Advanced ser. in Math. physics - Vol. 7
World Scientific, 1989.

Classification of modular invariant representations of affine algebras.!
V.G. Kac and M. Wakimoto

§0. Introduction.

Let g be an infinite—dimensional complex Lie algebra and let H be a derivation of
g (Hamiltonian) which is diagonalizable with finite—dimensional eigenspaces. Consider an
irreducible representation of g in a vector space V which extends to g»uCH . V is called
a positive energy representation if H is diagonalizable on V with finite—dimensional
eigenspaces and Spec HC h + I%T Z+ ,heSpec H, for some NeN ’and h eR, called the

minimal energy of V . The representation of gin V is called modular invariant if the

2nit(H+a)

function trve , called the (modified) character of V ,is a holomorphic modular

function in 7 (of weight 0) on the upper half—plane, for some a € R, called the modular
anomaly of V. (Note that modular invariance implies energy positivity since a modular
function must have at worst a pole at iw .)

It has been clear for some time now, both to mathematicians and to physicists, that
the most interesting representations of an infinite—dimensional Lie algebra are the positive
energy representations. But it is the modular invariant representations that have played a
fundamental role in the recent development of conformally invariant quantum field theory
and statistical mechanics.

In the present paper we address the problem of classification of modular invariant
representaions of an affine algebra g. Note that positive energy representations of g are
nothing else but irreducible highest weight modules L(A) . In 7], we proved a character
formula for L(A) under the assumptions

(0.1a) A+p,a> ¢ {0,-1,-2,...} foralle€R , where R _ isthesetof all
positive real coroots,
(0.1b) Re<A+p,c>> 0, where c is the canonical central element of g .

This formula shows, that, under the assumptions (0.1), the character of L()\) is a modular
function of weight — %— r(A) , where r(A) is the codimension of the Q—span of

{a€ R, | <A\+p,a> € I} in the Q—span of R, . Thus, L()) is modular invariant if A

satisfies (0.1a) and
(0.2) r(A\)=0.
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(Note that (0.1a) and (0.2) imply (0.1b).) We call A satisfying (0.1a) and (0.2) an
admissible weight.

We conjectured in 7] that if L(A) is modular invariant and <A+p,c> # 0, then A
is an admissible weight. This problem is still open. In §§1 and 2 we give a complete
classification of admissible weights for all affine algebras (Propositions 1.1 and 1.2 and
Theorems 2.1, 2.2 and 2.3).

Furthermore, in §3 we express the character of L(A) for an admissible A in terms
of theta functions (Theorems 3.2 and 3.5). This not only shows that L(A) is modular
invariant, but also allows us to calculate the asymptotics of the character at high
temperatures (i.e as T = —ir | 0)(Theorems 3.3 and 3.4), and find explicit transformation
properties of characters (Theorems 3.6 and 3.7).

In §4.1 we prove a complete reducibility theorem (Theorem 4.1 and Corollary 4.1).
§84.2 and 4.3 are complements to our paper [6]. In particular, in §4.2 we prove the
uniqueness of the vacuum (Theorem 4.2).

Throughout the paper 1 + (resp. N) denotes the set of all non—negative (resp.

positive) integers.

§1. Admissible simple sets.

Throughout the paper we use notations and basic definitions of the book [4], unless
otherwise stated.

Let A= (aij)i el ” where I = {0,1,...,f} , be a generalized Cartan matrix of affine
type xlﬁlk) , listed in Table Aff k of [4, Chapter 4]; k is called the tier numberof A . Let

(ags---ap) (resp. ag,---»p) denote the null-vector (resp. null-covector) of A ,i.e.the

unique vector of relatively prime positive integers such that
(aO,...,ag)tA =0 (resp. (a('),...,az)A = 0).
Recall that ag5=1 (resp. ay = 2)if A4 Aé%) (resp. A = Ag%)) and that ag =1 inall
cases. The number g = iEI a; is called the dual Cozeter number of A .
Let h” bean (¢+1)—dimensional vector space with a basis 11" = {ay,...,a,} -
Introduce another basis II = {a,...,a;} by

a.q. = aiai .



The sets II” and II are called coroot and root bases respectively.
Introduce the standard bilinear form on h” by the following formulas [4, Chapter
6):
lat) =a..a./a (i,jel).
This is a symmetric bilinear form whose kernel consists of all multiples of the element
c= 1Y a;a;
el 't
called the canonical central element.
We have the following homomorphism a+— t, of b’ into Aut h” (with kernel

Cc) [4, Chapter 6]

(1.1) t () =h+ (h|e)a—((h] @) +

2
For asubset LCh”, welet t = {ta[a eL}.

(a]la)(h|c))c, hebh .

