :={w-a, | w € W(A),s € S} are called real roots. Put AT = A™NA;
then A™ = AT LI —AF (see [3, Chapters 1 and 5] for details).

In § 4, we will need

LEMMA 2.1.
(a) Ifw € W(A) andw # 1, then there ezists s € S such that w-a, € ~ALe

(b) If J ts a subset of S, then

(] w-AY =A%\ Za,

weW seJ

(c) If s €S, then the set ®, := {B € A\ Zog | (a?, B) > 0} satisfies the
following two properties.

(i) A¥=®,U(s ®,)U{a,};
(i) o B € ®,, then
A_f_ N (ﬂ + Z+ﬁ + Z+a3) — és n {ﬁ,ﬂ i Qs}.

Proof. — (a) is proved e.g. in [3, LEMMa 3.11]. Since (o, w - af) >0
(w-op,a?) >0forall s,t €8 and w € W(A) by [6, p. 139], the argument
proving [8, LEMMa 1] proves (c). (These arguments are reproduced also in
[3, 2nd ed., Exercise 5.19].)

To prove (b), first note that, for any 8 € Q, B+ .cs Za, is Wy-invariant.
Hence if 8 € Q and Wy - 8 intersects Q4+ and —Q,, then 3 € 2 e i By
This shows that AT\ > scs La, is Wj-invariant, so that AN ey B C
ﬂweWJ w-Af. Conversely,if 8 € ﬂweWJ w-AZ¢, choosey € W;-3 of minimal
height. Then v € A%, and (v,a?) < 0 for all s € J since s y=7v—{y,a’)a,.
If also v € } ,c; Za,, then v € >ecs Lyag forces (y,af) < 0 for all
s € S\ J, since (a;,a?) < 0 for all distinct s,¢ € S, so that (7,a?) <0 for
all s € S, which by [3, PrRoPoSsITION 5.1e] contradicts vy € AZf. This proves

(b)- n
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A complex G(A)-module (V,n) is called differentiable if the SL»(C)-
modules (V, moyp,) are direct sums of rational finite-dimensional submodules.
Given such a module, we have a module (V,dnr) over g'(A) defined by :

dnler) = gorl@@) |, dnlh)= el O
gy i
in(o) = r(h0) |-

To check this, we have to show that the relations (g1)—(g3) are annihilated by
7. Indeed, (gl) follows from (G2); the first part of (g2) is standard and the
second part is clear from (2.1); (g3) follows from (gl1) and (g2) by [4, LEMMA
1.1]. Moreover, the g’'(A)-module (V,dn) is integrable (in the terminology of
8]), i.e. all dm(e,) and dr(f,) are locally nilpotent. Conversely, an integrable
g'(A)-module (V, dr) gives rise to a unique differentiable G(A)-module (V, )
satisfying (z,(u)) = exp dm(ues), m(ys(u)) = expdn(uf,), u € C. It follows
that the definition of the group G(A) by axioms (G1)-(G3) coincides with
that of [8].

If s,t € S and ag¢ = as s, = 0, then (g1) and (g3) show that es and f,
commute with e; and f;, and therefore Gy and G} commute.

The adjoint g'(A)-module (g'(A),ad) gives rise to the adjoint G(A)-
module (g’(A), Ad), which is related to a differentiable G(A)-module (V, )
by

(2.2) dr(Ad(g)z) = m(g)dr(z)(g)”" for g € G(A), z € g'(A).

This follows from the well-known formula (exp dn(a))dn(z)(exp —dm(a)) =
dn((expad a)z), for any elements z and a of a Lie algebra and any of its
modules dr such that ada and dr(a) are locally nilpotent (see e.g. [3,
(3.8.1)]).

It is convenient to introduce an exponential map exp from certain subset
of g'(A) into G(A), as follows. Let z € g'(A) be such that dr(z) is locally-
finite for every integrable g’(A)-module (V,dr). If there exists g € G(A)
such that m(g) = expdm(z) for every integrable g’'(A4)-module (V, dm), we
write : ¢ = expz. It is shown in [8] that exp is defined on the set of all
ad-locally-finite elements of g’(A) (but we will not use this fact). Note that
zo(u) = expues, ys(u) = expufs and hy(e*) = expuay for all s € 5 and
u € C. It follows from (2.2) that

(2.3) glexpz)g™! = exp(Ad(g)z), g€ G(A).

Using integrable highest weight g’(A)-modules, one easily deduces as in
[8] the following
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LEMMA 2.2.

(a) The homomorphism (CX)5 — G(A) defined by (t)ses + [, hs(ts)
18 an tsomorphism onto H.

(b) The homomorphisms o, are injective

(c) GsNGy = {1} for s #s'. 1

Put Hy = {[], hs(ts) | (ts)ses € RS}, where R, denotes the multiplica-
tive group of positive real numbers, and put T' = {[], hs(ts) | (ts)ses €
(S1)°}, where S! denotes the unit circle. The homomorphism of LEMMA
2.2(a) induces isomorphisms : R — Hy, (S!')5 = T. Note that
H = H+ x T,

Put §:(ps(_01 (1)) ,8 € 5; we have
(2.4) §2 = ho(-1).
Recall formula (1.1). One knows that [3, LEmMMa 3.8] :
(2.5) Ad(8)ga = 8s.a; Ad(h)ga = g4 for h € H.
Using (2.1), we have
(2.6) §'hy(t)5'"1 = hg(t)hyi (™ *s¢') for t € CX.

Another useful relation, obtained by calculating in SLy(C), is

(2.7) Ys(t) = z4(t71)5hs(—t)z,s(t™1), for t € CX.
LEMMA 2.3. — Ifs# s, then
(2.8) §5'5... =55 ... (mg, factors on each side).

Proof ([11]). — We may assume that m2,, # 0. Let g and ¢’ denote the
left- and right-hand sides of (2.8). Then, putting ¢t = s or s’ according as

mf,, is odd or even, we obtain, using (2.3) and (2.5) :

th.q_I =Gg.

(We also use the fact that SLy(C) is generated by the z(u) and y(u).)
Therefore we have :

gg =59t g7 € #9Gg = §'CGy = G,
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Interchanging s and s’, we get g'g~! € Gg. By LEMMA 2.2(c), it follows that
gl'g—l = 1. l

Remark. — If we take

3 0t
§ = (108 "“t_l 0 ]
8

where the t, € CX are arbitrary, LEMMA 2.3 and its proof remain valid.

Let N be the subgroup of G(A) generated by H and all the §, s € S. Then
H is a normal subgroup of N by (2.6). The group W = N/H is called the
Weyl group of G(A).

PROPOSITION 2.1. — There exists a unique tsomorphism of W onto
W(A) taking SH to s for alls € S.

Proof. — (2.5) and LEMMA 1.2 show that there exists a unique homo-
morphism from W to W(A) taking §H to s for all s € S. Formulas (2.4)
and (2.8) show that there exists a unique homomorphism from W (A) to W
taking s to §H foralls € S. 1

Using ProprosITION 2.1, we identify S with a subset of W by identifying
s € S with the coset §H € N/H = W. In the same way, we sometimes also
identify W(A) and W.

COROLLARY 2.1.
(a) (W,S) is a Cozeter system with Cozeter matriz (m;’:s,)s,sfes.

(b) N 1is the group on generators §(s € S) and hy(t) (s € S and t € CX)
with defining relations :

(N1) hs(t)hs(t) ho(8t) 5

(N2)  he(t)h(t') = by (') ha(2) ;

(N3) &'hs(t)s'~! = hs(t)hS‘ [wvY

(N4) &2 =h ( )

(N5) 5§'5.--=35'55---(mf, factors on each side).

Proof. — (a) is immediate from PRopPosITION 2.1. Let Ng be the group

with the generators and relations in (b), and let Hy be the abelian normal
subgroup of Ny generated by the hy(t), s € S and t € C*. Since the
relations (N1 — N5) hold in N by formulas (2.1), (2.4), (2.6) and (2.8),
there exists a homomorphism g of Ny onto N mapping the generators to
the corresponding elements of N. By (N1), (N2) and LEMMA 2.2(a), there
exists a homomorphism ¢ of H onto Hp such that g o ¢ = idy. Hence,
HoNkerp = {1}. But Hy = p~!(H) by (a), so that kerp C Hp. Hence,
kerp = {1}, proving (b). 1
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COROLLARY 2.2. — The centralizer of H in N 1s H.

Proof. — H is clearly an abelian normal subgroup of N. Since C is an
infinite field, the corollary now follows from ProposiTiON 2.1, LEMMA 1.2
and formula (2.6). §

Let W be the subgroup of N generated by the §, s € S, and let H(y) be

the subgroup of H generated by the §2 = hy(—1), s € S. (Note that W is the
fixed point set in N of the involution of G(A) defined by z4(u), < ys(—u).)

COROLLARY 2.3.
(a) Hizy = {h € H|h? = 1}, and the inclusion W C N induces an
tsomorphism from W/H(z) onto W = N/H.
(b) There exzists a unique map w— @ from W into W satisfying
] 1=1;
ey 0 1
(i) 3= s 1 0 forallse S,
(i) ww' =BT if w,w’ €W and l(ww') = l(w) + I(w').

If . W — W is the canonical map, then w +— w 1s a well-defined section
of the map .

Proof. — H(3) = {h € H|h* = 1} by LEMMA 2.2(a). By PROPOSITION
2.1 and LEMMA 2.3, N = WH and WNH is generated by the W—conjugates
of the 5%, s € S. (a) follows. (b) follows from LEMMA 2.3 and COROLLARY
1.1. 1

COROLLARY 2.4. — W is the group on generators §, s € S, with

defining relations :

(n1) £8%~1 = 8322,

(n2) 58t5---=tét---(mf, factors on each side).

Proof. — For s € S, put hy = §2. Then (nl) and (n2) imply :

(ml}y W =1

(m2) hshe = hihyg;

(m3) thei=! = h,h; "

(m4) §f =hs;

(m5) §t5--- =15t - (m,, factors on each side).

Indeed, (m3), (m4) and (m5) are clear, and (m1) follows from (n1) with
t = s. To check (m2), write hyhh; ! = {(thi=1)i~! = i(hsh; “H)i-1 =
(Ehot=2)(Ehy ") = (hohy ***)(h; “th; ") = h, by (m3) and (m4).
This verifies (m2).
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The rest of the proof is essentially the same as that of CoroLLARY 2.1(b).
(One uses —1 # 1 in C* to construct the analogue of ©. ) 1

Introduce the 1-parameter subgroups Uy, = {zs(u) | v € C}, s € S,
of G(A). For a real root @« = w - oy, take n € N such that w = nH and
put Uy = nUs,n~1. We have U, = n(expgq,)u~! = exp(Ad(n)ga,) =
expguw.a, = €XP o hence, the 1-parameter group U, depends only on .
Note that U_,, = {ys(u) | u € C}.We have :

(2.9) nUn ' =Upaforne N, wenH, a € A™.

Recall that A™ = AR LI —Af. Let Uy (resp. U-) be the subgroup of
G generated by the subgroups U, (resp. U_,), o € A%, (This definition
is due to TITs [12]). These subgroups are analogues of maximal unipotent
subgroups of reductive algebraic groups; they play an important role in the
structure theory of the groups G(A), which we will discuss in §§ 3 and 4.

