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In these notes a representation theoretical approach to the
construction of groups associated to (possibly infinite-dimensional)
"integrable” Lie algebras is discussed. In the first part a general
framework is outlined; here most of the discussion consists of
definitions, examples and open problems. Deep results are available
only in the case of groups associated to Kac-Moody algebras, which
are discussed in the second part; it is based on joint work with Dale
Peterson [18], [19]1, [203, [21], [22], [26]. Extension of these
results to other classes of groups, like the group of biregular
automorphisms of an affine space, would provide a solution to some
very difficult open problems of algebraic geometry.
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CHAPTER 1. Integrable Lie Algebras
and Associated Groups

§1.1 Let V be a {(possibly infinite-dimensional) vector space (over
€), and let A be an endomorphism of V. A is called locally finite if

every v € V lies in a finite~-dimensional A-invariant subspace of V (or,

equivalently, CA™v) | n = 0, 1, ...2 are linearly dependent for every
v € V). A is called locally nilpotent if for every v € V there exists
n > 0 such that A®(v) = 0. A is called semisimple if V admits a basis
of eigenvectors for A. Obviously, locally nilpotent and semisimple
elements are locally finite.

A locally finite endomorphism A always admits a Jordan
decomposition, i.e. A can be represented in the form A = Ay + A,
where A is semisimple and A, is locally nilpotent and AA, = AAg
such a decomposition is unique. This follows from the usual Jordan
decomposition in the finite-dimensional case.

If A is a locally finite endomorphism of V, we can form the

corresponding l-parameter group of automorphisms of V:

exptA= 3 E. A" tec
nz20 n!

Let A be a semisimple endomorphism of V so that A(ei) = g
for some basis Ce;2 of V. An endomorphism A' of V, such that A'(ei)
= N\ye; for all i, is called a replica of A if a relation % N = 0,
where n; € Z and all but a finite number of them are 0, implies that
% ' = 0.

Let A be an arbitrary locally finite endomorphism of V and A =
Ay + A, its Jordan decomposition, All replicas of Ag and the
endomorphism A/ are called replicas of A. The linear span of all

replicas of A is called the algebraic hull of A,

Lemma. Let A be a locally finite endomorphism of V and let A' be a
replica of A, Let U1 C Uz be two subspaces of V such that A(Ul) C
Uz. Then A'(Ul) C Uz,

Indeed, let v € Ul and let U' be a finite~dimensional
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A-invariant subspace containing v. Put U; = Ui nNU =1 2.
Then A(Ul) C U2~ By {29, p. 6-04], A’ restricted to U' is a
polynomial with zero constant term in A restricted to U'. Hence A'(v)
€U, C U,

Examples.

(a) Let R be a commutative associative algebra (over €) with no

zero divisors. Let (rij)'i" j=1 be a matrix over R and let det O‘sij
-y = AU+ a Nt o+ L+ a, a; € R, be its characteristic
polynomial. The matrix (rij) acts on the free R-module R of
n-columns over R by left multiplication; regarding R"™ as an
infinite~dimensional vector space V over ©, we get an endomorphism
of V, which we denote by r. Then r is locally finite if and only if a;
€C, i=1, .., n and is locally nilpotent if and only if a =0 i=1,

.., n. Indeed, if all the a € C, then, for v € V, we have r(v) €

rtil ﬂ:rj(v). Conversely, if r is locally finite, it has at most n
é]i;gnvalues Mo o A (which are the complex roots of det (5ijx -
rij)), and for any r-invariant subspace U of V, all the eigenvalues of r
on V/U are from the set Xy o NG Taking U = ™ c R =y,
where I is a maximal ideal of R (we may assume R to be finitely

generated) we deduce that all the a; € C.

{b) Let D be a derivation of an algebra R generated by some
elements ag, 8y, .o Then D is locally finite (resp. locally nilpotent)

if and only if dim % (DDi(aj) < » (resp. Dnj(aj) = 0 for some nj) for all
j. This follows from the Leibnitz rule.

Furthermore, if D is a locally finite derivation of R, then all
replicas of D are derivations of R as well. Indeed, let R = @& R}\
be the generalized eigenspace decomposition with respect to D. Xe’l‘lrhen
R)\Ru C Ry o which implies that D, and hence D, is a derivation
of R. It is also clear that all replicas of Dy are derivations of R as

well,
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{c) Let A= 2% P,
i=] axi

be a linear differential operator with

polynomial coefficients acting on the vector space V = (€ [xl, o
x,]. In the following two cases, A is evidently locally finite: deg Py €
, . . . OP . .
1 for all i (affine differential operator)) ——= = 0 for j 2 i
*3
{triangular differential operator). This follows from (b).

§1.2 Let g be a (possibly infinite-dimensional) Lie algebra (over C)
and let V be a g-module with action ». Let r denote the center
of g.

An element x € g is called w-locally finite if =x(x) is a
locally finite endomorphism of the vector space V.

We denote by F 3 the set of all ad-locally finite elements of
g, and by Sfin the subalgebra of g generated by F e The Lie
algebra ¢ is called integrable if g = 8f, Denote by F a the
set of m-locally finite elements of F a

Lemmna.

(a) The subalgebra of g generated by F g is the linear span
(over C) of F ar In particular, g, is spanned by F g

(b) Let dim g < ¢« and let g be generated by Fg ” Then V is
a locally finite g-module (i.,e. any v € V is contained in a

finite-dimensional g-submodule).

Proof. Let g, denote the C-span of F p
Using that

e Let x € Fg,ﬁ.

(1) n((exp adx)y) = (exp =(x))w{yMexp-n(x))

we deduce that ¢, is invariant with respect to exp t(adx), t € C.

Since
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lim ((exp tadx)ly} - y)/t = [x,y],

t=0
it follows that [x,gx] C g proving (a). (b) follows from (a) by the
PBW theorem.

Conjecture. Let g = @ g; be an integrable Z-graded Lie algebra
(we assume that dim g; < «), which has no nontrivial graded ideals.
Then g is isomorphic either to a "centreless" Kac-Moody algebra
a'(A)/p (see 82,2 for the definition) or to a Lie algebra of the Cartan
series Sn or Hn (see e.g. [12] for their definition).

Problem. Characterize the ’general” integrable Lie algebra gI(Vg .

The g@g-module (V,x) is called integrable if F ar = F - of
course the g-module {g,ad) is integrable, In general it is difficult to
check that a module is integrable since there is not much information
about the set F o The matter would simplify considerably if one can
prove the following conjecture (which is a strengthening of Lemma
1.2(a)):

Conjecture. If F g generates the Lie algebra Stine then V is an
integrable g-module.

Problem. Does any Lie algebra admit a faithful integrable module?

Put Vg = Cv € V for every x € F a there exists a
finite~dimensional =(x)-invariant subspace of V containing v3. It
follows from the Leibnitz rule that Vi is a g-submodule, which is
obviously integrable. ~The functors g +— gg, and Ve Ve

have many nice properties.

§1.3 Examples.
(a) Let R be a complex commutative associative algebra with unity

and let ¢g be a complex finite-dimensional semisimple Lie algebra.

Then the Lie algebra 8r: = R ® g is an integrable Lie algebra
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{over C). To show this, take a root space decomposition g = h @
Z Ce,. Then all elements of the form r & e, are ad-locally finite
(%ven nilpotent), and they generate the Lie algebra aR:

Experience shows that the universal central extension aR
7, aR of aR has a much more interesting representation theory

than 8R itself. This central extension is constructed as follows [23]:
0 — 0p/dR — gg: = gg ® (05/dR) 21, gp — 0,

where 0[1{ is the space of all formal differentials (i.e. expressions of
the form fdg, where f,g € R, with relation d{fg) = fdg + gdf), and the
bracket on E;R is defined by

[r1®g1»rz®gz] = 1‘11‘2 @ [gl,gz] + (gl'gz)rzdrl (mod dR)

where («1=) is the Killing form on g. Of course, ER is an
integrable Lie algebra as well.

If V is a finite-dimensional g-module, then one easily shows
that VRi = R 8 ¢V is an integrable gR—module. The following
special case of the problem stated above is open, however: For which

R there exists a faithful integrable ER-module?

Remark. Put ER = R 8 mg) ® Qé @& Der R and define a bracket
by: [ry8gy.ry®8,1 = rqry 8 [gq,8,1 + (g18ylrydry; [Dr@el = Dir) @
g for D € Der R; [gR,Qé] = 0. Then GR is a Lie algebra mod dR C
Qé. Define on ER an R-valued symmetric bilinear form (- | "R
by: (r;8gy1ry88,y) = ryrolgiley) (fdgiD) = fD(g) for D € Der R;
(0 + Der R I R @ ga) = 0; (0g104) = 0; (Der RiDer R) = 0.
It is non-degenerate, and invariant, i.e. ([a,b]lc)R = (al[b,c])R.
Let F be a linear function on R; put (Der R)p = (D € Der R 1
F(D(w)) = 0 for all ® € RJ. Then e R 8 ¢g ©®
(Oé/dR) ® (Der R)F is a Lie algebra, and (aib): = F((alb)R) is an
invariant bilinear form on it. For example, let M be a compact
manifold with a volume form 0, let R be the algebra of complex
valued C®-functions on R and let F(p) = fson. Then DerR is the
M
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Lie algebra of vecior fields on M, (Der R)F is the subalgebra of
vector fields with zero divergence, and the bilinear form (-1 =) on

§R p is non-degenerate.