Let I, € Aut b’ be the fundamental reflections, i.e. ri(h) =h- <ai,h> a} ,heb
and let W = <r;|i € I> be the Weyl group. Let R = W(II") be the set of real coroots
and let R__ be the set of positive real coroots (in [4] they are denoted by AT and

A;"®). Givenasubset SCR,we denote by Ag the matrix (2(e|f)/(8]8)), geg (50

that A=A ).
I
Let Iy={1,..6} CI and let h=% Coich’ . Let Q=3 Io,
: i =T i
1EI0 1610
Q=X Zai. Then
iEIO
(1.2) Q1yQ if k=1 and QcQ if k> 1,

where k is the tier number of A . Let k™ denote the tier number of tA . Let
M=Qifk=1;M=Q if k" >1.

Then [4, Chapter 6}: )

(1.3) W= Wity

where W = <r; |i€ IO> is a finite subgroup of W . Theset R is invariant with respect

to the group W := Wxt _ (containing W), where M is a lattice in b’ defined by [5,
M

§4.8]:

- .
M= (Q+Q 2 :
Here and further, for a subgroup L Ccbh’ welet L = {a€ QL|(a|L) C Z}. Also, given a



subset S Ch”, IS (resp. QS or €S) stanils for the Z—span (resp. Q— or (—span) of §.
Since (Q|Q7)cI,wehave MCMcCM
Recall that the group W+ ;= {we W|w(Il") = IT"} acts transitively on orbits of

Aut IT” (and simply transitively on the orbit of o) [5, §4.8].
kS
Let Ai ebh’ (i€l) bethe fundamental weights:
<Ai,aj‘.> = 5ij (jel),
and let p= % A; . Note that g = <p,c>.
1€l
Given Aeh we let
RN ={a e R|<\p0> €T}, R} =R'nR,

+ >

(note that <p,a> € I for all o€ R). We denote by S’\ the set of simple rootsin R

+ >

l.e. theset of € R jﬁ which do not decompose into a sum of several elements from R

[t is easy to prove the following two basic properties of S’\ :
(1.4) R} =R, N5,

(1.5) if a,5€S", then a—B¢R .

Property (1.5) implies

(1.6) A | decomposes into a finite direct sum of affine type matrices.
gA

We call the type of A y or simply the type of A the direct sum of types of these affine
S

matrices.
*
Wecall A eb an admissible weight (for A) if it satisfies the following two

properties:

(1.7a) <A+p, o> ﬁE——Z+ for all o€ R+ ,
(1.7b) QR = QII" .

[t is clear that (1.7a,b) imply

(1.8) <A+p,e>>0.

Note that for an admissible A\ we have:

(1.9) st = Q-

(1.10) Ri = {a e R|<A+p,a> € N} .

The set S’\ for an admissible A is called an admissible simple set.
Our first objective is to classify all admissible weights. For this we first describe all,
up to the action of W , (finite) subsets S of R n satisfying properties (1.5) and (1.9).



Given such an S, pick «€S and let S be an indecomposable component of S
containing a. Then S’\{a} is a union of indecomposable sets of finite type Sl""’Sr ;

let 7,...,7, € R besuchthat 7 € ZSi + Ic, Si U{%} isalinearly independent set and

(Tpe,)

B—7 #R for feS;. Let o, (S) = {757} U(S\{e}) . We say that this set is

(’yl,...,'yr)

obtained from S by an elementary operation 7, . For example, we may take

7, = ¢ — (highest root of the finite root system ZSi N R). In this case we shall drop the

superscript (71,...,7r) and call ¢ o A0 elementary operation of the first kind. All other

are called elementary operations of the second kind. In the case a = ai we shall often

(71""771‘) (717""71'))

write o, (resp. 7, ) in placeof ¢  (resp. ¢

Cli ai

We call subsets S and S, of R equivalentif S = w(S;)mod Zc for some w € W.
Lemma [.1. (a) All subsets S of R+ satisfying properties (1.5) and (1.9) are

equivalent to subsets obtained from II” by a finite sequence of elementary operations.
(b) If k™ =1, we may consider in (a) elementary operations of the 1'st kind only.
Proof. The case k™ =1 follows immediately from the Dynkin—Borel—de Siebenthal
algorithm [1]. Indeed, S:= S mod €c c h”/Cc still satisfies the property
o0 €S= a—f¢ Ri=Rmod €c. If k™ > 1, the latter property does not always hold,
and we check the lemma by a casewise analysis. a

Proposition 1.1. Let k™ = 1. Then an admissible simple set S is equivalent to
one of the sets ai(H') yiel.

Proof. We prove the lemma be a case—wise discussion using Lemma 1.1. In the
case A = A%l) there is nothing to prove since all sets obtained from II” by an

elementary operation are W—equivalent to II” .