Finally, it is clear from the axioms (G1)—(G3) that there exists a unique
involution w of G(A) such that p,0€e = wo p, for all s € S (recall that €
is the compact involution of SL;(C)). We call w the compact involution of
G(A). It is clear that the subgroups G, and H are stable under w and that
W is pointwise fixed by w. Furthermore, w(U,) = U_, for all a € A™, and
therefore w(Uy) = U-.

Remark. — g'(A) can be characterized by axioms similar to (G1)-(G3).
Also, the category of all integrable g’(A4)-modules and all g’'(A)-module
homomorphisms is isomorphic in the obvious way to the category of all
differentiable G(A4)-modules over C and all G(A)-module homomorphisms,
and this isomorphism is compatible with tensor products, etc.

3. Refined Tits Systems.

We call a 6-tuple (G, N,U4,U_, H,S) a refined Tits system if the following
axioms hold* :

(RT1) Gis a group, and N, U4 and U_ are subgroups of G; G is generated
by N and U, ; H is a normal subgroup of N; H normalizes U; and U_; S
is a subset of W := N/H; S generates W; s> =1foralls€ S.

For a subgroup M of G and w = nH € W, we write wM for nM and Mw
for Mn if M D H, and M® for n~'Mn if H normalizes M.

(RT2) Fors€ S,put Us =U, NUS. If s€ S and w € W, then :

* The reader may compare this definition with that of a split BN-pair, extensively used
in finite group theory.
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(a) U\ {1} CU,HsU,; Us # {1}.

(b) U cUtorU¥ CcU_.

(C) U+ = US(U+ N U_T_)

(RT3) Ifu_ € U_,n € N,uy € Uy and u_nu, = 1, then u_ = n =
Uy = 1.

Throughout this section, we assume only that (G,N,U,,U_,H, S) is a
refined Tits system. We will show in §4 that (G(A),...) is a refined Tits
system.

Let B be the subgroup of G generated by H and Uy,sothat B=H o Uy
by (RT1,3).

Remark. — If (G,N,U,,U_,H,S) is a refined Tits system, and if M is
a subgroup of G such that U, UU? C M for all s € S, and M is generated
by NN M and Uy N M, then (M,NNM, U, N M,U_ NM,HNM,Sy) is
a refined Tits system, where Sps corresponds to S under the isomorphism
(NN M)/(HNM) = N/H induced by the inclusion NN M c N. In
particular, the subgroup of G generated by the U, and Ug, and the subgroup
of G generated by N and the U,, satisfy these conditions.

LEMMA 3.1.

(a) BNN =H.

(b) If s€ S, then sBs # B.

(c) Let s € S and w € W. Then :

(i) Ezactly one of the following holds :
Uycly andUY CU_;
U cUy andU¥ CcU_.

(ii) sBw C BswU} and sBw C Bsw U BwU?™.

Proof. — (a) follows from (RT3).

To prove (b), note that UsNsBs = (U NB)* ¢ (U-NB)* = {1} 3 U, =
U,NB.

To prove c(i), note that U¥ is contained in exactly one of Uy and
U-, and U™ is contained in exactly one of Uy and U_. But by (RT2a),
UpUS*Uy NN # {1}. Since U_ NN = {1} = Uy N N by (RT3), U and
Ug* cannot both be contained in U_ or in U,. This proves c(i).

To prove c(ii), we write sBw = s[(Uy NU$)HU,|w = (UyNUS)HswUY C
BswUy’ and sBw = (U4 NUL)UHsw C (Uy NUL)({1}UU,HsU,)Hsw C
Bsw U BwUZ™. |

LEmMMA 3.1 shows that (G,B,N,S) is a Tits system (see [1] for the
definition). The following are some well-known properties of Tits systems [1]:
(3.1) G =]l,ew BwB (Bruhat decomposition);

(3.2) (W,S) is a Coxeter system;
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(3.3) l(sw) > l(w) & sBw C BswBforse€ S andweW.
(3.4) Py := BW,;B is a subgroup of G for any J C S, and any subgroup
of (G containing B is of this form.

Since (W, S) is a Coxeter system by (3.2), we have its Coxeter matrix
(ms,t)s tes (ms,e is the non-negative integer satisfying mg,Z = {n € Z |
(st)™ = 1}).

The groups Py of (3.4) are called standard parabolic subgroups of G. We
sometimes write Ps for Pp,}, s € S; these are called minimal standard
parabolics. Note that for any J ¢ S, (P;,W,;,H,U,,U_NP;,H,J) is a
refined Tits system.

COROLLARY 3.1. — The normalizer of Uy in G s B.

Proof. — The normalizer, say P, of U, in G clearly contains B. If P # B,
then sH C P for some s € S by (3.4), so that sH also normalizes B = HU.
This contradicts sBs # B from LEmMaA 3.1. 1

Let I be a set, and let (M;);c; be an indexed set of groups. For 7,5 € I,
let My, ;3 be a group and let p;; = My; ;3 — M; be a homomorphism.
(Note that My; ;3 = M;i3.) The amalgamated product of the ¢,; is a pair
(M, (pi)ier), unique up to a unique isomorphism, satisfying :

(AP1) M is a group, and the ¢; : M; — M are homomorphisms
satisfying @; o pi; = p; 0 pji for all 4,5 € I.

(AP2) If L is a group and if ¢; : M; — L, 7 € I, are homomorphisms
satisfying v o p;; = 1, o p;; for all 7,5 € I, then there exists a unique
homomorphism ¢ : M — L satisfying ¢; =Y op; forall 1 € I.

If the M; are subgroups of a group F and ¢;; is the inclusion M; N M; C
M; for all 2,57 € I, then we say that the group M defined above is the
amalgamated product of the M;. If, moreover, the canonical homomorphism
Y : M — F defined by (AP2) is bijective, then we say that F is the
amalgamated product of its subgroups M;.

- We say that a subgroup Mof G is W-graded if, putting M,, = M N BwB,
we have for all w,w' € W :

(3.5) Myw = MyM,, if l(ww') =l{w) + [(w').
The next two results hold for arbitrary Tits systems.

THEOREM A.

(a) Any W-graded subgroup M of G s the amalgamated product of its
intersections with the Py, |J| < 2.

(b) G and N are W-graded subgroups of G. If L is a W-graded subgroup
of G, and if M s a subgroup of G satisfying M(LN B) = L, then M s a
W-graded subgroup of G.
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(c) Let L be a W-graded subgroup of G, and let Z,, s € S, be subsets of
G such that LN BsB = Z,(LN B) for all s € S. Let M be a subgroup of L
containing the Z,. Then M 1s a W-graded subgroup of G, and M N BsB =
Zs(MNB) foralls€ S. Fors,t € S and 2y € Z,, 20 € Z, 23 € Z,,...,
choose 2y € Z;, 25, € Zs, 25 € Zy,... and b € M N B such that

(3.6) Z12923 = (212525 -+ )b (ms factors z on each side).

Then M is the amalgamated product of M N B and the M N P,, s € S,
modulo the relations (3.6).

Proof. — Let L be a W-graded subgroup of G, put B = LN B, and
let the Z;, s € S, be subsets of GG satisfying L N BsB = Z,Br. Note that
LNP, = Z,BLUBy, D B Z,. Since L is W-graded, we have LNBs; --- 8B =
(LNBsyB)---(LNBsB) = (ZsyBL) (2, BL) = Z,, - - Zs, By, for every
reduced expression s; - - - . In particular, By, and the Z, generate L. Choose
relations (3.6) as in (c) (with M = L), and let L be the amalgamated product
of By, and the LN P, s € S, modulo the chosen relations. We may regard
Br and the Z, as subsets of L. We clearly have :

(i) By is a subgroup of L.

(ii) Z,, s € S, is a subset of L.

(iii) Br and the Z, generate &

(iv) Forall s € S, BL U Z,Br, (= LN P,) is a subgroup of L.
v) Forall s,t €8, Z,2,2,---By = Z;Z,Z;--- By,
(ms,¢ factors Z on each side).

Using LEMMA 1.1, we deduce that for every g € ﬁ, there exists a reduced
expression §; - - - 8, where sy,...,sx € S, such that g € gy -ZskBL. Now
let ¢ : L — L be the canonical surjective homomorphism defined by (AP2).
If Y(g) = 1, then by (3.1), ¥(g) € Bs, - - - s B forces k = 0 and hence g € By.
Since 1 is the identity on By, we deduce that g = 1. Hence, 1 is bijective.
This verifies (a) and also the case M = L of (c).

We now prove (b). By (3.2) and (3.3), G and N are W-graded subgroups
of G. Now let L be a W-graded subgroup of G and let M be a subgroup
of G satisfying M(LN B) = L. For w € W, put L, = LN BwB and
M, =M N BwB. Then, if w,w' € W and l(ww’) = l(w) + I(w’), we have

Moy (L0 B) = Lyywy = Ly Ly = My (LN B) Ly,
= MyLy = MyM,,(LN B),

and hence
= MMy (LN B) NM=MM,(MNB)=M,M,:.
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This verifies (b). (c) follows from (b) and the special case M = L of (¢). 1

Remark. — For M = G, TiTs (see [9]) has proved a stronger version
of (a) : G is the amalgamated product of N, B and the P,. Actually, Tits
defined the groups associated to g’(A) in this way [12]. Our results imply
that our group G(A) is isomorphic to his “minimal” group. In [12] one can
find also a discussion of the relationship of these groups to that considered
by other authors.

If X and Y7,...,Y, are subsets of G, we write X = Y7 ---Y) [unique] if
(g15---59k) = g1 -+ - gk defines a bijection from ¥7 x -+ x ¥i onto X.

The following crucial statement is a generalization of a theorem of STEIN-
BERG [10, THEOREM 15].

PROPOSITION 3.1. — Ifw,w’ € W satisfy [(ww') = l(w) + I(w'), and
of X,Y are subsets of G satisfying BwB = X B [unique] and Bw'B = Y B
[unique], then Bww'B = XY B [unique].

Proof. — Fix subsets X, of G, s € S, such that BsB = X,B [unique].
First, consider the case w = s € S. Then by (3.3), we have Bsw'B =
(BsB)(Bw'B) = X,Bw'B = X,Y B. To prove uniqueness, suppose zyb =
z'y'b', where z,2' € X,, y,y' € Y, b,t' € B. If (z')"'z € BsB, then, by
(3.3), ¥'b’ = (2')~'zyb € Bsw'B, which is impossible since y'b’ € Bw'B (the
decomposition (3.1) is disjoint). Hence, by (3.4), the only possibility is that
z'~1z € B. It follows that z € 2’ B and hence z = z’. But then yb = y'b’ and
hence y = y', b = b'. (This argument is due to STEINBERG [10].)

Now, fix w € W. Taking a reduced expression w = s; - - - sg, we deduce by
induction on k from what has already been proved :

Bsisz -+ skw'B = (Bs1B)(Bsy -+ - spw'B) = X, X, - - - X,, Y Blunique.

Put X' = X,, --- X, for short; we have proved Bww'B = X'Y B [unique]
for any choice of Y. We have : Buw'B = X'YB = X'(BY B) = (X'B)YB =
(XB)Y B = X(BY B) = XY B. To prove uniqueness for any choice of X, we
show :

(3.7) 2,7 € BuB and 2Bw'BNz'Bw'B+#( = 2B="2B.

Indeed, write 2 = zb, 2’ = z'b’, where z,2' € X’ and b,b’ € B. Then
zBw'B N z'Bw'B # 0, hence zY BN z'Y B # 0, hence z = 2’ and (3.7) is
proved.