{b) Let Wn be the Lie algebra of all linear differential operators

with polynomial coefficients in n indeterminates Xqs e Xy It carries
- - ®

a Z-gradation Wn = je;_l (Wn)j, where (Wn)j = (2 Pi .5;: € Wn

1 Pi are homogeneous of degree i + 12; then Wg = ?0 (Wn)j is a

maximal subalgebra of Wn. Put CSn = {D € WI‘Ij “Y div D €

C>. This is a subalgebra of Wn {recall that div Z Pi _a.gm =3
X
i

oP
axf and that div [Dy.D,] = Dy-div D, - Dy=div Dy). Put (CS);
1
= CSn N Wn; we have a Z-gradation CSn = jg—l (CSn)j, where
- - o - ~
(Csn)-l = (Wn)—l = 2C -5;:—, (Csn)o = (Wn)g = gIn(ﬂl)-
i
Furthermore, the (CSn)O—module (CSn)j is irreducible if j 2 0 with a
highest weight vector xf"'l -—Q—, if n > 1 (see e.g. [12]}). Since the
X
n
elements of (CSn)O and the elements xf aa are locally finite if n >
X
n

1, we obtain that CSn C (Wn)fin and that CSn is an integrable Lie
algebra.

It is clear that (Wl)fin = 081 = C %; + Cx -g;- Let me
show that (wn)fin = CSn for any n.

Denote by = the action of Wn on the vector space ﬂ'J[xl, vees
xn]. Then D € Wn is ad-locally finite if and only if it is m-locally

finite. Indeed, if D is ad-locally finite, then, applying the Leibnitz

rule to DN(P aa ), we see that D is w~locally finite. Conversely, if
b9
1
D is m-locally finite, then exp tD is an automorphism of the
polynomial algebra (D[xl, cer xn] such that (exp tD)xi = Pi(xl, o X
. are bounded uniformly for all

J
t. Since the change of indeterminates Pyt Xy Pi is invertible,

t), where the degrees of the Pi in the x
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denoting the inverse by Xp b P.,, we get (exp tD) _Q_ =3 3

i1

i
o and the degrees of the };i in the indeterminates X; are bounded
*3
uniformly for all t. It follows that 3 (II(adD)j ° is
3 Ox

finite-dimensional.  Hence, D is ad-locally finite. In other words,
(Il[xl, e Xn] is an integrable Wn— {and CSn-) module.
Furthermore, if D is ad-locally finite, then it is w-locally

finite, and we have the change of indeterminates Py But its

oP
Jacobian J(fpt): = det [’c)

X

i] is an invertible polynomial, hence J(sot) €
3

cX, Therefore, div D € €. Thus, (Wn)fin = CSn.
Problem. Is it true that any ad-semisimple element of CSn is

conjugate {by a change of indeterminates) to an element of the form %

)‘ixi —a—, where )‘i € C?
Ox

1

This problem is equivalent to the well-known problem, whether
a regular action of €X on C" is biregularly equivalent to a linear
action,

As we shall see in Chapter 2, the conjugacy problem is
intimately related to the problem of existence of non-trivial closed
orbits in the projectivized space. Unfortunately, there is no such
orbits for the action of Aut C® on (D[xl, oo X1

Problem. Compute the closure of the orbit of X4 in E[xl, venr xn]
under the action of Aut C" (a set is closed if its intersection with

any finite~dimensional subspace U is closed in U).

Finally, let : X - Pi be a polynomial change of
indeterminates with J(¥) € ﬂ:x; we can assume that Pi(O) = 0. Then

we have the induced (non-zero) homomorphism : Wn —_ Wn which

174



maps W?\ into itself. Conversely, any non-zero homomorphism @: Wn
N

— W that maps W0 into itseif induces an isomorphism (; Wn -

of the formal completion and hence is given by a formal change of
mdetermmates X = Pi with Pl(O) 0 [28]. Since 90 [ ° ] € Wn,

Ox L
we obtain that the inverse change of indeterminates is polynomial.
Since a[xli‘ _39—] € W,. the P, are polynomials and J{®) € c*.
X
i

Thus, the Jacobian conjecture is equivalent to the question
whether a non-zero homomorphism Wn — Wn which maps W?\ into

itself is an isomorphism (one can replace w, by CSn),

8§14 Let V be a faithful integrable g-module, so that g C
gI(V). If all replicas of any element of F o lie in g, the linear Lie
algebra g is called algebraic. An integrable g-module (U,9) over
an algebraic Lie algebra g is called rational if for any x € F g one
has @(X) = PTX7T, where X denotes the algebraic hull of %, and w(xs)
= so(x)s, where x = x, + x is the Jordan decomposition of =x(x). If g
¢ gI(V) is not algebraic, we let g be the subalgebra of gI{(V)

generated by algebraic hulls of all x € Fg. Then g C gI(V)

is an algebraic Lie algebra called the algebraic hull of g.
Let g C alI(V) be an algebraic Lie algebra. Then its adjoint
representation is rational. Indeed, let x € F e and let ={x) = Ay

+ An be the Jordan decomposition. Let V = €B Vx be the
eigenspace decomposition for Agi it s A -invariant. Smce rlg) C
End V = n Hom (VX’ ) and x € F we deduce that

ad x = ad Ag 'u a/<\i A, is the Jordan decomposltlon of ad x, and that
all the elgenvalues of ad x and ad A, are \-fi, where A,u €
A,

Note that the definition of an algebraic Lie algebra, the Jordan
decomposition, etc., are independent of the choice of the rational
g-module. Thus, if the center of g is trivial, we can start with its
adjoint representation and talk about the Jordan decomposition of x €
F a

It follows from Lemma 1.1, that if A is a locally finite
endomorphism of V and A’ is a replica of A, and if U1 C U2 are two
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subspaces of gI(V), such that (ad A)Ul - UZ' then (ad A')Ul C UZ’
As in [29, p. 6-06], one deduces the following easy facts:

{a) Every ideal of g remains an ideal in g.

{b) Center of g lies in the center of g.

(c} [aal = [aal, g is an ideal in g and a/g is abelian.
(d) If a is an ideal of g, then [g,a] C g.

Problem. Is it true that [g,g] is an algebraic Lie algebra? This is
true if dim g < . The proof of this and other deeper facts of the
theory of finite-dimensional algebraic groups uses the Noetherian

property of finite-dimensional algebraic varieties (see e.g. [2]).

The Lie algebra gg acting on VR (see Example 1.3(a)), where V
is a faithful (finite-dimensional) g-module, is an algebraic Lie
algebra, and all gg-modules Up, where U is a finite-dimensional
g-module, are rational. To see this, consider Oy R Where Fr R is
the field of fractions of R, and use the uniqueness of the Jordan
decomposition,

The Lie algebra Der R of all derivatives of an algebra R is an
algebraic linear Lie algebra. This follows from Example 1.1(b). In
particular, Wn is an algebraic Lie algebra. Since (Wn)ﬂn = C8,, it

follows that CSn is an algebraic Lie algebra as well,

81.5 Let g be an integrable Lie algebra. We associate to g a
group G as follows. Let G be a free group on the set F o Given
an integrable g-module (V,dx), we define a G"-module (V,;) by

x(x) = exp dr(x): = 3 (dw(x)®/nl, x € F
nz0

g

We put G = G*/(\ Ker ;é, where the intersection is taken over all
integrable @g-modules dx. Thus, the G -module (V,%) is naturally a
G-module (V,x), the integrable g-module (V,dx) being its
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"differential”. We call G the group associated to the Lie algebra a

and (V,x) the G-module asgociated to the integrable g-module.
Given an element x E F g We denote its image in G under the
canonical homomorphism G ~— G by exp x. Thus, we have by

definition:
rlexp x) = exp dr(x), x €F

a

for an integrable g-module (V,dx). Note also that Cexp tx 1| t €
C3J is a l-parameter subgroup of G.

Put Fg = Cexp x 1 x € FQD C G. A G-module (V,xr) is
called differentiable if all elements of F act locally finitely on V and
exp tx restricted to any invariant finite-dimensional subspace is
analytic in t (x € F g)' This definition is justified by the following:
Conjecture. Let {V,x) be a differentiable G-module. Then there
exists a unique action dx of g on V such that wm(exp x) = exp

dre(x) for all x € Fg. (V,dwx) is an integrable g-module,

Uniqueness follows from Lemma 1.2(a). To show the existence

put
dr(x): = = = {exp tx) t=0 for x € F
dt

The difficulty is to show that dx is linear. This granted, one would
have by (1):

nlexp tx) drly) wlexp-tx) = drlexplad tx)y), for x € Fo
and therefore,
(1 + tdr(x) + oft)) daly) (1-tdm(x) + oft)) =
= drfy) + tda{[x,y]) + oft),

which would yield [dx(x),dx(y)] = d=x[x,y]}.
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Of course, the G-module (V,x} associated to an integrable
g-module (V,dx) is differentiable. Thus, we would have an invertible
functor between the categories of integrable g-modules and
differentiable G-modules.

A homomorphism d¢: gy — ¢ of integrable Lie algebras is
called integrable if dSO(Fgl) C Fg; then d¢(gy) is called an
integrable subalgebra of g. Given an integrable homomorphism d¢ of

Lie algebras, we have a canonically defined homomorphism of the
associated groups ¢: Gy = G, so that d(r Gl) = (dw) ay’ The
subgroup so(Gl) of G is called the subgroup corresponding to the
integrable subalgebra so(gl) of g. It is generated by the exp x with x
€ v(gy) NF e

Of course, any isomorphism of integrable Lie algebras is

integrable and lifts to an isomorphism of the associated groups.

$1.6 Let g denote the intersection of kernels of all integrable

g-modules; then pg € v. Replacing g by g/no we can (and will)
assume that ry = 0. Let C denote the center of G. Associated to
the integrable g-module (g,ad), we have the adjoint G-module (g,Ad).
We denote by Ad G the image of the action of G on g and call it
the adjoint group associated to g. Then we have the following

exact sequence
(2) ] =3 C ot G et Ad G = 1.

This is because, given a faithful integrable g-module (V,dw), we can

compute the adjoint G-module, thanks to formula (1), by
dr((Ad ) = rlgldrixinia)™, g € G.