Let now A = Dgl) . Then all sets given by Lemma 1.1(b) can be described as

follows. Let J be a subset of the set {2,3,...,/~2} such that |r—s|>2 if rseJ,r#s,
and let J, = {j](ajlal'l) <0, forsome neJ}. For ieJ let 0: =0y + a) + 205 + ...
i+1°
W—equivalent to one of the following sets:

+20; + @ 0 =07 | +20; + ..+ 20, g+, ; +a,. Then S is



S(J) = {ej + ke, i g J} U {0 +kic, 07 +kic, i€}
U{-e; +kic,ieJg}, where k ki ki el.

Suppose now that there exists A € b’ such that S(J) = S*. Let m = <A,c> ;
this is a rational number with denominator u € N (so that u and um are relatively
prime integers). Then we have, using the integrality condition for the first member of
S(J):

(1.11) k,m + <,\,ai>e7Z if igJ.

Using the integrality condition for the second member of S(J) gives
(1.12)i n, = pm+ 2<A,a;> €l if i€J for some p,el.

Adding um to (1.12) we get
(1.13a) n, + um = (pi+u)m+2</\,ai> if ielJ;

adding (1.12)j to (1.13) we get:

(1.13b) o+ + um = (p; + p; + wm + 2<A,a; + 03> if i,jeJ.

Suppose now that |J| > 2 and fix i,j € J suchthat i <j and
{ri<r<j}nJ=40. Notethat kc + o ,kc+ajf and ke + g] a;§£R’\ since the
r=i

coefficients of o7 and aJ'. are even for any « € S(J). Hence we get for all ke Z:
- (1.14) km+</\a>§£l km+</\a>¢l km + <A, a; +cf>§£l

J
Comparing (1.12); and (1.13) with (1.14), we see that none of the pairs (n n.,p;) , (0, i J)

), (n.4um, p;+u) , (n;+um, n.+u) , (n;+n.+um, p, +p +u) are (even,even).

(n;+n;, pi+p i

J’ 1 _] ) 1 9 i 9 .] _]

But this is impossible since either u or um is odd.
A similar argument works for A = A( ) D(z) D(3) E(l) and E(Q) and
& 201 V410 ' 2 6

shows that applying more than one elementary operation produces a set which is not
admissible. For A = E%l) the only possibilities of more than one elementary operation are
aiaj(H“) with (i,j) = (4,1) or (2,5) . But both are W—equivalent to o5(11") . Similarly,
for A = Eél) the only possibilities of more than one elementary operation are aiaj(H‘)

with () = (4,1), (4,2), (6,1, (6,2), (8,2) or (8,1) or (2,7), (4,7) . But these are
W—equivalent to o (II") with =5, 6 or 3 respectively. a

If S isequivalent to II" (resp. to aS(H')) we call this case 1 (resp. case 2,)-

Proposition 1.2. Let k™ > 1, and let A be an admissible weight of level m whose



denominator is u. Then S = S)‘ is equivalent to one of the following sets:

Table 1
A case u S AS’\ T T Tg
B 1 odd B{
- (gp(2)
2 even aS(H ) Dg GBDZ—S+1
0<s<ds+#1
(72,7é77§) 5 (1)mra(1) .
39 odd 0q (IT7) Dy ®B) 5 ayt o) +2an+ag
c—ay,
c——ai
(797%) ontay+2(a5+...+al)+al
3, odd o, s's (") Bgl)@ng 0" ™1 2 s/ Ts+1
2c—a; (s=f-1)
4
3<s <t 2(aé+...+a2_1)+az,
o A S R )
- (2) pa(2)
2 even  g(Il') Aos1%89( 1-g)~1
0<s</?
(72a7é772) . 1 1 . . .
3, odd o o) p{Vectt) o +2( a5+t ay)
a6+ai+aé
2c—ai
(1975) . (D) om(1) . ) )
3, odd o S S o(Il) p{Vec(!) o +2(a+. ta))
3 <s<t-1 a(')+ai+...+a;
('Yg)

. 1 . .
3y odd g, " og(Il") D% ) a,_+2a,




odd I’ N
. 2 2
el {2 foAsh e
383
odd oi7s’7é)(ﬂ') Bgl)eAg%%_s) 2c—ay (s=1)
1<s< -1 ay+2(agt+.Fay_g)+ay(s=2)
aé_1+2(a;+...+az,) (s>2)
aé+2(ai+...+aé)
odd agw(n“) B\ oy +2a]
{ ¢31 I a{y
€31 oy(I) p{¥
oy (I) A{bea (D
€ 3l UQ(II') Agl)
¢ 3L 0571)00(11') Agl) 3o+
{ odd T pil)
even 017 EéQ)
even o, (IT7) Agl)eAgz)
7o(I1") A{Deall
even o5(I17) Agl)eAgl)
even 04(H“) Dg2)