If now z,2' € X but 2YBN2'YB # @, then zB = 2'B from (3.7), so
z = z’, which implies the uniqueness in question. J

LEMMA 3.2. — The following three assertions on s € S and w € W
are equivalent :
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(i) Uy Uy

(i) U™ cU;

(iii) I(sw) > l(w).

Proof. — By LEMMA 3.1(c) and (3.3) we have : U¥ Cc Uy = sBw C
BswB = l(sw) > l(w) = sBsw ¢ BuB => U ¢ Uy = U cU_ =
U;U C U+. [ | :

For s € S, let G, be the subgroup of G generated by U, and U;.

COROLLARY 3.2. — Ifs,t€ S andw e W, then :
(i) U¥=U; & wt=sw and l(sw) > l(w);

(i) U¥ =U} & wt=sw and l(sw) < I(w);

(ii) {Uy, U} ={U:, U} & wt = sw;

(iv) G¥ =G & wt = sw.

Proof. — If wt = sw and l(sw) > l(w), then U¥ C Uy and U** = US¥ C
U- by LEMMA 3.2, so that U¥ ¢ (U; NU%) = Uy; since UP™' < U, by
symmetry, we get U;” = U;. Now suppose that U;” = U;. Then UY C Uy
and U¥* C U_, so that I{(sw) > I(w) and I(swt) < I(wt) by LEmMMa 3.2. By
[1], we deduce that wt = sw.

This proves (i); (ii) follows from (i), and (iii) follows from (i) and (ii). (iv)
follows from (iii) since {U¥,Us*} = {G¥ NUL,G¥ NU_} and {U;,U}} =
{GeNnU4L,GenUZ}. 1

We now prove analogues of several of the results of § 2 for arbitrary refined
Tits systems.

COROLLARY 3.3.
) (a) Let s,t € S, and assume that Gy,N Gy = {1}. Choose § € GyNsH and
teGeNtH. Then

~ ~

(3.8) 5t5+--=t5t- -+ (my, factors on each side ).

(b) Assume that G, NGy = 1 whenever s,t € S and m,; > 2, and choose
elements § of GsNsH, s € S. Let W be a subgroup of N containing the §,
s€S. Then :

(i) There exists a function w — W from W into W satisfying : 1=1; 5,
s€ S, is as selected; ww' = Wi’ if w, w' €W and l(ww') = I(w) + I(w') ;
wH =w forallweW.

(ii) W 1s the amalgamated product of its subgroups W N B = W N H and

~

WnP,=Wn(HU sH), s € S, modulo the relations (8.8).

Proof. — To prove (a), let g and ¢’ be the left-hand and right-hand sides
of (3.8), respectively, and put w = sts---(ms,; factors) and r = w™ltw.
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Using s? = t? = (st)™st = 1, we have : r = s or r = ¢, so that
r € S, and tg = ¢’F. Using COROLLARY 3.2, we have gg'~! = gfg~li"! €
9G.971Gy = G,’ﬁ”ith = GGy = Gy and, similarly, g'¢g~! € G,. Hence,
9'9g~' € Gy,NGy = {1}, so that g = ¢', proving (a). b(i) follows from (a) and
CorOLLARY 1.1, b(i) follows from (a) and THEOREM A. |

PROPOSITION 3.2.
(a) G =[l,en UsnUy (Bruhat decomposition).
(b) Ifwe W, then UywB = Uy (wH)(U; NU*) [unique].
(¢) G=ULU_N.
(d) If w,w' € W satisfy l(ww') = l(w) + {(w'), then :
(i) U_nUPY = (U-nU¥)¥(U-NUY) [unique] ;
(i) UpnU2 = (UyenU2)Y (Uy NUY') [unique] ;
(iii) U nUY = (U nU2)Y (Uy NUZ™) [unique].

Proof. — By the axioms, we have B°B = UZB [unique] for each s € S.
By repeated use of ProprosiTION 3.1, we deduce that if /(w) = k and
w = 8y --- Sk, where s1,...,8x € S, then BYB = (Fh A P S AR P
[unique]. But U3l oxUg2 % ... Usx Cc U. NUY by LEMMA 3.2, and (U- N
UY)B c B¥B. Since U_ N B = {1}, we deduce that

U._, N U_‘!;_J - U:ll"vsk U;:Sk e U:: [unique]
and
(3.8.1.) BYB = (U_NUY)B [unique].
The first equality applied to ww’ implies d(i), and (3.8.1) applied to w—!
implies (b) by taking inverses. By applying d (i) to w’~'w™!, taking inverses

and conjugating by ww’, we obtain d(ii).
By induction on [(w), we next prove

(3.8.2) UY =(UYNnU_)(UY NU4) [unique].

We may assume w # 1. Choose s € S such that [(sw) < !{w). Then
Uy C UUY by (RT2), so that Uy c UPU™. Since Uy” C U_ by LEMMA
3.2, the induction hypothesis gives UY C U_U,. Therefore,

U¥YnNB=(U¥NU_U)NB=UYN({U-UsNB) =U¥NUy,

the last equality by (RT3). Since UY C BYB, (3.8.2) now follows from
(3.8.1).
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We now prove d (iii). Using (3.8.2) applied to w'~! and w, we obtain
Uy = (U NUZ UL NUP') and UPY = (UP NUY)(ULY NUL'). Since
U¥ NUY = {1}, we deduce

Up NULY = (Up NULY U ) Uy NUZY nU).

But U¥¥' NUY c U- by d(i), so that the first factor Uy NUX* NUY is
{1}; therefore, Uy NUYY = Uy NUPY NUY, ie., Uy NULY c UY'. By
(3.8.2) applied to (ww’)~?! and d(ii), we have

Uy = (U NUY)ULN U_‘;”"') [unique]
= (U NUY)Y (U NUY ) Uy N Ufw’) [unique].

Since the first and third factors are contained in U_‘;", and the second factor
intersects Uji_“’ in {1}, we obtain d(iii).

By (3.8.2) applied to w = nH, we have UynU; C nU_Uy foralln € N.
If n,n' € N and UpnUyNUn'Uy # 0, then n' € UypnU,; € nU_U; and so
n' = n by (RT3). Using (3.1), we deduce (a) and G = NU_U,. (c) follows
by taking inverses. [

COROLLARY 3.4. — [J,ew U¥ = {1}.

Proof. — Suppose u € [\,ew UY. By (3.1) and ProPosiTION 3.2 (b)
write ¥ = upu_n, where uy € Uy, n € N and u_ € U_ NnUsn~1. Then
[U-(nun=1)~!nuy =1, and nun~! € U_ by assumption, so that by (RT3),
u_ =nun~! and n = 1. Since u_ € U_ NnUyn~' = U_NU; = {1}, we
haveu=1. |

PROPOSITION 3.3.

(a) G = [1,en U-nUy (Birkhoff decomposition).

(b) If we W, then U_wB = U_(wH)(U;s NUY) [unique].

(C) G= U_U+N.

Proof. — If s € S and w € W, then sBw C BswU_ U BwU_ by LEMMA
3.1 (c). We conclude that Uy NU_ is stable under left multiplication by N
and U} and hence equals G. Hence, G = G~! = U_NU,. By (3.8.2) applied
tow = n~1H, we have U_nUy C U_Uyn foralln € N.If n,n’ € N and
U_nUy NU_n'Uy # @, then n' € U_nUy; C U_Usn and so n’ = n by
(RT3). Using (3.1), we deduce (a) and (c). (b) follows from (3.8.2) applied
to w™! and (RT3). §

PROPOSITION 3.4. — U_ 1s generated by vts subgroups U¥, where s € S
and w € W are such that I(sw) < l(w).
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Proof. — Let U’ be the subgroup of U_ generated by these U”. Then
G = U'NU, by the argument proving PrRopPosITION 3.3(a). (We also use
LEMMA 3.2 here.)

Hence, U’ c U_ Cc U'NU,, which implies U_ = U’ by (RT3). 1
We now determine the structure of U_ in certain cases.

PROPOSITION 3.5.
(a) If s€ S, weW andl(w™'sw) = 2l(w) + 1, then

U-NU* c Bw™'swBU (U_NUY).

(b) If |S| =2 and s € S, then

v =U_n ( U U;f)

weWw
H(w)>1(ws)

15 a subgroup of U_.
(¢) If S = {s,t} and my = 0, so that W is an infinite dihedral group,
then U_ 1s the free product of its subgroups UES) and US” defined in (b).

Proof. — In the situation of (a), write w = s, --- sk, where k = l(w).
Then we have, by ProrosiTION 3.2 d(i) applied to sw and by (RT2) :

w! s w! s
R A UL\ Uy) = (U0 A 002\ (1))
C B(U;HsUs)
C BsB, and hence, by (3,3),
U_N U \UY) cw 'BsBw C Bw™'swB.

This proves (a).

We now prove (b). Let S = {s,t}. If ms: # 0, we put wo = sts-- - (mg
factors). Using PROPOSITION 3.4, we then deduce that U}° O U_ and hence
that Uﬁs) = UE*) = U_. If my; = 0, then it is easy to check that for
n=1,2,3,..., there exists a unique w, € W satisfying l(w,) = n > l(w,s),
and by using ProposiTiON 3.2 d(i) that U_ nUY™ c U_ N U™, so that
U is an increasing union of subgroups of U_ and hence is a subgroup of
U_. This proves (b).

To prove (c), note that, by using ProrosITION 3.4, U® and UM generate
U_.Forr € S, put W = {w € W | l(rw) = l(wr) < l(w)}; then
v\ {1} c Uwew (n BwB by using (a). Moreover, it is easy to check that if



INFINITE DIMENSIONAL GROUPS 183

w €W wy, e W s e W) .. then l(w; - wy,) = U(wy)+---+I(w,)
for n = 1,2,3,... Hence, by (3.1) and (3.3), if u; € U, u, € UY,
us € U_(_s),... and uy,uz,uz;... # 1, then wqug---u, #1forn=1,2,...
Similarly, ugug - -upy1 # 1 for n = 1,2,... This proves (c). 1

Conjecture. — U_ is the amalgamated product of its subgroups U_NUY,
w € W. (ProPOSITION 3.5(c) confirms this when W is an infinite dihedral
group; the conjecture is trivial when W is finite.)

We can now prove a generalization of a theorem of Nagao [9] :

COROLLARY 3.5. — Assume that S = {s,t} and m,; =0, (so that W
is an infinite dihedral group), and that U_ = U$ « (U- NU2). Then the
“opposite mintmal parabolic” Py := HGy o (U~ NU?) s the amalgamated

product of its subgroups HG, and HU® (defined in ProPOsITION 3.5 (b)).

Proof. — Put Uy = U)NU*. Clearly, H normalizes U; and UNU, = {1}.
LEMMA 3.2 and the assumption U_ = U? « (U- NU?) imply that U]
normalizes U;. PrRopPosITION 3.2(d) shows that U®) = U2U, and that
U3 = U, We therefore obtain :

(3.9) Ul = U] o< Uy, and H normalizes U;.

(3.10) v =vs.

By using (RT2a), we obtain :
(3.11) HG, = HUSUUSsHU?.