Hence Ad g = 1 iff =xl(g) commutes with dr(g), iff ={g) commutes
with dn’(Fg), iff =(g) commutes with K(FG), iff wm(g) commutes with
®(G). Choosing (V,dr) such that (V,x) is a faithful G-module, we get
that Ker Ad = C. Note that we have shown at the same time that if
the g-module (V,d=) is faithful, then Ker = C C.
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Problem. It is true that for a faithful differentiable G-module (V,x}
the corresponding (integrable) g-module (V,dwr) is also faithful?

§1.7 Let (V,r) be a g-module and let ¢ be an automorphism of the

Lie algebra g. Then we have a new g-module (V,rro) defined by
®,8lv = nlo-glv  for g€ g vEV

Define the big adjoint group Ad G by: Ad G = o € Aut a
R, is isomorphic to ~ for any integrable g-module 3.

We have an obvious inclusion Ad G C Ad G. It is also clear
that Ad G is a normal subgroup of Ad G. We define the group Kq(a)

by the exact sequence
(3) 1— Ad G — Ad G — Kylg) — 1.

We put Kz(g) = C and define Ko(g) as the Grothendieck group
of the category of all integrable g-modules. Note that K,(gg) are
closely related to the usual K-functors KiR), i =1, 2.

Problem. Compute the groups Ki(gR) and Ki((,N;R), i=0,1, 2

Conjecture. Ki(CSn) for i = 1, 2 are trivial, i.e. the group associated
to the Lie algebra CSn is Aut €", the group of Dbiregular
automorphisms of C".

This conjecture is closely related to the well-known question
whether the group Aut ck s generated by affine and triangular
automorphisms (cf. [30]).

Remarks.

(a) Note that, given an integrable g-module (V,x), and o €
Ad g, we have
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m(o-g) = A r(g)A _; for some A, € Aut V.
o

Denote by GV the group generated by all such A Then we,

o
clearly, have the following exact sequence:

1—»Auth—»GV—->KdG—-»1.

Assuming that (V,x) is a Schur module, i.e. that Aut V = ﬂ:x, we

get a central extension of Ad G.

(b} Given an arbitrary Lie algebra g and a category of

g-modules, one can define the associated (adjoint) group as above.

81.8 If g C gI{U) is a linear algebraic integrable Lie algebra, one
can make the definition of the associated group G more algebraic as
follows. Let Fg denote the set of all locally nilpotent elements and
F2 the set of all semisimple elements with integral eigenvalues; put
Fglg = Fg Vv F;. Let G* be the free product of a collection of
copies of the additive group C indexed by Fg and a collection of
copies of the multiplicative group € indexed by Fg. Given a
rational integrable g-module (V,dx), we define a G"-module (V,x) by
;(t) = exp dr{tx) if t € (EX, ;(t)vi =t ’V if t € EDX, where Vi is
an eigenvector of dm(y) with eigenvalue ki' Put G = G /N Ker iy
where intersection is taken over all rational integrable g-modules
dx. This definition of G coincides with the one in §1.5.

Note that for every x € F (resp. x € F g) we have a
homomorphism gt € — G (resp (!:>< - G). Given an ordered finite
set ¥ = S STIRRTS oo of F % we have a map vy from the product

of several copies of C and (Dx into G defined by
l/’i(tl! seey tn) = ¢X1(t1) “or xn(tn,y

where t; € C if x € Fg and t, € cX if x € F;. In the general
case, given an ordered set X = 1 ST X3 of elements of Fg,

one defines ;//;( : €M — G by -,0;( (tl, s tn) = (exp tlxl)
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(exp tnxn).

Now we are in a position to discuss how one introduces various
structures on G.

A function f: G — € is called regular if all the functions f o
Yz are polynomial. Denote by C[G] the algebra of all regular
functions on G. (Similarly one defines an analytic function on G in
the general setup.)

Let (V,dx) be an integrable g-module. Given v € V and a

on G, called

linear function v* € V*, we get a regular function fv*v

a matrix coefficient:

fye Jl8) = <mlg)v.v*>.

Since the direct sum and tensor product of two integrable g-modules
is again an integrable g-module, the set of matrix coefficients forms a
subalgebra (D[G]m.c' of the algebra C©[G]. Note that C[G] is a
G X G-module under the action reg defined by (Kreg(gl’gz)f)(g)
f(g'l'l ggz), the subalgebra C[G] mn.c. being a submodule.

Note also that matrix coefficients separate the orbits of G.
For if g # 1, there exists a differentiable G-module (V,x) such that
w{glv = v for some v € V; choosing v* € V* such that <m(g)v,v*>
= 0 and <v,v*> = 1, we get that f . (g} = 0 and fox (1) = 1.

Let ﬂ:[G]i = {f € C[G] | f vanishes on the image of ¥z
Taking the CLGlg for a basis of neighborhoods of 0 makes C[G]

into a Hausdorff complete topological ring. We have the canonical

inclusion G — Specm C[G] (= set of all closed ideals of codimension
one),

Problem. Compute Specm C[G] and Specm CLGl, .-

Let m be a subcategory of the category of integrable
g-modules, closed under taking finite direct sums and tensor products,
We denote by ID[G]Z?.!_. the subalgebra of (IJ[G]m ¢ consisting of

functions fvg with v € V, v* € (V*)ﬁn, where V is a module from

v
M, and call elements of (D[G]Z?’r. strongly regular functions (with

respect to the category M)
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Returning to the general setup, we introduce a topology on G
as follows. Fix a subset X C Fg such that the set {exp tx' I x €
X, t € €3 generates G. We call a subset U of G open if (t/l-)-( )"1(U)
C C" is open in the metric topology of C" for all X such that the X
of ¥ are from X. With this topology G is a Hausdorff topological
space (since the matrix coefficients are continuous); it is obviously

1 is obviously continuous.

connected. The inversion map g t— g~
The multiplication map is not continuous in general, however (a
counterexample will be given below). One can show (using Milnor's
lemma) that if X is countable, then G is a topological group. (It
should not be difficult to show that if g is countably-dimensional,
then G is a topological group for X = F g')

§1.9 Let M be a set and let €M denote the direct sum of a
collection of copies of € indexed by M. By metric (resp. Zariski)
topology on CDM we mean the finest topology that induces metric (resp.
Zariski) topology on finite-dimensional subspaces (i.e. U C eM s
open iff U N V is open in V for any finite-dimensional subspace V of
cM),

The additive group of M is the group associated to cM
viewed as a commutative Lie algebra. If the set M is countable, then
the metric topology on M s equivalent to the box topology and
hence €M is a topological group. If M is uncountable, then eM i
not a topological group (this has been pointed out to me by D,
Wigner).

Let V = ¢M and let X;, i € M, denote the linear coordinate

functions on V. The algebra C[V] of regular functions on V consists

of C-valued functions whose restriction to any finite-dimensional
subspace is a polynomial function. The subalgebra C[V] sr of

C[V] of strongly regular functions consists of polynomials in a finite

number of the X;. These definitions agree with the ones in 1.8 for
the additive group of V.
The set X of zeros of an ideal of C[V] in V is called an

affine variety; the intersection of X with a finite-dimensional subspace

is called a finite subvariety of X. A map ¢¥: X — Y of affine

varieties is a morphism if for any finite subvariety F of X there
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exists a finite subvariety F' of Y such that ©(F) € F' and the map
®: F —» F' is a morphism of finite-dimensional algebraic varieties. A
group in this category 1is called an affine algebraic group of
Shafarevich type [187, [30].

It is easy to see that given an algebra R with a fixed basis

Cvi}, the group Aut R is naturally an affine algebraic group of
Shafarevich type. For we have

- k k
(4) vy = E ¢ijy Vi Cyj € C,

. . - -1 - '
and g € Aut R if and only if g(vs) = EZ Xgt Vi € (vs) = %‘ Yt Vir with

the Xgpr Yt satisfying the following system of equations: g and g"l

preserve (4) and g-g'l =1,

Problem. For which integrable Lie algebras the associated group is an
affine algebraic group of Shafarevich type? Is it true that the Lie
algebra of a group of Shafarevich type (defined in [30]) is an
integrable Lie algebra?

Problem. Let R be an arbitrary algebra., Then the Lie algebra Der R
contains the following three subalgebras: the Lie algebra of the group
Aut R (viewed is an affine algebraic group), the Lie algebra of
endomorphism which are locally finite on R and the Lie algebra (Der
R)fin' How these subalgebras are related to each other? Interesting
examples are: (a) R is a Lie algebra, (b) R is a coordinate ring of a
{finite-dimensional) affine algebraic variety, (¢} R is the universal

enveloping algebra of a finite-dimensional Lie algebra.

183



CHAPTER 2. Groups Associated to Kac-Moody Algebras

2.1 Let A = (aij)'i" je1 be a generalized Cartan matrix, i.e. a; =

2, a;; are non-positive integers for i # j, and a5 = 0 implies ay = 0.
For a pair of indices i,j such that i # j put mg; = 2, 3, 4 or 6 if
aj85; = 0, 1, 2 or 3 respectively and put my; = 0 otherwise; put my; =
1.

We associate to A a discrete group V_‘V(A) on n generators i"l,

e Ty and the following defining relations (rl) and (r2) (i,j = 1, ..., n)k
el | =228

(r1) Fify = FFyooig.

(r2) 1711711"'1 . r'Jf-'lr'J (mij factors on each side).

Conjugating both sides of (ri) by r‘J we get Fgr“'fr'gz = Fi, i.e.

the subgroup T(Z) = <r‘§ t i =1, .. n> of W(A) is a normal
commutative subgroup. Also, it follows from (rl) for i = j that Fll' =
1.

Let W(A) be the corresponding Coxeter group, i.e. the group on
generators ry, ..., I and the following defining relations (i,i = 1, ...,
n)

mi5 _
(l‘il‘j) = 1.

Then we have a homomorphism W(A) — WI(A) defined by 5 o=

and the exact sequence
1= Ty — WA) — WA) — 1,

Let w = r, ... rim be a reduced expression of w € W (i.e. a
shortest expression in the ri); one defines #£(w). = m., Deleting some
of the r; from this expression one gets a new element w' and writes
w' € w. The partial ordering € on W(A) is called the Bruhat order.

One. constructs a section of the map W(A) — W(A) putting W =

i 1"'l ; one can show that W € W(A) is independent of the choice
m
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of the reduced expression of w {see e.g. [20]).

We shall construct connected topological groups G(A) D K(A)
such that they contain W(A) as a discrete subgroup and W(A) is their
"Weyl group".

82.2 We first present the necessary material on Kac-Moody algebras
and their representations. One may consult the book [14] for details.

Let (h,B,1Y) be a realization (unique up to isomorphism) of the
matrix A, i.e. h is a vector space of dimension 2n-rank A, and I =
Cay, o, a3 C B*, v = Chl, cons hn) C b are linearly
independent sets satisfying “j(hi) = a;
The Kac-Moody algebra ga(A) associated to the generalized

Cartan matrix A is the Lie algebra generated by the vector space h
and symbols o; and fi (i = 1, ..., n), with the following defining

relations:

(A1) [h.h] = 0; [h,ei] = ai(h)ei, [h,fj] = ‘“i(h)fj (h€h)
l—aij _ l—aijf _ . .

(A2) [ei,fj] = sijhi; (adei) e; = 0, (adfi) i = 0 ¢ = j).

The derived Lie algebra g'(A) is also called the Kac-Moody
algebra; it coincides with the subalgebra of g(A) generated by e; fi’
hi {i =1, ..., n) and its defining relations are {A2) and

(A1) [hi'hj] = 0 [hi,ej] = aijej, [hi,fj] = -—aijfj.

We have the canonical embedding h < g(A) and h' C
g'(A), where h' = Z Ch; = b N g'(A). Let n, (resp. n_) be the
subalgebra of g(A) and g'(A) generated by the e {resp. fi)’ i=1, .,
n. Then we have the triangular decompositions g(A) = n_ & b ®

n, and g'(A) = n_o h' & n,.

The center of g{A) and g'(A) is ¢ = Ch € b’ ai(h) =0
for all i = 1, ..., n2. (In the non-affine case this follows from the
fact that any root a € b of g(A) restricted to h' remains non-zero
[14, Chapter 5]; in the affine case this is a consequence of the
Gabber-Kac theorem [14, %9.11].) Note that v = 0 iff h = b’

185



{which happens iff det A z 0).

Both g(A) and g'(A) are integrable Lie algebras since the e;
and f; are ad-locally nilpotent and elements from h are
ad-semisimple.

Furthermore, the subalgebras g;; = cf, + !Ehi + Ce; and
any subspace of b are, clearly, integrable subalgebras of g(A). This
is also true for the subalgebras b" + n, and h" + n_, where
b" is a subspace of h, since such a subalgebra, say p, has the
property that for any x € p and y € g, (ad x)N y € p for
sufficiently large N.

Given A € h'%*, we extend it in some way to a linear function
A € h* and define the highest weight module L{A) over g(A) with

action dx A by the properties

(L1) L{A) is irreducible;
(L2) there exists a non-zero vector v A € L(A) such that
drplevy = 0, i = 1, ., m; dp(hv, = Alhivy, h € b,

The module L{A) remains irreducible when restricted to g'(A)
and is independent of the extension A of A.

It is easy to see that if L(A) is an integrable module (in the
sense of §1.2), then the Mhi) are non-negative integers; we denote
the set of such A by P, (C h'™®). We put P, = (A € P, A(hi)
>0,1i=1, .. nd). Define fundamental weights Aqr s A, € P,
by Ai(hj) = Sij'

A much deeper result is that conversely, if A € P, then
L(A) is an integrable module [26, Corollary 9]. It follows that Bg =
0. This will be discussed in §2.3.

Incidentally, provided that A is a symmetrizable matrix and A €
P,, the g'(A)-module L(A) is characterized by (L1) and {L2). For the
annihilator of v, € 1{A) is a left ideal in the enveloping algebra of
g'(A) generated by € f/i\(hi)"'l and hi - A(hi), i=1 .., n [14,
(10.4.6)1; on.the other hand, if (V,x) is a g'(A)-module satisfying
(L1) and (L2), then, using the gradation of V by eigenspaces of h;, one
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checks that x(fi)Mhi)ﬂvA = 0, i= 1, ..., n to get a suriective
@g'{A)-module homomorphism L{A} — V.
It is not difficult to show (by making use of the structure of

Der g'(A)) that the linear Lie algebra g'(A), acting en Agp L{A),
+

is algebraic.
Similarly, one defines the lowest weight module (L!(A),d:r;:)
over ¢(A) as the irreducible module for which there exists & non-zero

vector v;\ such that
* % ™~
dey(Evy = 0, i = 1, ., n dplhivy = AWy, b € b.
This module is integrable if and only if A € P + Actually, one has:
& E-3
L {A) = (L(A) Yin:

§2.3 In the remainder of the notes we shall study tlie gronp G{A)
assoclated to the (integrable) Lie algebra g'(A). (This is a more
"canonical” object than the group associated to @(A)). We have the
associated QG(A)-modules (L{A),r l\)’ A € P, and the adjoint
G(A)-modules (g(A),Ad) and {(g'(A),Ad). The correspondence between
the integrable ¢g'(A)-modules and differentiable G(A)-modules
{conjectured in §1.5 for an arbitrary integrable Lie algebra) has been
established in [18].

Denote by G;, H;, H, U,, U_, B, and B_ the subgroups of G(A)
corresponding to the integrable subalgebras g;, Ch;, b', n,, n,
b + n, and b' + n_ respectively of g(A). We proceed to give a
more explicit description of these groups.

We have an integrable homomorphism dyy: srz(m) R,
alA) defined by

a b

dwi [ ] = ahi + bei + Cfi.

Let @ SLZ((E) - G(A) be the corresponding homomorphism of groups.

ft 0
Put Hi(t) =9 [0 -1]' The homomorphisms ¥, are injective and one
t
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. = . = K,

1 t 1 0
exp te, = @, [ ], exp tf, = . [ ]. t € €. Furthermore, H is an
i ily g i il
abelian group equal to the direct product of the subgroups Hi' We

also have B, = H x U,.

0

1
The map Fl — ¥ [ O] {= (exp ei)(exp—-fi)(exp ei)) extends to

-1

an injective homomorphism : W(A) - G(A). We denote by W its
image and denote the image of f; again by r € G(A).

The image of T<2) is m subgroup W N H = ¢h € H Wl =
12, It follows that T(z) ~ (2/22)". The group W normalizes H.
Denote by N the subgroup of G generated by H and W. The group N
acts on » and h' via the adjoint action, H acting trivially. The map
r; — GH extends to an isomorphism W(A) — W: = N/H; the image
of r; is again denoted by r; € W. The group W is called the Weyl
group of G(A) and the r; its fundamental reflections. Put 8 = {ry,

RPN o The adjoint action of W on b' is

I‘j e hi = hi - aijhj (i,j = 1, ey n).
All the above facts of this subsection are easily checked by
calculating in the adjoint and the integrable highest weight modules,

More involved is the proof of the following fundamental result:

Lemma [26, Corollary 8]. An element of a Kac-Moody algebra g(A)
is ad-locally finite (resp. locally nilpotent, resp. semisimple) if and only
if it can be conjugated to an {ad-locally finite) subalgebra b + (n, N
(Adwir,) (resp. n, N (Adwin,, resp. b) for some w € W.

The proof of this lemma is based on Borel's fixed point
theorem [2] and the Theorem 2.3 stated below.

It follows immediately from the lemma that a g'(A)-module is
integrable if and only if all the € and f; are locally finite (in
particular, the L(A) and L*A) with A € P, are integrable).
Therefore, the present definition of G(A) coincides with that of

[181-[211, [26]1. Another application of this lemma is the conjugacy
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of Cartan subalgebras of g'(A) and the description of Aut g'(A):
Corollary [26].

{a) Every ad-diagonalizable subalgebra of the Kac-Moody algebra
a(A) (resp. g'(A)) is Ad G(A)-conjugate to a subalgebra of b (resp.
h).

{b) Any automorphism of the Kac-Moody algebra g'(A) can be
written in the form Ao or who where 0 € Ad G; X(ei) = Xike-

lk’
ME) = )\;ifik, i=1, .., n for some \ € c® and a permutation
| R V. ik preserving the matrix A; w(ei) = "fi’ w(fi) = -e, 1 =1, .,
n.

Put v, = CcKA(g)vA i g € GIA, ¢ € €3. The following
is the key result.

Theorem [261]. v A is a closed affine subvariety of L{A} (more
precisely, VA is the set of zeros of an ideal of S(L*(A)).

In the case of a symmetrizable generalized Cartan matrix A,
one can write down explicit equations for v A For that choose a
non-degenerate invariant bilinear form {°1s) on ald)  ([14,
Chapter 2]}, choose a basis €x;3 of g(A} consistent with the
triangular decomposition (i.e. a union of bases of n_, n, and b)
and let Cy;2 be the dual basis of g(A), i.e. (xiiyj) = By Then v
€V, if and only if it satisfies in L{A} ® L(A) [18]:

{1) ATAV R v = ? dn’A(xi)v ® drrA(yi)v

The equations {1} are called generalized Plucker relations {they are

identical with the usual Plucker relations in the classical case of the
SLn((D)—modules Akﬂin). One can show that generalized Plucker
relations generate the ideal of V, in the symmetric algebra of
L3

L (A} [18].

The following proposition summarizes the key results on the
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structure of the group G(A):
Proposition [20], [26].