Now, let 13; be the amalgamated product of the subgroups HG, and
HUﬁs) of P;,and let ¥ : ﬁ; - P; be the canonical map. Identifying HG,

and HU'® with subgroups of 133", let F' be the subgroup of ﬁ; generated by
Useres gUig~ 1. Fixing n € sH, (3.9) and (3.11) imply that F is generated

by Uy and ey, unUs (un)=1. Let U_ be the subgroup of P;" generated by
U? and F. Using (3.9), we see that U_ is generated by U and nUyn-1.
Clearly, ¥ = id on U, and ¥ maps nU;n~1 isomorphically onto U™ by

(3.10). Hence, by ProPosITION 3.5 (c), ¥ maps {7_ isomorphically onto U_.
Since also ¥ = id on HG,, we see that VU is surjective. By using (3.11) and

~

P; = HG,F, we have
Py =HU_UUnHU_
= HU_UnHU,U. c (HG, N NU,)T_.
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If g € P~ and U(g) = 1, write g = g'u, where ¢ € HG, N NU4 and

- ]

w € U_. Since ¥ = id on HG, and ¥(U_) C U_, we have 1 = ¥(g) =
U(g')¥(u) = ¢'¥(u) and hence ¢' = ¥(u) = 1 by (RT3). But ¥ is injective
on U_. Therefore, w = 1 and so g = 1. This shows that ¥ is injective. 1

Let k be a field, NAGAO’s theorem states that SLg(k[t™!]) is the amalga-
mated product of its subgroups
9=\« « '

We deduce this result from CorRoLLARY 3.5, as follows. Put
c=su@), #={(5 2)|ser}
1 =*
o= {sesmn|se=0=( 1))
-1 1 0
. = {ge SLy(k[t™]) ’ gt = o0) = (* 1)}
Let N be the subgroup of G generated

-1
byHandnlz(_Ol é), nzz(_ot to).

Put S ={nH,noH} C N/JH =W and s =n;H € S. It is easy to check that
(G,N,U;,U_, H,S) is arefined Tits system. (To check (RT3), one notes that
n€ Nand U_NnUyn~! = {1} imply n € H.) Since U_ = U? « (U-NUZ),
and since W is an infinite dihedral group, CoroLLARY 3.5 applies. The
conclusion is NAGAO’s theorem.

SLy(k) and {g € SLy(k[t™])

Remark. — In the example above, it is easy to check that G is generated
by N and U4 by using the fact that k((¢)) is a field. The corresponding fact
for k[t,t~!] may be proved by using the density of k[t,t™!] in k(()) and the
fact that U, is an open subgroup. Furthermore, using the involutiont — ¢~1
of k[t,t~1], we deduce by using PROPOSITION 3.4 the well-known fact that
SLo(k[t,t~1]) is generated by its subgroups

SL,(k) and {(:t bt;l) ‘ (‘c" Z) eSLg(k)}.

Define a map 6 : U_HU; — H by §(u_huy) = h.
PROPOSITION 3.6. — Ifw,w’ € W and of [(ww') = [(w) + [(w'), then

(3.12) 0(n'"gn'g") = n'"16(g)n'0(g’)
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forallge B*B, ¢ € BY'B andn' € w' H.

Proof. — First, we prove (3.12) for ¢ = 1. By (3.8.1), write g =
u_hu,, where u_ € U_ ﬂU_’,f’, h € H and uy € Uy. By (3.8.2), write
n'“luin' = v u,, whereu’ € U_ and !, € U;. By ProposiTION3.2d (i),

(U_NU¥)* c U_, s0 n'~u_n' € U_. It follows that

n'_lgn'z ((n! )(( /= lhn) ! ( '_lhn')_l))(n'”lhn')u;
eU_(n'" lhn)U

and hence 8(n’~'gn') = n’~1hn' = n'~10(g)n’
The proof of (3.12) for arbitrary ¢’ € B*' B follows by a straightforward
calculation. Write ¢’ = n’~1bn'b/, where b,b' € B. Then

O~ gn'y') = 0n' (gb)n'¥) = 0(a=*(gb)n)o()
=19(gb)n’0(t’) = n'=0()0(5)n’0(¥)
"“18(g)n’ (n'~18(b)n")8(b")
~19(g)n’6(n"bn')0(1)
"“18(g)n'0(n’~bn'b")

“0(g)n'0(g). 1

L
::;s:s;

I

PROPOSITION 3.7. — Let K be a subgroup of G satisfying KNU, = {1},
and put T = §(K N B). Let Hy be a normal subgroup of N, and assume that
H = H+T[un1que] Assume that Uy C KBs for all s € S. Assume that
w > w15 a map from W to N satisfying : s = §H foralls € S;1=1;
W' = G for all w,w" € W such that l(ww') = l(w) + (). Forw eEW,

put

(3.13) Zy={k€ KNBuwB |8(i~'k) € H,}.

Then :
(a) (i) G=KH,U, [unique];
(ii) for allw € W, BwB = Z,,B [unique];
(iii) for all w,w’' € W such that l(ww') = l(w) + I(w'),
Zww = ZwZy [unique].
(b) For s,t € S and my; elements z, € Za, z3 € Zt, z3 € Zs, , there
ez1sts a unique sequence of my, elements 2z} € Z,, 2, € Z,, 23 G Zt,

satisfying

(3.14) z12223 = 212323+ - (Mg factors on each side ).
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Furthermore, K 1s the amalgamated product of its subgroups K N B and
KNP, s€ S, modulo the relations (3.14).

Proof. — For s € S, we have BsB = U,sB ¢ KBssB = KB, and
hence G = KB by (3.1) and ProposiTiOoN 3.1. But B = TH U} =
TU+H+ = (K n B)U+H+ = (K N B)H+U_|_ Hence, G = KH+U+. If
k,k' € K, h,k' € Hy, u,u’ € Uy and khu = k'h'v’, then k~'k' € KN B
and #(k~k’) = hh'~1 € H. Since 0(K N B) N Hy = {1}, we conclude that
h = h' and hence k=&’ = h'uuw'~1h'~! € K NU; = {1}, so that k = k' and
u = u'. This proves a(i).

To prove a (ii), fix w € W. If k € K N BwB, choose t € K N B such that
8(w~1k) € H 0(t). Then k = (kt~1)t € Z,,B. Using a (i), we deduce that
BwB = KBn BwB = Z,B. Now suppose that 2,2’ € Z,, b,t/ € B and
2b=2'b. Put g = z"12' = bb'~! € K N B, so that §(w~12') = 0(w~12g) =
§(w=12)0(g). Hence, 8(g) = 8(w~'z)"10(w~1z') € T N Hy = {1}, so that
g € Uy N K = {1}. This shows that z = 2’ and b = ¥/, verifying a (ii).

To prove a (iii), fix w,w’ € W such that [(ww') = [(w) + I(w'). We claim
that Z,Z, C Zyw . To verify this, let k € Z,, and k¥’ € Z,,». Then

kk' € ZZy C (KN BwB)(K N Bw'B)
C K n(BwB)(Bw'B) = K N Bww'B,

and also

0(mw kK = 8((@%") " kk') = B('~ 1 (5~ k)i (&'~ K))
&' 10(% k)0 ('~ k)
€ Uj’_lH_f_'LZ?'H_}. = H"M

the third equality by PrRoposiTION 3.6. This proves the claim. We have :
ZwZy C Zyy; BuB = Z,B |[unique] and Bw'B = Z,B [unique];
Bww'B = Zy,y Blunique]. Using PROPOSITION 3.1, we deduce afiii).

(b) follows from (a) and THEOREM A. |
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4. G(A) is a refined Tits system.

Fix a generalized Cartan matrix A. Let G(A) be the corresponding group,
defined in §2. Recall the subgroups N,U,,U_ and H of G(A), the Weyl
group W = N/H and the subset S of W, introduced in § 2.

For s € S, put U(s) = Ua, (= expga,) for short. We keep the “exponential”
notation M™ of §3. We shall see that Uy =UsrNU:.

PROPOSITION 4.1.

(a) G(A) is generated by N and Uy. The group H is a normal subgroup
of N ; it normalizes Uy and U_. The set S generates W, and s® =1 for all
sES.

(b) Ifs€ S andw € W, then :

(1) Uts) s a subgroup of Uy NU2, and H normalizes Uts)-
(i) U # {1}

(111) U("s) \{1} c U(S)HSU(s).

(iv) Uy CUy orUgyy cU-.

)

)

)

i

—_

\' U+ C U(S)U_T_.
IfweW and w# 1, then U(‘g) C U_ for somese S.
Ifu_eU_,heH,uy €Uy andu_huy =1, then

u_=h=u+=1.

() (i
(ii

Before proving PROPOSITION 4.1 we use it to deduce :

PROPOSITION 4.2. — (G(A),N,U4,U_,H,S) is a refined Tits system,
and Uy = U4 NUS foralls€ S.

Proof. — (RT1) follows from PRoPOsITION 4.1 (a). By PROPOSITION
4.1 c(ii), U-NU4 = {1}. Hence, by ProPOSITION 4.1 b(i,v), Uy = U nNUS,
which is U, from § 3. (RT2) now follows from ProposiTION 4.1 (b). To prove
(RT3), suppose that u_ € U_, n € N, uy € U; and u_nuy = 1. Then,
since U_ N U4 = {1} by ProPosITION 4.1 c(ii), we have

{1} =U-n(u_nuy)Uy(u_nuy) ™ = u_(U- NnUpn~Yul,

so that U- NnU;n~! = {1}. By PROPOSITION 4.1 b(ii) and c(i), this forces
ne€ H. Now u_ =n =uy =1 follows from PrRoPOsITION 4.1 c(ii), proving

(RT3). 1

Parts (a) and b(i, iv) of PROPOSITION 4.1 are clear. Part b(ii) is clear since
Ad(zs(1))fs = fa+ a? — e # fs. Part biii) follows from formula (2.7), and
part c(i) follows from LEMMA 2.1 (a), PRoPOSITION 2.1 and formula (2.9).
To prove parts b(v) and c(ii), we need some constructions.
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Henceforth, U(g) denotes the universal enveloping algebra of a Lie algebra
g. The use of U(n,) to investigate Uy, exploited below, was one of the
ingredients of Tits [12].

Recall that the Kac-Moody algebra g’(A) has a triangular decomposition
g'(A) =n_ + go + ny4, where

np= P gea= P e

a€Ay aeQ\{0}

We complete the universal enveloping algebra U(n_;.) with respect to its
induced algebra gradation, obtaining an algebra U(n+) consisting of all for-
mal sums 3 ,_q, Ua, Where us € Ung)e. Let U(n+) be the subalgebra

of U(rt,.) consisting of all such formal sums ZaeQ+ u, satisfying the fol-
lowing condition : If (V,dr) is an integrable g’(A)-module and v € V, then
dm(ug)v = 0 for all but a finite number of @ € Q4. Such a (V,dr) then
becomes a U/(—Iz_)-module (V,#%) by : #(3 ua)v = 3 dr(ua)v.

For o € A'f, define a map &xp : ga — U’(;;) by :

oo

&pz=y (n) 'z

n=0

Let f;’+ be the subset of Um) generated by the eXpgq, a € AL, under
multiplication, so that ﬁ+ is a group under multiplication with identity 1.

_LEMMA 4.1. — There exists a unique surjective homomorphism W :
Uy — Uy such that ® = mo W for every integrable g'(A)-module (V,dr). We
have exp = W o exp on g, for every o € AL,

Proof. — Let (V,dr) be an integrable g’(A)-module such that the associ-
ated G(A)-module (V, ) is faithful. Clearly, we have (exp z) = m(exp z) for
all z € g4, a € AY. Hence, #(Uy) = m(Uy4). Since  is injective on Uy, we
conclude that there exists a unique map ¥ : U, — Uy such that # =m0 ¥;

clearly, ¥ is a surjective homomorphism, and exp = ¥ o eXp on every Zq.
If (V’,dr’) is another integrable g’(A)-module, then the same reasoning ap-

plied to (V @ V', dr @dnr’) yields a homomorphism ¥y : U+ — Uy satisfying
T@a = (rdn')o Wy, ie., fr--vro\Ilgandn'—fr o\I'o Then ¥g = ¥ by
the first equality and the uniqueness of ¥, so that ' = = 7' o ¥ by the second
one. |

For s € S, put

=UUon
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where a runs over AT \ {a,} with £(a,a}) > 0.
LEMMA 4.2. — Lets€ S. Then:
(a) YE =nYEn~! for alln € sH.
(b) Uy is generated by Uy, Y& and Y.
(c) uzu=12"1 €Yt forallue Uy and z € Y.

Proof. — (a) and (b) are clear. If u = expa € U(,) and z = expb € b
then (ada)?b = 0 = (adb)? a by LEMMa 2.1 (c). We have :

uzu~! = V(exp a)¥(exp b) ¥ (exp — a)
V((exp a)(expb)(exp — a))

(S),

n

where z = (expad a)b = b + [a,b]. Since z and b commute, we get

R

e o]

> (mt) (-6

= Q(é(n!)_lz" 20(:;)—1(—5)"*)
- \Il(;(n!)_l(z - b)")
= xp(g(n!)—l[a,b]").

Since exp[a,b] € Y;t by LEMMA 2.1 (c), we get uzu~12~1 = ¥(exp[a,b]) =
expla,b] € Y,;*. This proves (c). 1

COROLLARY 4.1. — Let s € S, and let U be the subgroup of U,
generated by {uzu~' | u € Ug),2 € Y;FUY"}. Then Uy = Uiy U, Uy
normalizes U(®) | and H U sH normalizes U(®),

Proof. — By LEMMA 4.2 (a,b), Uy = U(S)U(s), and U(,) and H normalize
U(®), Thus, it suffices to show that if u € U(s) and z € Y;F UY,", then there
exists n € sH such that nuzu=ln=1 € UG). If z € Y}, then uzu~! € V1Y,
by LEMMA 4.2 (c), and hence nuzu='n"' € Y,7Y,” c U(®) for all n € sH
by LEMMA 4.2 (a). If v = 1 and z € Y¥,7, then nuzu~'n"! = nzn~! €
Yt ¢ U® for all n € sH. Finally, suppose v # 1 and 2 € Y,”. By
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using PROPOSITION 4.1 b(iii), choose n € sH and uy,u; € Uy, such that
nu = uynugn_!. Then

nuzu"n”1 = umuzn_lznu;ln“lul—l € ulnu;;Ys"'uz_ln_lul“l

Cun¥ Y, tn"lugt

Cu Y, Y, uyl c UG g

A g'(A)-module (V,dr) is called Q-graded if there is a vector space
decomposition V = e Vi satisfying dn(ga)Vs C Vaqp.

LEMMA 4.3. —  There exists a Q-graded integrable g'(A)-module V
which is a faithful U(ny)-module.
Proof. — One can take for V' the direct sum of all integrable lowest

weight g’'(A)-modules. In more detail, given A = (A)ses € Z3, define a
1- dimensional U(go + n_)-module Cvy by a?(Vy) = —Asvp, n— (vy) = 0.
Let

M*(A) =U(g'(A)) ®u(go+n_) Cva,

regarded as a @Q-graded g’(A)-module, where the action is defined by left
multiplication and the Q-gradation is induced from that of U(g’(A4)) by
putting deg vy = 0. Then it is easy to see that the Q-graded g’(A)-module
L*(A) = M*(A)/ 3, U(ny)e*sH1(vy) is integrable (cf. [3, LEMMa 3.4]). We

put
V=P L(4)

A€Z3
IfueU(nt)s, u# 0and u(vy) =0in L*(A), then B — (A +1)as € Q4 for
some s € S. It follows that V' is a faithful U(ny)-module. §

We say that a subgroup F of G(A) is gradedifu_ e U_,h € H,uy € U,
and u_huy € F imply u_,h,uy € F.

LEMMA 4.4. — Let (V,n) be a Q-graded integrable g'(A)-module. Then :

(a) kerm is a graded subgroup of G(A).

(b) If V is a faithful U(ny)-module, then V is a faithful U’(-;l:_)-modu[e.

Proof. — If u € Uy and v € Vj, then

m(u)v —v € Z Votas
«€Q+\{0}

so that U, is “upper triangular” on V. Similarly, H = exp go is “diagonal”
on V and U_ is “lower triangular” on V. If now u_ € U_,h€ H,u, € U,
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and u_hu € kerm, then, for all v € V, # € Q, we have

m(ug)v—v=m(h " u" o —v

e( > VM(,) n( ¥ vﬁ+a) = (0).

aeQ 1\ {0} aE-Qy4

Hence, m(uy4) = 1, so that uy € kern and, similarly, u_ € ker and so
finally h € kerw.(a) follows. (b) is clear. §

COROLLARY 4.2.

(a) The homomorphism ¥ of LEMMA 4.1 is an isomorphism from ﬁ+ onto
Us.

(b) fu_eU_,h€e Hyuy €Uy andu_huy =1, thenu_ =h=u, =1.

(c) Ifs€ S, then Uy # {1} and Uy = Uy) x (U3 NUL).

Proof. — (a) is clear from LEMMAS 4.1, 4.3 and 4.4(b). Suppose u_ € U_,
he H,uy € Uy and u_huy = 1. By LEMMA 4.4(a), us € kerw for every
Q-graded integrable g’(A)-module (V,dr); by LEMMAs 4.1, 4.3 and 4.4(b),
this forces uy = 1. Similarly, by using the involution w of G(A), we conclude
that u_ = 1. Hence, h = 1 also, proving (b). The first part of (c) follows
from (a). Fix s € S. Then

U(s) N U—T— cU’n U_T_ = (U AU = {1)
by using (b). By CorOLLARY 4.1, Uy = UyU®),U) ¢ UL NUY, and Uy,
normalizes U(*). Hence, U = Ugs) UG and UG = Uy NUj3. This proves

(c)-

Proof of the reminder of PROPOsITION 4.1 is immediate from COROLLARY
42. 1

We shall henceforth use the results of §3, applied to G(A), without
invoking PROPOSITION 4.2 each time.

PROPOSITION 4.3. — Let A = (2 ") be a 2 x 2 matriz with
m,n € Zy and mn > 4. Let (W(A),S) be the associated Cozeter system, so
that S = {s,t} and mss = 0. Put

AL ={(st)}* 0, | k€ ZLIU{(st)*s o | k€ Zy)

and

A ={(ts)* oy | k€ ZLYU{(ts)*t -, | k€ 2.},
s0 that ATt = A3 UAY . Forre S, let U_E_r) be the subgroup of Uy C G(A)
generated by the Uy, o € AT . Then Uy is the free product of its subgroups
U and UP.
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Proof. — Using the involution w, this is clear from PROPOSITION 3.5(c).1

Remarks. — (1) For m = n = 2, i.e. for the case Agl), PropPoOSITION 4.3
was stated in [8, Example].

(2) For m,n > 2, each group U_S_r) from PrROPOSITION 4.3 is the direct
sum of its one-parameter subgroups Uy, @ € A", ; otherwise, each U_E_T) is a
two-step nilpotent group.

(3) We conjecture that, in general, U, is the amalgamated product of its
subgroups U; NU¥, w € W. (This is a special case of the conjecture of § 3.)

We now explore some features of G(A), which are related to the Q-
gradation of g'(A).

S is called indecomposable if, whenever J is a subset of S such that
J # @ and J # S, there exist s € J and t € S\ J such that st # ts.
(This corresponds to the indecomposability of A.) The following are general
properties of Tits systems [1] :
(4.1) If S is indecomposable and F is a normal subgroup of G(A), then
FB = Bor FB = G(4).
(4.2) The center of G(A)is contained in B.

We will also use the following special properties of G(A).

(4.3) G(A) is generated by the U, and U, s € S.
(4-4) Nuew UY = {1}.

Indeed, (4.3) is clear, and (4.4) follows from CoROLLARY 3.4 by using the
involution w.

We call a subgroup F of G(A) weakly gradedif FNUB = (FNUZ)(FNB)

for all s € S. Note that every graded subgroup of G(A) is weakly graded.
Let C be the center of G(A).

PROPOSITION 4.4.
(a) & E H.

(b) Let F be a weakly graded normal subgroup of G(A), and suppose that
S is indecomposable. Then F = G(A) or F C C.

Proof. — C C H follows from (4.2) and (4.4). Now let F' be a weakly
graded normal subgroup of G(A), and assume that S is indecomposable. Sup-
pose that FB = B. Then F C B and hence, using (4.4), F C [\ ew B =
H.Ifh € F and u € Uy, then huh~'u~! € FN U4 = {1}. Hence, h cen-
tralizes U, ; similarly, h centralizes U_. (4.3) now shows that FF C C. Now
suppose that FB # B. Then FB = G(A) by (4.1). Hence, for all s € S,

UsB=UBNFB= (USBNF)B=U:NF)(BNF)B=U:NF)B.
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Since U N B = {1}, we conclude that U? C F and therefore U, C F for all
s € S. Hence, by (4.3), F = G(A). 1§

We sometimes write H(A) for H, Uy (A) for Uy, etc., to emphasize the
dependence on A.

COROLLARY 4.3.

(a) Let A" be an indecomposable generalized Cartan matriz, and let ¥ :
G(A') — G(A) be a homomorphism such that ¥(Ux(A’)).C Uy and
W(H(A’)) € H. Then either ker U = G(A’) or else

ker ¥ C Center (G(A")) c H(A').

(b) If J 1s a subset of S and Ay = (as,t)s tes 18 the corresponding principal
submatriz of A, then the obvious homomorphism G(A;) — G(A) is injective.

Proof. — (a) follows from PROPOSITION 4.4, since ker ¥ is graded and
hence weakly graded. Since the homomorphism of (b) is injective on H, (b)
follows from (a). |

COROLLARY 4.4.

(a) If (V,dn) is a Q-graded integrable g'(A)-module and if A is indecom-
posable, then kerm = G(A) or kerm C C C H for the corresponding G(A)-
module.

(b) The direct sum of all irreducible highest weight modules with funda-
mental highest weights (see [3, Chapter 10] for the definition) is a faithful
differentiable G(A)-module.

Proof. — (a) follows from PROPOSITION 4.4, since kern is graded and
hence weakly graded. Since the module of (b) is a faithful H-module, (b)
follows from (a). 1

COROLLARY 4.5. — Assume that the generalized Cartan matriz A is
indecomposable and not of affine type, and let (V,dn) be an integrable g'(A)-
module. Then kerm = G(A) or kerm C C C H for the corresponding G(A)-

module.

Sketch of proof. — Since A is not of affine type, there exist integers ks,
s € 8, such that oy () ,cg ksay) > 0 for all s € S [3, THEOREM 4.3|* For
t € C%, put h(t) = [],cg hs(t)**. Define a Z-gradation g'(4) = ®nezgn by
gn={z€g'(4) | Ad(h(t))z =t"z forall te C*}.
Now let (V,dr) be an integrable g’(A)-module. Define a Z-gradation V =
eBneZVﬂ. by
Va={veV |n(h(t))v=1t"v forallte C*}.
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These gradations are compatible, and by imitating the arguments proving
LEMMA 4.4(a), one shows that kerw is a graded subgroup of G(A). CoroL-
LARY 4.5 now follows from ProprosiTION 4.4. |

COROLLARY 4.6. — Ad s faithful on U,. Moreover, kerAd =C C H.
Proof. — This is clear from PropPOsITION 4.4. |
Remark. — One may also prove the first part of COROLLARY 4.6 by

defining a map log from U, to iy C U(n,) and noting that the center of
g'(A) is contained in go. However, this procedure is not valid over a field
of positive characteristic, and also involves the Campbell-Hausdorff formula.
For these reasons, we omit this approach here.