{(a) The group G{A) is generated by the l-parameter subgroups exp

tei and exp tfi, i=1, ..., n

(b} (G(A),B,.N,S) is a Tits system (see [4] for the background on

Tits systems).

(6 €= CHylty ... Hyft) 1 t§i1 .. tiin =1 fori =1, .., nd.

n

(d) U, is generated by the l-parameter subgroups exp t(w-ei),
where w € W is such that (Adw)ei €n,i=1 .,n

{e) N is the normalizer of H in G(A).

One is referred to [26] for the details of the proof of the
Lemma, Theorem and Corollary.

A standard consequence of Proposition 2.3(b) is

(2) G(A) = g B,WB, {Bruhat decomposition).
wew

Here and further on W denotes a preimage of w in W (for example one

may take W constructed in §2.1). Somewhat less standard is
(3) G(A) = L B_wB, (Birkhoff decomposition).
wEW
To prove (3) we check that [26]
B_wB + C B_@#B, V B_Wl"iB +
Since also B_#% , exp te, = B_WB,, and since the r; and exp te;
generate G(A) (by Proposition 2.3(a)), we get that the right-hand side

of (3) is stable under right multiplication by G{A) and hence coincides

with G(A). The disjointness in (2) and (3) is easily proved by making
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use of the G(A)-modules L(A). For example, if B_#B, = B_w,B,,
applying to v, € LA, we get & (B )x,(Wv, =
"B _)r \(Wqhv, and therefore Cr \(Whv , = Cr (W) .
Taking A € P,,, we get w = w;.

We conclude this section by a discussion on presentation
problems. It is clear that N is a group on generators f; and H(t)

wherel =1, .., n t € l'DX, with the following defining relations:

1}

FH(OF L = HoH ()

iy - = HyUR, ;

7§ = Hy-1)

Flr’Jr\'1 O ‘Jf“lf") (mij factors on each side).

Thus, N, as well as W and W are amalgamated products of
subgroups of "rank" 1 and 2. We will see in %2.5 that this is also
the case for the "unitary form" K(A). It is also known to be the case
for the finite-dimensional JG(A) [51 but seems unlikely for general
G(A).

Problem. Find a presentation of G(A) and U,. (These two questions
are closely related to each other; a solution is known in the rank 2

case only [20].)

Problem. For which indecomposable A the group G(A)/C is simple. (It

is simple if A is of finite type and it is not if A is of affine type.
As shown in [25], the formal compietion of G(A}/C is always simple.)

§2.4 Recall that a function f: G(A) — C is regular (weakly regular
in the terminology of [18]) iff the functions foglxi: " — T are
polynomial functions for all % = (xl, xn) with the X taken from
the set Cey, .., o, fy, .., £} (see §1.8). Very little is known
about the structure of the algebra C[G{A)] of regular functions and
the G(A) X G(A)-module (T [G(A)], ’rreg)‘
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Conjecture. The inclusion G(A) — Specm C[G(A)] is surjective.

The subalgebra C€C[G(A)] o of strongly regular functions is
understood better. Recall that a regular function f is called strongly
regular [18] if for any g € G(A) there exists a subgroup U_:_ of U,
(resp. U: of U_) which is an intersection of U, (resp. U_) with a
finite number of its conjugates, such that flu_gu,) = f(g) whenever u, €
U_;_, u_ € U:_. One has the following analogue of the Peter-Weyl

theorem,

Theorem [18]. The linear map &: ASP L*(A) ® LA} — C[G(A)]
+

defined by &(v* ® v) = fv" v is a well-defined injective G(A) X
G(A)-module homomorphism onto T [G(A)] Sr.’

The proof of this theorem is fairly simple: we check that the
G(A) X G(A)~module C[G(A)] .. is differentiable and hence can be
viewed as a g{A) X g(A)-module, to which we apply a version of the
complete reducibility theorem from [17].

Note that C[G(A)],, = CLG(A)]"

s .r. (in the terminology of

1.8), where M is the subcategory of integrable g(A)-modules from the
category 0.

For a subgroup P of G(A), let (B[G(A)]P denote the algebra of
all f € CLG(A)] such that flgp) = flg) for all p € P. G(A) acts on
it by (g-fix) = f(g"lx). Let 6, be the character of B, defined by
GA((exp hju) = th) for h € b, u € U, and let, for A € P,,
8, = £ € (I:[G(A)]s'r. I flgh) = GA(b)f(g) for ¢ € G, b €

B,3. Then we have an immediate coroilary of the Theorem 2.

Corollary.

(a) (Borel-Weil-type theorem) The map L*(A) — 8 A defined by

Vb fv v is a G-module isomorphism.
t
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(b} CILG(A}] gfr .= AeP 8, and this algebra is isomorphic to
4

AG€5 L*(A) with the Cartan product m: L*(A} @ L*¥(M) — L*A +
P
N

M) characterized by the properties that o is a g(A)-module

I3 * *
homomorphism and u{v A B vy =v A+M

The main result of [18] about the algebra structure of
C[G(A)] .. is that this algebra is a unique factorization domain. An
immediate corollary of this is that the algebra C[G(A}] 24.-‘,. is a
unique factorization domain and that the coordinate ring of strongly
regular functions on V A Is integrally closed.

It is also shown in [18] that G(A) can be given a structure of
an affine algebraic group of Shafarevich type by constructing an
embedding of G(A) in a vector space as a closed affine subvariety. It
has many nice properties, for example, G(A) acts morphically on L(A},
A € P, and on g(A). It is still an open problem, however, whether
the coordinate ring for this embedding coincides with € [G{A)].

Finally, I want to mention one striking difference between the
finite~ and infinite-dimensional cases. Let A be an indecomposable
generalized Cartan matrix, If A is of finite type, then C[G{(A)] =
T [G(A)] e, 18 the coordinate ring of the finite-dimensional affine
algebraic variety G(A); in particular, G(A) = Specm O:[G(A)]s.r.‘

Now let A be of infinite type. Then, of course, C[G{A)] is

much larger than ID[G(A)]s.r.. Moreover, the set R: = Specm

(E[G(A)]s’r.\G(A) is always non-empty. Namely, the G(A) X

G(A)-invariant subspace m = 6( @ L(A) ® L(A) is an ideal
AEP,\(0)

{in a sharp contrast to the finite-dimensional case), which is an
element of R [18]. Recently, D. Peterson has computed the set R.
In particular, it turned out that R = Cm2} in the affine case. A
discussion of the "partial compactification” Specm C€C[G(A)] .. of
G(A) in connection to the theory of singularities of algebraic surfaces
may be found in this volume [31].

2.5 In this section we study the algebraic structure of the unitary
form K(A) of the group G(A). If A is a generalized Cartan matrix of
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finite type, then K(A) is the compact real form of the complex
semisimple Lie group G(A). Thus, the groups K(A) are
infinite~dimensional analogs of compact Lie groups.

The Kac-Moody algebra g'(A) admits an antilinear involution

o determined by wo(ei) = -fi, wo(fi) = -e, i = 1, .., n. Since w,

preserves the set of locally finite elementsl, it can be lifted uniquely
to an involution of G(A), which we also denote by wj; Let K(A) be
the fixed point set of this involution in G(A).

Provided that A is symmetrizable and indecomposable, the
Kac-Moody algebra g'(A) carries {a unique up to a constant factor)
invariant bilinear form (=1 ) such that (ei I fi) > 0. Put (x| y)o
= =(x | wo(y)). The triangular decomposition is othogonal with respect
to the Hermitian form (=1 -)0 and the main result of [19] is that it
is positive definite on rn and n_. Using this, one easily deduces [19]
that any G(A)-module L{A), A € P, carries a unique positive definite
Hermitian K{A)-invariant form H(s 1t *) such that
H(v AlvY A =1L This is a justification for the term "unitary form".

For an arbitrary generalized Cartan matrix A, it is a simple
fact that L{A), A € P, carries a unique Hermitian form H(«1*)
such that H(v Al Y A) = 1. It remains an open problem whether it is
positive definite in the non-symmetrizable case.

The involution wo Dreserves the subgroups G, H; and H; we
denote by K;, Ti and T respectively the corresponding fixed point
subgroups. Then K, = fﬂi(SUz), T, = tpi(cdiag(x,k"l) (DY

i i
= 13) is a maximal torus of Ki and T = 11 Ti is a maximal
i

commutative subgroup of K(A). Put HI = wi(cdiag(X,X'l) N
EIR,)\>0}),H+=111H1';thenH=TxH+.

o
Let D (resp. D) = Cu € € | 1ul £ 1 (resp. lul < 1)2
[+]
be the unit disc (resp. its interior) and let S1 = D\D be the unit
circle. Given u € D, put

u (l-lulz)l/2
€ SUZ’

z(u) =
“(-u H/2 g
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and put zi(u) = wi(z(u))‘ We have r"'1 = zi(O) € Ki’ hence W C K(A) €
G(A). Put

o
Yi = Czi(u) u€Dnl)C Ki‘

The same argument as in [32, Lemma 43(b)] gives
(4) Bfj B = Y; B (uniquely).

(Here and further on "uniquely” means that any element from the set
on the left-hand side is uniquely represented as a product of elements
from the factors on the right-hand side.)
Let w = Pil ey be a reduced expression of w € W and let
8
W be its preimage in W defined in 2.1, Using {4), the same

argument as in [32, Lemma 15], gives
{5) B, w B, =Y, ..Y; B, (uniquely)
m

Put Kw = K(A} h B, W B,. Put Yw = Yi Yi ; this is independent
of the choice of the reduced expression for w,mas follows from the
following formula [207:

Yw = (k € Kw H(ﬂ’Ai(k)vAi { n'Ai(v‘v)v }y>0,i=1, ., n}

A

We have by (5):

(6) KW =Y, T (uniquely).

Put I—{w = Ki Ki T; this is also independent of the reduced

expression of w, as folllgws from
(7 K, = l’l K. ..