The following statement is clear from (G2a) (we use that t2 # 1 for some
te C*):
(4.5) If s € S, then the centralizer of H in U, is {1}.

PROPOSITION 4.5.

(a) Let F be a graded subgroup of G(A) containing N such that FNU, =
{1} for alls € S. Then F = N.

(b) The normalizer of H in G(A) is N.

Proof. — We first deduce (b) from (a). Let N be the normalizer of H
in G(A). Then N contains N. Suppose u_ € U_, h € H, u; € Uy and
u_huy € N.Put n =u_huy. If ' € H, then

uph'u T = (u_h) ) (nh'n ) (u k)K" e UL N HU. = {1},

so that uy centralizes H and, similarly, u_ centralizes H. Along with (4.5),
this verifies the hypotheses of (a) with F = N. Hence, by (a), N = N,
proving (b).

We now prove (a). We first show that N normalizes F N U4. Indeed,
suppose that s € S, n € sH and v € F N Us. By (3.8.2), write nun~! =
uyuz, where u; € U_ NnUsn~! and u, € U,. Since n,u € F and F is
graded, we obtain u;,u; € F. But then n~luyn € FNU, = {1}, so that
u; = 1 and hence nun~l = uy, € F N U4. This shows that N normalizes
FNU;. Hence, FNUy C Nyew UY = {1} by (4.4). Now let g € F. By
ProposiTiON 3.2(a,b) write g = uyu_n, wherene N, u_ € U_nN nUyn~1
and u4 € Uy. Since g,n € F and F is graded, we have u_,uy € F. Hence,
uy,n"ru_n € FNU; = {1}, so that g = n € N. This proves (a). &

COROLLARY 4.7. — The centralizer of H in G(A) is H.

Proof. — This follows from PropPosiTION 4.5(b) and COROLLARY 2.2. fi
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We now discuss Levi decompositions of parabolics.
PROPOSITION 4.6. — Let J be a subset of S, and put My = PyNw(Py),
Uy =M;NU; and Ud = nweWJ UY. Then Py = My U’ and, moreover :
(a) My 1is generated by H and the G,, s € J.
(b) U is generated by the Uy, c € AT N Y o ; Zas.
(c) U’ 4s the smallest normal subgroup of Uy containing the U,, a €
ATy Esej Za,.
Proof. — Let FJJJ, 5’_] be the subgroups asserted in (a), (b) and (c) to be
Mj, U; and U’. Clearly, we have :
(4.6) U, =U;07.
(4.7) HWjyc M;c Mj.
We shall prove the following assertions :
(4.8) fj_] C HJ.
(4.9) M, normalizes U7,
(4.10) M;nU’ ={1}.
We first show that these assertions suffice to validate the proposition.
Since HW; C My by (4.7) and U7 c U, by (4.6), (4.9) gives U’ c U”.
By (4.6,7,8), Uy c U;; by (4.6), U;UY c U;U”7; by (4.10), UyNUY = {1}.
These yield :
(411) Uy;=Uyand U’ =U.
By (4.6,7,8), My and U7 generate Py; by (4.9), M, normalizes U7 ; by
(4.7), My C Mj C Py; by (4.10, 11), My N U’ = {1}. These yield :
(4.12) Py = My « U’ and My = M;.

The proposition follows from (4.11) and (4.12).

It remains to verify (4.8), (4.9) and (4.10). (4.8) follows from LEMMA
2.1(b). CoROLLARY 3.6 applied to the refined Tits system (Py, HW;, Uy,
P;nU_, H, J) implies ,ew, (Pr NU-)* = {1}; applying w, we deduce
(4.10). Finally, we verify (4.9). Suppose s € J, and put

¥E=| v,

where o runs over (AR NY.,.; Zoy) \ {a,} with £(a,a?) > 0 and

Y= UUO"
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where o runs over A\ 3, ; Za; with (e, a}) > 0.

Let U; be the subgroup of U, generated by {uzu™! | u € U,z €
X+ U X~} and let Uy be the subgroup of Uy generated by {uyu™! | u €
Us,y € YTUY ~}. Using LEMMA 2.1 (c), the argument proving COROLLARY
4.1 shows that HG, normalizes U; and U;. Let Uz be the subgroup of
U, generated by {ujuqu! | uy € Us,ug € Us}; since Uy, Up and Us
generate U, and since U, normalizes U; and U,, we deduce that Us is the
smallest normal subgroup of U, containing U,. Hence, Us = [:”, so that
HG, normalizes U”. Varying s € J, we obtain (4.9). &

Remark. — 1t is easy to show that, for all 7 € J, Py is the normalizer of
U’ in G(A) and M is the normalizer of M in P;.

We conclude this section with some technical results about “finite-dimen-
sional” subgroups of U,.

PROPOSITION 4.7. — Leta,8 € A'. Then the following assertions are
equivalent :

(a) (Z3a+ Z4B) NATE| < co.

(b) For some w € W, one has : w-a, w-f € —A'f.

(¢) (Uq, Up) is contained in the subgroup of Uy generated by the U, where
vyE(Zia+Z 08N A% and vy # o, .

Sketch of proof. — (We use here some notions defined e.g. in [3, Chapter
5]. First, suppose (a,3%) > 0 and (8,a") > 0. Then (a) and (c) hold
by LEMMA 2.1c(ii) and the argument proving LEMMA 4.2(c). We have
(1—(8,0")a,B8"))8 = (B,a")rg-a+rys-f, hencery - F <0orrg-a<0.
If ro - B <0 (resp. rg-a < 0), then w = ry (resp. = rg) satisfies (b).

Now, suppose (a,8") = 0 = (8,a"). Then (a) and (c) hold by LEMMA
2.1c(ii) and the argument proving LEMMA 4.2(c), and w = r,rps satisfies
(b).

By [6, p. 139] or [3, 2nd ed., Exercise 5.19], the only remaining case is
(a, B¥) < 0 and (B,a") < 0. By using W, we may assume that § = a, for
some s € S. If a — a, €A, put ¥y = o — a,; otherwise, put ¥ = «. Then :

ByeAf; (B,7")<0 and (y,8%)<0; y-pB¢A.

Put T = {1,2}, and define a generalized Cartan matrix B = (bs,y)t,uet by
b1 = baz = 2, biz = (v, "), b2y = (B,7"). Let a1, a; be the corresponding
generators of the root lattice of the Kac-Moody algebra g'(B). One can
show that there exists a homomorphism ¥ : g'(B) — g'(A) such that, if
k,l € Z and 6§ = kf + 17, 6 = ka; + lag, then § € A & § € AY(B),
and ¥(g'(B);) = g'(A)s if 6§ € A™. Since the induced homomorphism from
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G(B) to G(A) is injective on U, (B) by CoROLLARY 4.3(a), and since the
implication (b) => (a) always holds by LEMMA 4.5(e) below, this reduces us
to the following case :

A is a generalized Cartan matrix (_2n _2'") where m,n > 0; B = ay;
a = ag or as + a;g; (a,B?) <0.

First, suppose mn > 4. Then the (ralraz)k-al, k=0,1,2,..., aredistinct
elements of (Z,a + ZB) N A¢, so that (a) is false and hence (b) is false.
Moreover, in this case (c) is false by PRoPosITION 4.3.

Finally, suppose mn < 3. Then W(A) is a finite dihedral group and
wo(A4(A)) = —A4(A) for the longest element wo of W(A). Therefore
(b) holds, and hence (a) holds. One can show that (c) holds by using the
theory of algebraic groups over C, but we will give a self-contained argument
instead. Put w = r,, if @ = ag and w = ro, 74, = 1o, 7« if @ = a1 + as.
Using COROLLARY 4.2(c), one shows that : Uy normalizes U}** N U2,
and Ug C U™ ﬂU_:,“’r“ C UY so that (Ua,Up) C UY; Us normalizes
Uy NUL, and Uy € Uy NULY, so that (Us,Ug) C UL, Therefore,
(Ua,Ug) € U™ NUY. But by using PRoPOSITION 3. 3(d), one sees that
UL™* NUY is the subgroup defined in (c). Hence, (c) holds.

This verifies that in all cases, (a), (b) and (c) are true or false simultane-
ously. §

Forw € W, put ®(w) = A N —w - AT,

LEMMA 4.5. Let w,w' € W satisfy l(ww') = l(w) + I(w'). Then :
(a) 2(w) = A+ N aecow) L+

(b) For a € A%, a € ®(w) if and only if Uy C UpnUe™

(c) ®(1) = 0. ForsES P(s) = {as}.

(d) ®(ww') = &(w) Uw - B(w').

(e) [®(w)] = i(w).

Proof. — Since A™ is W-invariant, Q4 is a semigroup and Al = A™NQ4,
(a) is clear. We have UY = Uy-1.o, Up NU- = {1}, A™ = AT LU-AR, and
Ua CUy & o € £AY for o € A™, so that (b) is clear. (c) is clear, and (e)
follows from (c) and (d).

It is easy to deduce (d) from ProposiTiON 3.2(d). 1

LEMMA 4.6 [10]. — Let F be a group, and let Fy, ..., Fy be subgroups
of F satisfying : forv=1,...,k, F;F;4,--- Fx 18 a normal subgroup of F;
F = F\F; - - Fy [unique|. Then we have, for any permutationo of {1,...,k},
F = Fy(1)Fp(2) - - Fo(k) [unique]. 1§

PROPOSITION 4.8. — Let ® be a finite subset of AZ® satisfying & =
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A NY 5cpZ+B, and let By,...,Bn be an enumeration of ®. Then U =
Ug, - - Up, [unique|, where U 1s the subgroup of Uy generated by the Ug, .

Proof. — We may assume by using W that a, € ® for some s € S. Let
~1 = Ctg, ¥2,--.,Yn be an enumeration of ® such that the height of v;_ is
at most that of ~;, 2 < 7 < n. By ProposiTION 4.7, U = U,, ---U,,, and
Uy, - -+ Uy, is a normal subgroup of U for k =1,...,n.

Put U’ = Uy, ---U,,. Since U,, NU' € U, NU; = {1} and since
U =U,,U', we obtain U = U,, U’ [unique]. By induction on n,

U'=U,, - U,, |unique].
Hence,
U=U,U,,- - Uy, [unique|.
Now we apply LEMMA 4.6. |

COROLLARY 4.8. — IfweW, then
UpnU¥ = Ug, -+ Ug, [unique]

for any enumeration By, ..., B, of ®(w).

Proof. — We proceed by induction on I(w), the cases I(w) < 1 being
trivial. Choose s € S such that [(sw) < I(w). Then Uy NU¥ ™" = (Uy N
Us)(Ugn Uisw)_l)s by ProposiTiON 3.2(d). By the induction hypothesis,
U, NUS™ ™" is generated by the Ug, B € ®(sw), and hence (U+OU£W)—1)’
is generated by the Ug, 8 € s - ®(sw). Since Uy NUZ = U,,, we conclude

that Uy NU¥™" is generated by {a,} U s - ®(sw), which equals ®(w) by
LEMMA 4.5. LEMMA 4.5(a) and ProPoOSITION 4.8 complete the proof. |

5. The group K(A)

Recall the involution w of G(A) from § 2, and let K(A) be the fixed-point
set of w. We shall give explicit generators and relations for K(A).