W oGigw W

Finally, by the Bruhat decomposition, we have
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(8) KA = 1L Ky,

We obtain, in particular that K(A) is generated by the Ki’ i=1, .,

and the Iwasawa decomposition [26]:
(9) G(A) = K(A)H, U, (uniquely).

We proceed to establish a presentation of the group K(A),
which may be viewed as a 'real analytic continuation” of the

presentation of the group W(A).
We have the following relations coming from SUZ:

R ) zlu)gluy) = zluguy) if ugu, € 84,

() zwzl-D = z6-1) if u € D,

oo

(iii) zi(“l)zi(“z) = Zi(“l)zi(“z) if uy,u, € and
4 o 3 1
uy # =iy, for some unique u; € D and u, € 8"
Furthermore, Ti normalizes Kj and the conjugation is given by

a -8
(R2) zi(ul)zj(uz)zi(ul)'1 = zj(ul”uz)zj(u1 JLJ) if uy; € Sl, u, € D.

Finally, if m;; % 0, then R IS (mij factors on each side).

Hence YinYi e = YjYin ... (uniquely). In other words, we have
(R3) zi(ul)zj(uz)zi(u3) e = zj(u;)zi(u;)zj(u;) (mij factors on each
[+

(<3
side), if Uypllg, o € D, for some unique u;,u;, .. € D,

Theorem [20]. The group K(A) is a group on generators zi(u) for i =
1, ..., n; u € D, with defining relations (R1), (R2) and (R3).

Let f{'(A) be the group on generators zi(u) i=1 .., n u€Dbh
with defining relations (R1), (R2), (R3), let a: !N{(A) - K(A) be the
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1

canonical homomorphism, let w = ril ... r, € W be a reduced
m

expression and let f{w = a'l(Kw). It is not hard to show that any

element of ﬁw can be brought to the form zil(ul) zim(um)zl(vl)

zn(vn), where wy € S, v; € sl, Then (6) completes the proof of the
Theorem. (The details may be found in [20].)

Note that the groups ﬁ(A) have been introduced (in a somewhat
different form) in [13] and it was proved there, by a topological

argument, that Kera is a finite central subgroup if A is of finite type.

§2.6 Since G(A) is generated by a finite number of 1-parameter
subgroups exp tx, where x € X = Cei, fi 1 i=1, ..., nl, it is a
(connected Hausdorff) topological group in the topology defined in
§1.8. In this section we discuss some of the results of [21] on the
topology of the groups G(A) and K(A) and of the associated flag
varieties. The reader is referred to [21] for details.

All the subgroups which have appeared in the discussion are
closed. The bijection K(A) X H, X U, N G(A) provided by the
Iwasawa decomposition is a homeomorphism. Furthermore, H, and U,
are contractible. Thus (as in the finite-dimensional case} G(A) is
homotopically equivalent to K(A).

The topology on K(A) can be described explicitly as follows.
Given w € W, take its reduced expression w = ri] Pim and define a

map (SU,)™ X T — K(A) by (ky, .., kpt) = Y

‘Pim(km)t. The image of this map is ﬁw' and we take the quotient
topology on it. This topology is independent of the choice of the
reduced expression and makes I—{w a connected Hausdorff compact
topological space. Then a subset F of K(A) is closed iff F n K, is
closed in Kw for all w € W. It follows that K, is the closure of Ky
and that K, € K, iff w' € w. Thus, as a topological space, K(A) is
the inductive limit with respect to the Bruhat order of the compact
spaces }_(w.

The most natural way to study the topology of K(A) is to
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consider the fibration
w: K(A) — K(A)/T.

The topological space F(A): = K(A)/T is called the flag variety of the
group K(A) and of G(A). Put Cw = K(Yw). Then by (6) and (8) we

get a cellular decomposition

FA)= U C
weEW w
To show that this is a CW-complex one has only to construct
attaching maps (for some reason this point is routinely omited in the
literature on finite-dimensional groups, see e.g. [2]). For that, given
w € W, choose a reduced expression w = ril N and define a map
8

@, D% — F(A) by a0y, ., u) = Zil(ul) zis(“s) mod T. This

[+] -
gives a homeomorphism of D® onto Yw by (5). Since Kw is the
closure of Kw, by (7) we have:

(10) C, = u C

4]
waw

where éw is the closure of Cy It s clear that (IW(Dk”1 X gl X
Ds'k) C éw" where w' is obtained from w by dropping r . Thus, by
(10) the image of the boundary under the map Ay lies in the union
of cells of lower dimension (this argument is taken from [21]).

Since dim CW -'; 24(w), there are no cells of odd dimension.
Thus H«(F(A),Z2) and H (F(A),2) are free Z-modules on generators of

degree 22{w), w € W. Putting Wi(q) = éw qﬂ(w), we obtain that
W

the Poincaré series for homology and cohomology of F(A) over any
field is W(qz). (A simple inductive procedure for computing W(g) may
be found in [4].)

Actually, as in the finite-dimensional case, F(A) can be given
a natural structure of a complex projective manifold. For that note

that, by the Iwasawa decomposition, we have a homeomorphism G(A)/B
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- F(A). But G(A)/B can be identified with the orbit G-vA in
the projective space PL{A) for A € P,,. This is a closed subvariety
of PL(A) by Theorem 2.3. An equivalent definition, independent of the
choice of A € P, is G(A)/B = Proj AgP L*(A) {cf. Corollary 2.4).

4

As a result, the éw become finite-dimensional projective
varieties, called Schubert varieties, and F(A) is their inductive limit
with respect to Bruhat order [18]. The study of singularities of

these varieties has many interesting applications. Some of them are

discussed in this volume [11].
P. Deligne kindly provided a proof of the following result:
Let X be a projective algebraic variety over € which is

decoxﬁposed into a finite disjoint union of subvarieties Xg with

dimmxg = {, such that )'(?\xg cu i X; and there exist morphisms

i s<i

lljﬂ:i — i X; which are homeomorphisms. Then the topological space
X is ratio%ally formal (in the sense of [6]).

Applying this to our situation, we deduce that ¥F(A) is a
rationally formal topological space.

Let Q' = % Zh; and let P = (A € b™ 1 \h) € 2

i = 1, ..., n) be the dual lattice. Let S(P) = & Sj(P) be the
iz0

symmetric algebra over the lattice P, and syt = o Sj(P) the
augmentation ideal. Given a field [F, we denote S(Hn?: = F 85
S(P), etc. In order to study the multiplicative structure of
H*(?(A),IF), we define the characteristic homomorphism ¢: S(P}) —
H*(ZF(A),Z) as follows. Given A € P, we have the corresponding
character of T and the associated line bundle &y on F(A), Put
w{N) € Hz(':r"(A),Z) equal to the Chern class of ;P)\ and extend by
multiplicativity to the whole S(P). Denote by Y the extension of ¢
by linearity to S(P)p.

In order to describe the properties of YE define operators
A fori=1, ., non S(P) by

Alf) = (£ - rilf))/ay,
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and extend by linearity to S(P)‘F. Put [IF = {f € S(P){F+ [

+ , . S
Ail Aim(f) € S(P)n: for every sequence i o lm)‘ This is a

graded ideal of S(P)".

Proposition [21], [22]. Let [F be a field. Then

(a) Ker YE = I!F {this holds for an arbitrary ring [F).
(b) H*(:}'(A),[F) is a free module over Im Y

(c) Any minimal system of homogeneous generators of the ideal IIF

is a regular sequence.

Let CH(G(A),[F) denote the quotient (graded) algebra of
H*(S-'(A),IF) by the ideal generated by n//(P!F); this is called the Chow
algebra of G(A) over F. Notice that, by Theorem 2.6(b} below,
CH(G(A)F) = x‘(H*(fF(A),lF)). The terminology is justified by the fact
that for A of finite type, the Chow ring of the complex semisimple
group G(A) is isomorphic to CH(G(A),Z) (A. Grothendieck).

Denote the degrees of the elements of a minimal system of
homogeneous generators of the ideal Ig by dl’ ey ds(s € n). These
degrees are well-defined; we will call them the degrees of basic
generators of I. Note that s = n if char F = p # 0 since W acts
on P @, IF via a finite group.

Actually, Proposition 2.6 holds in a much more general situation
[22]. For example, the part (c) holds for any group generated by
reflections over a field F of arbitrary characteristic. For W finite
and F = € we recover the classical result of Chevalley-Shepard-Todd.

It is not difficult to deduce from Proposition 2.6 the following
results.

Theorem [21]. Let F be a field. Then:

200



(a) CH(G(A),®) is a polynomial algebra on (in general infinite number
of) homogeneous generators. The Poincare series of CH(G(A),IF) is
equal to W(qz)(l—qz)n/ E (1-q i). The (graded) algebra H*(K/T,Q)
is (non-canonically) isoim-oiphic to the tensor product of Im Yq and
CH(G(A),D).

{b) The cohomology spectral sequence Er(K(A),!F) of the fibration

r: K(A) — F(A) degenerates at r = 3, i.e. E3(K(A),IF) =
E  (K(A),F).
(c) rr‘l induces an injective homomorphism of CH(G(A),F) into

H (K(A),F) and into E_(K(A),[F), the image being a Hopf subalgebra of
H' (K(A),F).

(d) The algebra E_({K(A),[F) is isomorphic to a tensor product of

C(G(A),F) and the cohomology algebra of the Koszul complex {A(P) @
Im ¢u=,d), where d(A ® u) = ¢(\} V u. The latter algebra is an
exterior algebra on homogeneous generators of degrees 2dy-1, ...,
2ds—1. The Poincaré series of H.(K(A),IF) is equal to the product of

. g 2d.-1
the Poincare series of CH(G(A},IF} and the polynomial i[I1 A+q ')

As an immediate corollary of Theorem 2.6(a) and (d), we deduce

the following classical results.

Corollary. Let K be a connected compact Lie group, T its maximal
torus, h the complexified Lie algebra of T, W the Weyl group, and let
dy, .. dn be the degrees of the basic homogeneous invariants for the
action of W on S(h). Then:

n di
(a) Wiq) = lll ((1-q ')/(1-q)).

i=

{b) H*(K/T,lL‘) is generated by HZ(K/T,EZ) and is isomorphic to the
quotient of S(h) by the ideal generated by (S(B)+)w.

" .
{c) H (K,C) is a Grassmann algebra on homogeneous generators of
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degrees Zdl—l, s Zdn—l.

(d) The Chow ring of a complex reductive group is finite.

In fact, using explicit formulas or the cup product [21] (see
also the next section), it is easy to show that the third term of the
cohomology (resp. homology) spectral sequence over 2 of the fibration
® is isomorphic to the homology of the complex (C*,d*) {resp. (Cg,dy)),
where C° = Z[W] 8, A(P), C. = Z[W] 8, AQ"), deg 5, =
deg 8% = 24(w), deg h; = deg A; = 1, and

Y ep= 3 ¥ g (e,

w_l.»w'
(s, 80 = = 5, 8(YAa
w'_Lw
Here w' — w means that 2(w') = 2(w) - 1 and there exists a

positive real coroot ¥ € ZZhi such that w = w'ry, where ry is the
reflection with respect to v; ©
that 6YX = <\,¥> for X € P,

v is an antiderivation of A(P) such

Remark. If we take a standard cellular decomposition of T, then (8)
together with (6) gives us a cellular decomposition of K(A).
Unfortunately, it is not a CW-~complex; but if it were, then, as one
can easily see, the complex (Ci,ds) would be the corresponding

homology complex.
Conjecture. E_(K(A),2) = E3(K(A),Z).

Let me state also some corollaries of Theorem 2.6 for arbitrary
K(A).

Corollary.

(a) K(A) is a connected simply connected topological group:
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HA(K(A),2) = 0.

(b) Let A be indecomposable and let € = 1 or 0 according as A

is symmetrizable or not. Then Ha(K(A) Q) = 2¢;

dimo H4(K(A),®) = #(cycles of the Dynkin diagram of A) + 1 - €.
®

H (K(A),0) is completely determined (as a graded vector space) by the

Weyl group W regarded as a Coxeter group and by €.

{c) The minimal model (in the sense of [6]) of the topological

space F(A) is a tensor product of an exterior algebra on generators
El, vees Es of degrees Zdl-l, ces st-l, and of a polynomial algebra on
. generators of degree 2j, i =

)
2, 3, ..., where dl’ ds are the degrees of basic generators of Id)

n generators Aq, ... Ay of degree 2, a

and the a; are determined by

d. ), -8
Wl -ab= T (Q-qb m (-gh 3
1 i>2

i= 2
The differential d of this minimal model is 0 on all even generators
and dEi = Pi(Al' vaer An), where the Pi are basic generators of IQ C
0[/\1, cees An]'

(d) The minimal model of K(A) is isomorphic to H*(K(A),Q) with
trivial differential, and is a tensor product of an exterior algebra on
generators of degrees Zdl-l, vers 2ds—1, and a polynomial algebra on a;

generators of degrees 2j, j = 2, 3, ... .

(e) The dimension of the k-th rational homotopy group of F(A)
and K(A) is equal to the number of generators of degree k of their

minimal models,

Cohomology and the Chow ring in the finite-dimensional case
and arbitrary field [F are discussed in detail (from the presented point
of view), in [15]. The affine case will be discussed in the next
section. Here I will discuss briefly the case when A is an
indecomposable generalized Cartan matrix of non-finite and non-affine

type and F = @. Put = 1 or 0 according as the matrix A is
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symmetrizable or not. Then IQ is generated by ¢ elements of degree
2. Put

Cla) = W@l - o™1 - ¢?)€.
Then we have by Corollary 2.6(c):

(11) Cl = I (1-a) 3 where a; » 0.

122 !
It would be interesting to find a purely combinatorial proof of this
result, By Theorem 2.6(a), the Chow algebra CH(G(A),@) is a
polynomial algebra on a; generators of degree 2j, j = 2, 3, ... . By
Theorem 2.6(d), H*(K(A),d)) is a tensor product of CH(G(A),Q) with the
exterior algebra on € generators of degree 3.

A stronger form of (11) is the following:

Conjecture. Clq) = —}-(—)-, where B{q) = bzq2 + b3q3 4+ ... and
B(q

by > 0.

For example, if n = 2, then Clg) = 1, For the matrix A

2 -1 0
[-(l) % -g] one has Clq) = (1 - ¢®)1 - 03)/(1 - - q3). and Bfa)

S/ - A - By

If n = 2, then E3(K(A),Z) = E(K(A),2) for trivial reasons,
and it is not difficult to compute the homology of the complex (C*,d')
explicitly, obtaining the aéidifi;/e structure of H*(K(A),Z). I state
here the result for A = , where a 2 2. Define a sequence of
integers ¢ for j € 2 by tTlg following recurrent formula:

00 = 0, 01 = 1, Cj+2 = aCj+1 - Cj.

Then HZK(A),Z) = HA*3(K(A)2) =~ 2/c2. Notice that c; = j if a

= 2, and ;= @y the 2j-th Fibonacci number, if a = 3,
§2.7 The basic tool in the study of the cohomology of flag varieties
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F(A) are certain operators introduced in [21] which “extend” the
action of the operators A from the image of ¢ to the whole
cohomology algebra. (This seems to be a new ingredient even in the
finite-dimensional case, ¢f. [1], as far as "bad primes" are concerned
{153

The Weyl group W acts by right multiplication on F(A) =
K(A}/T, which induces an action of W on homology and cohomology of
F(A). On the other hand, since the odd cohomology of Ki/Ti and
K(A)/K,T is trivial, the spectral sequence of the fibration py: K(A)/T
-: K(A)/KiT degenerates after *the second term. It follows that
H (¥(A),2) is generated by Im p,, which is ri—fixed and the element
WAy

We deduce that for each i = 1, ..., n there exists a unique
Z-linear operator Al on H*(S‘(A),Z), lowering the degree by 2, such

that r leaves the image of Ai fixed and
u - ryfw) = Altw) U glay) for u € H (F(a)2)

Similarly, we introduce operators Ai on Hy(F(A),Z), raising the

degree by 2, such that "i(Ai(z» = —Ai(z) and
z + r;(z) = Az} N Ylay) for z € Hu(F(A),2).

The operators Al and Ai are dual to each other with respect to the

intersection form. One has:

{12) Ai(u Vvl = Ai(u) Vrv) +u v Ai(v);
(13) Afu N 2) = ) N AR + Al N oz
(14) Al = <A b,

The operators Ai have the following simple geometric
interpretation. Recall the map A D‘Q(W) = F(A) defined for w €
W in §2.6. VThe relative homology map - gives us an element

85, € sz(w)(&'(A),Z). Then 08y dwew is a @-basis of
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Ha(F(A),2); let 8% c be the dual basis of H'(F(A)LZ). We have
the following formulas for the action of the Weyl group in these bases
generalizing that from [1] (see [21]):

3Y 4f eCwry) > 4w,
]
(15) ri(ﬁw) =35~ 3 <ai,Y>5w otherwise

wri_.l_;w‘

-8, if 2(w) > £2(wrx ),

(16) I‘i(ﬁw) = {-5w+ > <a;,¥>8 ., otherwise

w'_Y_.wr1

The basic fact that is used to prove these and other formulas
is the following lemma which describes the action of the operators Ai

and Ai on Schubert cycles Sw and cocycles 8%,

Lemma [21].

1}

(a) As ) = 38 0 otherwise.

wry if .e(wri) > 2{(w) and

0 otherwise.

H

(b  AlE™) = 5" Lif o(w) > owr) and

Corollary.

(a) The subalgebra of W-invariants on H*(&'(A),Z) coincides with
1%x(a),2).

(b) The operators Al generate a Hecke algebra, i.e. an associative
algebra on the A!' with defining  relations: (Al)2 = 0
AAIAL = Adplpl (my; factors on each side).

Note that Corollary 2.7(a) (which means that Ai(u) = 0 for all §
implies u € HO('&'(A),Z)) together with (12), (14) and (15) completely
determines the multiplicative structure of the algebra H*(TF(A),Z).
Formulas are especially simple when one of the factors is of degree 2:

then we get the following formulas, which generalize that in [1] (see
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€211

(17 s V¥ = 3 avsY
W—t—»w'

(18) gz N B, = ZY YD
W ey W

Note that Proposition 2.6{a) follows immediately from the fact
that Yol = Aio«//, which is clear from the construction of the Ai.

Furthermore, using the operators A', we can compute by
induction on the degree of u the action of the total Steenrod power @
on H*(?(A),ﬂ:p) by the following formula [21]:

(19) Alew) = el + gla)P-d).

Finally note that the same approach allows us to compute the
Lie algebra cohomology H*{g'(A),lL‘) and to show that it is isomorphic
to H*(K(A),(D). A differential forms approach to the study of F(A) is

developed by Kumar in [24] and in a paper of this volume.

§2.8 A Kac-Moody algebra g{A) is finite-dimensional if and only if A
is of finite type (l.e. all principal minors of A are positive). The
class of these algebras coincides with the class of finite-dimensional
semisimple Lie algebras, The associated group G(A) is the Lie group
of C-points of the connected simply connected algebraic group whose
Lie algebra is g{A). The group K(A) is the compact form of G(A), H
is the Cartan subgroup of G(A), B, and B_ are "opposite” Borel
subgroups, etc. In this case most of the results of Chapter 2, except
for some results of §2.6 and 2.7, are well-known.