Let D={ueC||u <1} ?e the closed unit disc, let S' = {t € C| |t| =
1} be the unit circle and let D = D\ S!. For u € D, put

I
=gy ) st

Note that z(t) = h(t) if t € S* (cf. §2).
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Fors€ S, ucDandte S1, put z,(u) = ps(2(u)) and he(t) = ps(h(t)).
For s € §, put K, = KNG,. Note that z,(u) € K, = ps(SUz) and z,(0) = §
(cf. §2). Recall the subgroups H of G(A) and T of K(A) introduced in § 2.

PROPOSITION 5.1.

(a) G(A) = K(A)H;+ U4 [unique] (Twasawa decomposition).

(b) K(A) is generated by the Ky, s € S.

(c) If w =51+ sk is a reduced ezpression and g € K(A) N BwB, then
there exist unique uy,...,ux € D and t € T such that

g= zsl(ul) . e (uk)t.

(d) For alls,t € S, there exists a unigue map Ty 4 D — (f))ms,t such
that if uw = (uy,uz--") € (D)™ and Loy(u) = v = ( ) € (D]t
then

zs(u1) 2t (u2) s (us) -+ - = 2¢(v1)2s(v2) 2t (v3) - -

(e) K 1s the amalgamated product of its subgroups K N P,, s € S, modulo
the relations in (d).

Proof * . — We use ProposITION 3.7. If h € H, uy € Uy and huy €
K(A), then w(hu;) = hui and hence w(uy)~ (w(h)~'h)uy = 1. Since
w(uy) € U-, w(h)~'h € H and uy € Us, we deduce that w(h)~'h =1 and
u+ = 1. Hence, huy = h € HN K(A). Using LEMMA 2.2(a), it is easy to
check that H N K(A) = T. Hence, K(A)NU; = {1} and T = §(K N B).
Clearly, H, is a normal subgroup of N and H = H,T [unique]. If u € C,
then z(—(1 + |u[?)=1/2u)~12(u)2(0) is of the form (5%)- This shows that
Us, C KBs for all s € S. By COROLLARY 2.3(b), there exists a unique map
w — @ from W to N satisfying : 1 = 1; 5 = z,(0) for all s € S; ww' = Wi’
if w,w’ € W and l(ww') = l(w) + {(w').

This verifies the hypotheses of PrRoPosITION 3.7 and shows that T =
KN B, and U, C z,(D)Bs for all s € S. Recall Z, defined by (3.13).
If s € S, then : BsB = UssB C (25(D)Bs)sB = 2z,(D)B; z, defines an
injection from D into Z, by an easy calculation; BsB ZyB [unique| by
ProposiTION 3.7. Hence, z, defines a bijection from D onto Z, foralls € S.
ProposITION 3.7 now shows that (a), (c), (d) and (e) hold, and that K(A)
is generated by T and the Z,. Since, Z, C K,, and since T is generated by

the K,NT, (b) follows. &

Note the following corollary of ProposITION 5.1(c).

* The proof of the Iwasawa decomposition is a straigthforward generalization of that of
STEINBERG [10]. In the affine case this has been done in [14].
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COROLLARY 5.1. — For J C S, denote by K the subgroup of K(A)
generated by the Ky with s € J. Then K(A)NP; = K;T. 1

We wish to determine the maps I'y; of ProposiTiON 5.1(d). Using
CoRrOLLARY 4.3(b), we see that I's ; depends only on as; and ay,. Clearly,
Fyp0T:s= id,and Iy, = id. If a5t = a¢,s =0, then G, and G; commute
and so T, ¢(c, 8) = (B, ). If my; =0, then ['y; is trivial. If a5 = —1 and
ats = —k, k = 1,2 or 3, we write ', for I's ;. We must calculate I'y,I'; and
F3.

LEMMA 5.1.
(a) If S = {1,2} and A is the generalized Cartan matniz (_21 "21), then
C3 15 a faithful G(A)-module by :

b
o1 (Z d) (z,y,2) = (az + by, cz + dy, 2)

and g
©a (: d) (z,¥,2) = (z,ay + bz, cy + dz).
(b) If S = {1,2} and A is the generalized Cartan matriz (2,30), then
C* is a faithful G(A)-module by :

b
©1 (a )(I:ya z,w) — (I,Gy +bw,z,cy + d'bU)

cd
and
ab
©2 (c d) (2,9, 2,w) = (az + by, cz + dy, dz — cw, —bz + aw).
Moreover,
a p 5 1 0
PLl-B & 0 a+ps

and

(5 %)~ (5 2)

defines a faithful representation of K(A) by quaternionic matrices.

Proof. — Using CoROLLARY 4.4 and LEMMA 2.2(a), we see that the
modules defined in the lemma are faithful. Let H be the associative R-
algebra of quaternions, with standard R-basis 1, 1, j, k, with 27 = k,
7k =1, ki = 5, and 12 = 52 = k? = —1. C* becomes a right H-module
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under (z,y,2z,w)i = (z1,y7, 21, wi) and (z,y,2,w)j = (Z,w, —%, —y), which
is free on generators v; = (1,0,0,0) and vz = (0,1,0,0). It is easy to check
that o1 (SU;) and p2(SU;) give H-module endomorphisms of C* under the

action defined in (b). But
PRR (QH fhz) ,
d21 q22

where o(v;) = v1q1; + v2gai, defines an isomorphism from Endy(C*) onto
the ring of 2-by-2 matrices over H. The lemma now follows from a calcula-

tion. I

COROLLARY 5.2. — Ifa; € D and u; = (1 — |os|?) (/2 1 < ¢ < 4,
then :
(a) (B1,B2,P3) =T'1(a1,az,03) if and only if :

(1 - |ﬁ1|2)_(1/2)ﬁ1 = (u2u3)—1(u1a3 +“&1a2u3),
ﬂ2 = Q103 — Ujous,
(I - |ﬁ3|2)_(1/2)ﬁ3 = (u1u2)_1(alﬂ3 + ulaz'o?g).

(b) Define A,B,C,D,E,F,G,He€ C by :

(1 0 )(ag U2)(1 0 )(0’4 U4)

0 a;+uy —uz O 0 az+wusg —uq4 Q4
_(A+Bj C+Dj

E+F; G+ Hj
Then (B1, B2, Bs, Bs) = La(ay, oz, 3, a4) if and only if :

( ) (1/2)ﬁ = B~F,

(1 lﬁ %)=/2 g, = (IBI +|F|*)~*(AB + EF),

(1-18:*)~(/9g; = B-1(AF - BE),

(1~ |B2)~ /By = (IBI2 +|F|*)~*(BG - CF).

Proof. — LEMMA 5.1 and a calculatlon show that the given formulas hold
if (B1,-++) = Tk(ay,- ). Since (1 —|B|?)~1/28 determines 8 for |8] < 1, the
corollary follows. ||

Unfortunately, a similar calculation of I's, i.e. a matrix calculation for
the exceptional 14-dimensional group G5, seems difficult. As an alternative,
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we shall utilize the embedding of G2 in Dy4. For that, we apply to Dy the
following lemma* :

LEMMA 5.2. — Let A be a group of permutations o of S satisfying
Go(s),0(s?) = Bs,s's JOT all s,s' € S. For 0 € A define an automorphism
& of G(A) by 6 0 ps = Po(s) for all s € S and an automorphism & of
W(A) by 6(s) = o(s). Let G(A)* and W (A)#* be the corresponding fized-
point subgroups. Let S/ A be the set of all orbits of A on S. Assume that +f
t € S/A, and s and s' are distinct elements of t, then as, o =0, so that G,
and Gy commute. Fort,u € S/4, fit s € v and put by y = ), c; ar,s. Then
B = (bt,u)t,ues/4 15 a generalized Cartan matriz.

Define homomorphisms g — § from G(B) into G(A) and w — w from
W (B) into W(A) by :

wi{z) = Hcps(:z:) for all t € S/A and z € SL2(C) ;
set
= H's for all t € S/A.
set

Then :

(a) g — g ts an isomorphism from G(B) onto G(A)*.

(b) w — @ is an isomorphism from W (B) onto W(A)A. For any reduced
ezpression for w € W(B), the corresponding ezpression for W € W (A)* is
reduced.

Proof. — It is easy to check that B is a generalized Cartan matrix. We
denote the homomorphisms g — g and w +— w by ¥. For any subset F' of
G(A), we put F# = FNG(A)#. It is easy to check that ¥ is well-defined
and that ¥(G(B)) c G(A)*, ¥(Ux(B)) C Ux(A)*. It is easy to check
U(H(B)) ¢ H(A)*, ¥(N(B)) c N(A)#, and that ¥ on G(B) induces ¥ on
W(B). Using LEMMA 2.2(a), it is easy to see that U(H(B)) = H(A)*, and
using COROLLARY 4.3(a), it is easy to check that ¥ is injective on G(B).
Hence, ¥ is injective on W(B).

If we W(A)# and w # 1, choose t € S/ A such that I(sw) < [(w) for some
s € t. Since w € W(A)#, we deduce that [(sw) < l(w) for all s € ¢, so that
I(fw) = l(w) — I(Z) = l(w) — |t| (here [t| means Card (t)) by a standard fact
about Coxeter groups [1].

By induction on /(w), we deduce :

(5.1) If w € W(A)*#, then there exist ty,...,t, € S/A such that w = Bi0a il
is a reduced expression.

* We use some arguments of [15] in the proof of this lemma.
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We next prove :
(5.2) If we W(A)*, then (Uy(4)NU_(A)*)* c ¥(G(B)).

If w=1, (5.2) is clear. Suppose w =t for some t € S/A. Let sy,...,5m be
an enumeration of ¢t. If g € (U4 (A) NU-(A)¥)#, write

g = 2zo;(u1) - 2s,, ()

by ProposiTION 3.2(d), where uy, ..., u,, € C are determined by ¢. If o € 4,
let 7 be the permutation of {1,...,m} defined by o(s;) = 87(i)- Then
5(9) = 6(zs, (v1)) -+ 6 (25,0 (um))

= za(sl)(ul) e Ia(sm)(um)

= T, (Ur-1(1)) Ty (-1 (m))

since G(A)s,,...,G(A)s,, commute. Since g determines the u;, we must
have u; = U,-1(1). Varying o, we conclude that u; = -+ = u,,, so that
g = Y(z(u1)), verifying (5.2).

Now suppose w € W(A)?, w # 1. By (5.1), choose ¢t € S/A such
that {(fw) = l(w) — I(Z). If g € (Uy(A) N U_(A)*)#, use PROPOSITION
3.2(d) to write ¢ = g1g2, where g; € (Uy(A) N U_(A)))™ and g, €
Uy (A)NU-(A)™. Using (5.1), choose n € N(B) such that ¥(n) € fwH (A),
and put ¢’ = ¥(n)g¥(n)~!, g; = ¥(n)g;¥(n)~! and g§) = ¥(n)go¥(n)~1.
Then ¢’ € G(A)*, ¢' = gig}, ¢ € Uy(4) and g; € U_(A). If ¢ € 4,
then ¢' = &(¢') = 6(97)5(g5), where G(g}) € Uy (A) and &(g}) € U_(A).
Since Uy (A) NU-(A) = {1}, we deduce that (g;) = ¢} and &(g}) = gb.
Hence, g; € (U4 (4)NU-(4)*)* C ¥(G(B)). Similarly, by induction on I(w),
g2 € ¥(G(B)) and hence g € ¥(G(B)). This proves (5.2).

We next prove :
(5.3) G(A)* c ¥(G(B))U4(A)*.

To avoid confusion, let B, denote the subgroup H(A)U.(A) of G(A).
Suppose w € W(A) and G(A)* N BywB, # @. Since 6(BywBy) =
5(B4)o(w)5(B4) = Byd(w)By for all ¢ € 4, (3.1) forces w € W(A)*.
Using (5.1), choose n € N(B) such that ¥(n) € wH(A). If g € G(A)A N
BywBy, write g = g, %(n)hgs, where g; € Uy (A)NU_ (A)‘”_l, h € H(A),
g2 € Uy(A). As before, we deduce that g; € (Us(4) N U_(A)‘”_l)"“,
h € H(A)* and g; € U;(A)*. By (5.2), we have ¢; € ¥(G(B)), and also
h € H(A)* = ¥(H(B)). Hence, g € ¥(G(B))g; C ¥(G(B))U, (4)*. By
(3.1), this proves (5.3).
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To prove (a), it remains to show that Uj(A)* C ¥(G(B)). Let ¢

o
U, (A)#. Then w(g) € U-(A)*. By (5.3), choose ¢’ € G(B) and g" € U, (A
such that w(g) = ¥(¢')g". Write ¢’ = gingz, where g; € U_(B), n € N(B
and g2 € U4 (B). Then

(w(g) ™" ¥(91))¥(n)(¥(g2)g") = 1
and hence, by (RT3), w(g)~'¥(g:) = 1. We conclude that
g =w?(g) = w(¥(g1)) = ¥(w(91))-

€
)
)

This proves (a).
It remains to prove the assertion of (b) about reduced expressions. We
need : '

(5.4) There exists a function [ on W (B) such that [(ty - -n) = [t1]+- - -+[tn]
if t; ---t, is a reduced expression.

Indeed, by LEMMA 1.1, we need only to show that if t,u € S/4, then
t| + |u| + [t| + -+ = |u| + [t| + |[u| + -+ (mf, summands on each side). If
*mtBu is even, this is clear. Suppose t # u and mt ., is odd. Then since B is
a generahzed Cartan matrix, by, = —1 = by . Hence Gy = 0 or =1 for
all r € t and s € u, since otherwise b , = Zret a,s would be less than —1.
Similarly, a; , = 0 or —1 for all r € t and s € u. Since A is a generalized

Cartan matrix, we deduce that a, s = a, , for all r €t and s € u, and hence

ful = ulbra = Y ane = 3 aar = [t bue =~ It

ret sEu
s€u ret
Therefore, |t| + |u| + [t| + -+ = |u| + |t| + |u| + - - -, proving (5.4).

Now let t; ---t, bea reduced expression By (5.1), chooset,...,t, € §/A
such that I, ---%, =1y --I,, and t1 m 18 a reduced expression. Since ¥ is
injective on W(B), we have by ooy = t’ '.- Using LEMMA 1.1, we have :

[l 4 oo ] 2 0 t) = U(Er - ta)

= [ta] + -+ |ta] 2 U1 - tn)—l(h tm) = 1]+ + [l

Hence, [(f; -+ Tn) = [t1] + ...+ |tn], s0 that #; - - -, is a reduced expression.
This proves (b). N

COROLLARY 5.3. — Letk=2or3, let S =1{0,1,...,k}, and let A be
the generalized Cartan matriz (a; ;)i jes defined by :
aii=2for 0<t < k;
dgs =aip=—1for 1 <1< k;
a,,',_,'za_.,",':(] ‘n‘:f 1$i<j$ k.
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Define maps %, : D — K(A) and % : P K(A) by :
Z1(u) = 20(u), Za(u) = z1(u)2z2(u)--- 2k (u).

Let uj,v; € D, 1 < i < 2k, and put u = (uy,...,ug), v = (vy,..., o).
Then v = T'k(u) if and only if

Z1(u1) 22 (uz) 2 (us) - - - Za(uak) = Z2(v1)3, (ve)Za(vs) -+ - 21 (vak).

v

Proof. — Let A be the group of all permutations of S fixing 0, and apply
LEmMMA 5.2(a). |

COROLLARY 5.4. —  Let k=2 or3, and put N = k(k + 1). Define
maps C, R and T from DV to DN by :
C(Il,...,SEN)=($2,...,$N,Il);
R(xla"'st): (521zlsm3:---:$N);
r(zl,'-'lzN):(y11y2;y39$4)'--:x1\’)

if (¥1,¥2,¥3) = T1(21,22,23). (We have T2 =id.)
Definei: D?* — PN gnd 5: DN — P2k by :

i(xla" -,174) — ($1,$2,I2,$3,z4,$4) and J-(yl)"- ,ye) = (y2:y33y5)y6)

tfhk=2;
i(xl, .- -,336) = (zl,ﬁza12,212,13,34,154,14,1?5,556,556,-’136)
and
j(yla .- -,ylz) = (y3,y4,y7,y8,y11,y12)
tfk=3.

Define fk by :
I'; = CTC2I'CRC ;
['s= F-'E-2FE?B-'F-'EBF,

where

B=C7’IC~?IrC*TC~', E=RC and F =C*

Then _
I'y =305 %
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Proof. — Let S ={0,...,k} and A be as in COROLLARY 5.3. If

11,...,aN € S and z:(zl,...,mN)Ef)N,

we put
Ziy,...in (2) = 2 (21) - - 2y (2N) € K(A).

Suppose k = 2. It is easy to check that y = C~2T%(z) = 22,1,0,1,2,0(%) =
20,1,2,0,1,2(z). Since 210120 is a reduced expression in W(A) by LEMMA
5.2(b), 22,1,0,1,2,0(y) determines y by PRoPosITION 5.1(c); hence, we obtain

22,1,0,1,2,0(¥) = 20,1,2,0,1,2(%) > ¥y = CJI’:E@)-

Noting that z;(@)za(8) = 22(8)z1(e) for all @, 8 € D, the case k = 2 follows
from COROLLARY 5.3.

For k = 3, the argument is similar, using
_ =373 _
y = C%T3(z) & 21,2,3,0,1,2,3,0,3,2,1,0(¥) = 20,1,2,3,0,3,2,1,0,1,2,3(2). 1

We will need :

LEMMA 5.3. — SU, is the group on generators z(a), a € D, with
defining relations (we put h(t) = 2(t) fort € S):

(a) h(t)h(t') = h(tt'), where t,t' € S1.

(b) h(t)z(a) = z(t?a)h(t1), wheret € S, e € D.

(c) z(ic)h(t)z(ic) ™! = z(c®t+(1—c?)), where0 < c < 1,t € S!, Imt > 0.

Proof. — Let K be the group on generators z(a), a € D, with the given
relations. Since these relations hold in SUz, and since every elgment of SU,
is uniquely of one of the forms A(t), t € S!, or z(a)h(t), @ € D and t € S,
it suffices to check that every element of K is of one of thnese forms. By (a)
and (b), we need only do this for 2(8)z(v), where 8,7 € D.

Define a homeomorphism (F, G) from D onto (0,1) x{t € S' |Im¢t > 0} by
requiring @ = F(a)G(a) + (1- F(a))G(a) for all @ € D. Define H : S' - R
by H(t) = F(t8) — F(ty). Since F(a) + F(—-a) = 1 for all @ € D, we
have H(1) + H(—1) = 0, so that, by the continuity of H, H(t'?) = 0 for
some ¢’ € S1. Put ¢}, = G(t'28) and t;, = G(¥ 7). If Imt)t, > 0, we put
t=1t,t; =), ty = ty; otherwise, we put t = ¢/, t; = —#{, i3 = —t;. Put
¢ = F(t*B8)1/2. Then we have :

t,t1,to€8SY; Imty, Imty, Imtyty>0;
0<c<1; B=0(3t+(1—-c>f), ~=1t(c%s+ (1-c)i).
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Put o = c%t1t2 + (1 — ¢2)1t2. Then (a), (b) and (c) imply :

W(O)(8)2(Dh(E) = 2(20)=(E)

= z(c®t; + (1 — e¥)t1)z(c%ta + (1 = c?)t2)

= [2(ic)h(t1)2(ic) " ][2(dc) h(t2) 2(ic) Y]

= z(ic)h(t1t2)2(ic) ™! = 2(a).
Hence, '

2(8)z(7) = h(D)z(a)h(t) = 2(°)h(t?),

and hence also 2(8)z(y) = h(a) if @ € S!. This brings z(83)z(v) to the
required form. |

THEOREM B. — K(A) is the group on generators z,(u), s € S and
u € D, with defining relations (we put hy(t) = z,(t) ft € S1) :

(K1) hs(t)hs(t') = hs(tt') of :5€ S, t,¢' € 1.

(K2) zy(ic)hs(t)2zs(ic) ™1 = z4(c*t+ (1—c?*t) if:5€S;0<c<1;te S,
Imt¢ > 0.

(K3) hs(t)zsr(u) = 2o (t*s5' u)hg (%" Vho(t) if : 5,8’ € S;t € §;
u€E D.

(K4) z5(u)zy(v) = 2o (v)25(u) if : 5,6’ €S, ml, =2;u,veD.

(K5) zs(u1)zsr(u2)zs(us) - = 241(v1)25(v2)20(v) - - (mP,, factors on
each side) if 5,8’ €5, 8590 = 1,00, =-k; 1<k <3; (v1,...,04 ') —
3,8
Ci(ug, ..., up,a ), and T'1, T2 and I's are as defined in COROLLARIES 5.2
8,8
and 5.4.

Proof. — Let K (A) be the group on the gwen generators with the gwen
defining relations. We write zs(u) and h, ( ) for the generators of K (A)
to avoid confusion. Relations (K1) and (K2) hold in K(A) due to LEMMA
5.3; relations (K3) hold thanks to (2.1); relations (K4) are clear; relations
(K5) hold thanks to COROLLARIES 5.2 and 5.4. Hence, there exists a unique
homomorphism ¥ = K (A) — K (A) such that ¥(z,(u)) = z,(u) forall s € S
and u € D.

For s € §, LEMMA 5.3 and LEMMA 2.2(b) show that there exists a unique
homomorphism 7, : K; — Kfa) satisfying 74(2s(u)) = z:(;) forallu e D
(here we use (K1), (K2) and (K3)) By LEMMA 2.2(a), there exists a unique
homomorphism 7 : T — K(A) satisfying 7(hs(t)) = hf;‘(?) for all s € S
and t € S' (here we use (K1) and (K3) for u € S!). Clearly, 7, = 7 on
K,NT = {he(t) [t € S}, and r(h)rs(g)r (k)" = 75(hgh™!) for all € T,
s€Sandg e,..{{s by (K3). Hence, for s € §, there exists a homomorphism

7s : TK, — K(A) extending 7 and 7,.
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Let Kﬂ) be the amalgamated product of the KNP, = TK,,s €S. Then

—~—

there exists a unique homomorphism 7 : KTE) — K(A) such that, for all
s€ S, 7€T, on TK,. By PROPOSITION 5.1(e) and relations (K4) and (K5),

—~—

7 induces a homomorphism ® : K(A) — K(A). It is easy to check that ¢
and ¥ are mutually inverse. This proves the theorem. J
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