In this section we discuss in more detail the case when the
matrix A is of affine type, i.e. all proper principal minors of A are
positive, but det A = 0 {A is then automatically indecomposable and
symmetrizable). An example of such a matrix is the extended Cartan
matrix of a simple finite~-dimensional Lie algebra. This is the

"non-twisted" case we will be dealing with. The "twisted" case is
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then routinely deduced by taking a fixed point set of an automorphism
of order 2 or 3 (see [14, Chapter 8] for details).
Let § be a complex simple finite-dimensional Lie algebra with
9 [+ [:] 0

Chevalley generators e, £, h,, i =1 .., £ and let M = ZZhi,

i) ]
b =C @Z M. Let A = (aij)f,j-l be the Cartan matrix and A =

(aij)f, 420 the extended Cartan matrix of § We may identify the

~

affine Lie algebra g'(A) with the Lie algebra § 1, (see 813
Clzz ]

for its definition) via the isomorphism determined by:
aQ a .
ei | 1 ® ei, fi bl 1 ® fi, 1= 1, ey -2;
ey = Z ® e fro b z"1 ® e
0 -8’ 0 o’
where 6 is the highest root of §, and e_g and ey, are root vectors

normalized such ‘that for ;0: = [ee,e__g] one has: 9(*:0) = 2,
Since Qé[Z»Z_l] = C 1:-5 + d€ [z,z'l], this construction coincides
with the customary one (see e.g. [14, Chapter 7]). In particular dim v
= 1 and » = Cc, where ¢ = J a‘i'h., a‘i' are positive relatively

i=0 !
prime integers. Thus, we have an exact sequence:

(20) 0 == Cc = g'(A) -—gl-r & 1y =
Clzz "]
Taking F(P(z)) = constant term of P(z) € m[z,z'l], one easily sees
that g(A) = S -1 (see §1.3 for the definition).

As in &gz’gase 'F(;f the affine Lie algebra theory, our objective
is to describe the structure of the affine group G(A) in terms of the
"underlying” finite-dimensional group G(x).

Let G be connected simply connected algebraic group over €
whose Lie algebra is §. We will denote by GR the group of points of
G over a commutative algebra R in a fixed finite-dimensional faithful
G~module V,

First of all, we identify the group G(X) with the group g: =
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<]
G(D' Using the notation of %2.3, we have injective homomorphisms ®;

[+]

0 [+] [+] [+] 4]
SLz(fD) — G, the subgroups Gi’ Hi’ exXp tei, exp ‘cfi and elements ;i

o 2 o
fori=1, ..., £. Then H: = I H is the Cartan subgroup of G, the
jal

[+ o 14 [+]
subgroup U, (resp. U_}, generated by the exp te; (resp, exp tf i), t €

0o
n, are maximal unipotent subgroups of G.

c,i=1, ..,
0 [s)
Let ¥ (resp. N) be the subgroup of G generated by the Fl, i=
g 4]
1, . n (resp by W and H). Then N 1s the normalizer of H 1n G and

N/T = W the Weyl group of G Let C denote the center of G (it is
finite).
It is not difficult to see that the group associated to the

~

integrable Lie algebra § is G: = G _4+_, and that
Clzz
associated to the exact sequence :IZO) we have an [exact sequence of

groups:
(21) 1— &, gA) 1 G — 1.

We have a canomcal embedding G o G the exact sequence (21)

splits uniquely over G hence we have a canonical embedding G —
0

G(A), so that w!—wl G1= H =H and ri=r for i = 1, 2,

Furthermore, associated to the 1ntegrable homomorphism sﬁz((l?)

0

a o
g _1. defined by [ ] — -ahg + bz"leg + cze_g, We have
Clzz "] c -a

an injective homomorphism SLZ((C) b 6, which lifts uniquely to Pq
2
SLZ((D) — G(A). The homomorphism u is defined by ult) = .llo
i=

X X oo

Hi(t), t € €7, and we have C = u(C™) X C.

~ o o
Define an embedding M —s G by h, Hi(z), i=1, .., &

] ~
Then we get the subgroup W o« M of G. Restricting 7 to the
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subgroup W of G(A), we get from (21) the following exact sequence:
- [
1 e (413 oo W ood WK M ey 1.

0
This sequence of course splits over W, but over M it gives a non-split

exact sequence
1= (313 — L = M — 1,

It is not hard to show using the results of [7], that this central
extension is determined by the property that for any preimages a
and 8 of a,8 € M, one has

NNnJ_lN

aga~1p1 = (cplar d),

when the bilinear form (-1 +} is the W-invariant form on [:* normalized
by the condition (616) = 2. Of course, W(A) = W(A) x M.

The invariant bilinear form on g(A) (defined in §1.3) is
non-degenerate and invariant under Ad G(A) and the adjoint action via
G is (see e.g. [19]):

(Ad al2))x(z) = a(@)x(Dalz)™) + Res tr %"‘2 zalz™L.

~ o ~
Put U, = Cal) € Ggpy 1 a0 € U, T = ca™) €
(-] ~ ~
G 1. ) alw) € U3 C G The exact sequence (21) splits over U,

Clz
and fj_, but not uniquely. The subgroups U, and U_ of G(A) are the

(unique) sections which fix v, € L(A) for all A € P,. Put Uk =
+1 +1 +k k
Ca(z—") € Gﬂ: +1 1 alz— )—IV € z— G(E [zil 3}, and let U™ be

the preimage of U% in U,.
The Bruhat and Birkhoff decompositions (2) and (3) give the

following decompositions:

G = G MG ,
C [z,z'l] C [zil] C[z]
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various versions of which play an important role in geometry and
analysis (see e.g. [9], [10]}).

Among the integrable highest weight moduies the basic module
L(AO) is especially important. It is realized in [16] in the space of
polynomials in infinitely many indeterminates. The main idea behind
the work of the Kyoto school on the KdV-type hierarchies is that the
generalized Plucker relations can be written in this realization in terms
of Hirota bilinear equations, which are PDE of certain special form
which include many important PDE of mathematical physics; the variety
VA thus becomes the totality of polynomial solutions of these PDE
{see [14] for a discussion of these results). A somewhat different
approach is discussed in this volume by A. Pressley [27].

Of course, the matrix coefficients of the G(A)-module
A -1. are regular functions. None of them, except constants, are
strong?y regular functions, however, since by Theorem 2.4, a strongly
regular function f, such that flcg) = f(g} for all ¢ € C and g €
G(A), is constant. Notice that f is a strongly regular function iff for
every g € G(A) there exists k > 0 such that f(u_gu,) = f(g) for any u,
€ Uk, -

The topology on G(A) is the unique topology such that (20) is
an exact sequence of topological groups, X carries the metric
topology and G the topology induced by the box topology on
E[z,z'l].

Now we turn to the discussion of the umtary form K(A) of
G(A). Let “’0 be the involution of the group G which leaves the G

invariant and induces on it the standard involution of SLZ((D).

a — %51 The fixed point set of :)0 is a compact form of g
[+ L] ~
denoted by K. The involution wg lifts to an involution &0 of G via
the antilinear involution of the algebra €[z, z"l] which maps z to
1 In turn, “’0 hfts (uniquely) to the involution Wy of G(A) by
requiring wy{u(t) = u(f’ ), t € X
Note that G may be viewed as the group of polynomial maps

cX — G The fixed point set of °’O on G are those maps for which
L]
the image of the unit circle is contained in K: these are called
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[+]
polynomial loops on K. We denote the group of polynomial loops S1
© ~
—s K by K. Exact sequence (20) gives, by restriction, the following

oxact sequence:
1— 8l & ga) 1o B — 1

Identifying 10( with the subgroup of constant loops of K and
denoting by Q(lt) the subgroup of based loops (i.e. 1 goes to 1), we
have K = ;Z X n(;).

Consider the map K(A) — PV Ag defined by k e

[«]
" A (k)v Aot It is not difficult to see that K is the stabilizer of va
0 0 0

o ~
and hence the above map induces a homeomorphism O(K) —
PVAO. It is a well-known fact (see [8]) that the space of all

o
continuous based loops on a compact Lie group K is homotopically

equivalent to the space of poynomial loops ﬂ(lz). Thus, classical
results on loop space cohomology [3] fall into the general framework
of 2.6, Moreover using that rri(Q(X)) = niﬂ(X), we deduce from
Corollary 2.6(d) and (e) that for the affine Weyl group W one has
[3]:

[ £ Zmi -1
Wiq) = Wig) 1“1 (1-q 97,

where my + 1< m, + 1€ ..« m, + 1 are the degrees of the basic

" 4]
W-invariants, and H (QK,®) is a polynomial algebra on generators of

degrees Zml, e Zmﬂ.

Put Q(lz)<2>: = 'r-l(()(l‘;)). This is a standard notation of the
2-connected cover of n(lz). This means that the map 7: Q(Iz)<2>
e ﬂ(l‘z) kills the second homotopy group (which is 2) and induces
isomorphismn of higher homotopy groups (this property of 7 can be
easily checked). Thus, we have
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KA) = K x O(R)<25.

o
Since the cohomology of K is by now well understood [15], it remains
{and is of independent interest) to compute the cohomology of
[+]
0(K)<2>, Theorem 2.6 leads to the following result.

[:]
Theorem [21]. Let K be a connected simply connected simple
compact Lie group, and let my + 1, .., m, + 1 be the degrees of
the basic invariants of its Weyl group. Then

[+
(a) H*(O(K)<2>,®) is a polynomial algebra on generators of degrees

Zmz, ens ng.

/ [+]
{b) The Poincare polynomial of H*(O(K)<2>,IF), where F is a

field of characteristic p > 0, is

a a 2 2m
@+ ha -2t 1 o@-q HL

im

Here a is the minimal positive integer such that Aga € Ig. One
has: a = 1 if p > m,. The number a for p £ m, has been
computed recently (at my request) by A. Kono using topological
arguments,
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