(71) . 1 . . ..
3 odd 7 UO(H ) Cl(1 ) C+20 +3ay+203+0ay
(79:73) . A(Dga (1) .
35 odd T9 O’O(H) 1 '®A3 =0y
201i+4aé+‘2aé-{~a;1
3, odd o W, B(Voa () o 2a
4 O 74 % 3 A €= —=y—0ay
2ai—|~4aé+3015+2a;1

Here we adopt the following conventions: X(()k) =0, ng) =0, Agl) = Bgl) = Cgl) =
(2) 2 p(2) p(1) 2 A g al1) (1) Z (1) Alk) Z plk)
A1 —D2 ,D2 _Al @Al ,B2 —02 ,A3 _D3
Proof is similar to that of Proposition 1.1. a]

§2. Classification of admissible weights.

For uelN let
S(u) ={7p :=(u—l)c + o, 7 := o7 (i€Iy)}.
Given y € W, denote by Puy the set of all admissible weights A such that

A
S”=y(S .
y( (u))
Let P (resp. P )= {A= Y nA;|n, €l (resp. Z,)} be the sets of all integral
ef 111 +
(resp. dominant integral) weights. Given m € § we denote by Prj_l , PIS g etc. the

subsets of P 4o P, v etc. consisting of all elements of level m .

Recall the shifted action of W:
w.A = w(A+p)—p.
Now we can state the first main result of this section.
Theorem 2.1. (a) Prlrll’y # 0 if and only if the triple (m,u,y) satisfies the following

properties:
(2.1a) gcd(uk) =1,
(2.1b) um is an integer relatively prime to u (i.e. u is the denominator of m),
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(2.1c) m+ g > g/u,
(b) If properties (2.4a—d) hold, then

P ={y.(\’~(u-1)(m+g)A) | \° ¢ PYLIMHEIE}

(¢) The set of all admissible weights A for A suchthat A , =A is U pm
S’\ u,m,y u,y

where (u,m,y) runs over all triples satisfying (2.1a—d).

The theorem follows from Lemmas 2.1—4 proved below.
Lemma 2.1. All S satisfying (1.5) and (1.9) of the same type as A are of the form
S=y(S(u)),where yeW , uel.

Proof. By Lemma 1.1, S is W—equivalent to the set S- ={o] +uchi_g 4
=0,...,

_ %
where u € Z+ . If k> 1,then, by (1.2), M=(Q") , hence S’ is t _ —equivalent to
M

. %
S(u)' If k=1,then M=Q ,and ai =0 if ai is short and ai =k'ai if ai is

long. Since S° CR_ , it follows from [4, Proposition 6.3] that again S’ ist _—equivalent
M

to S(u) . O

Lemma 2.2. Let A be an admissible weight and let w € W be such that

})CR, . Then w.A is also an admissible weight and RY* = w(R) .

w(R 1
Proof is obvious. a
Lemma 2.3. Condition (2.1a) is equivalent to

7OER and 70—7i¢Rfora,ll ieIO.

Proof is straightforward using [4, Proposition 6.3]. o
Lemma 2.4. (a) Let u be a positive integer satisfying (2.1a) and let A € PI‘? 1

)

Then (2.1b) and (2.1c) hold and
(2.2) A=\ - (u—1)(m+g)A, , where A0 € Pi(m+g)—g :

(b)  Conversely, let u and m satisfy conditions (2.1a—) and let
A0 ¢ Pi(m-%g)—g . Then X defined by (2.2) lies in PIL? 1

Proof. Let X € Prlrl1 1 then

<A+p,y>=n, + 1, where n, € Z+ (iel).
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Note that n, =</\,af>+(u—1)(m+g)5- o - It follows that ) is of the form (2.2) with
=X n.A., and that Z+ 3 % a; = <Ac> + (u-1)(m+g) = u(m+g)—g proving
i€l i€l

(2.1c)and umeZ.

To complete the proof of (a), it remains to show that u and um are relatively
prime. Let u’ = u/g.c.d.(u,um) . Consider the coroot 7= u’c + 0 if A# A‘gé,) ;
y=uc+ 7, if A= Age) . Then <A+p,y> €, hence 7 isa Z-linear combination of
7%'s, hence u'c= ¥ r.y = rO(u—l)c + Y r.a; for some r, € L. It follows that

ief 11 el 11

¥ Lo = Iy - Plugging this in the previous formula, we get u- =.Tou. Hence u=u-
1€l

and (a) is proved.
In order to prove (b) we have to show
M%MOMJRA

First, consider the case A # Aé(f) . Let ae€ R’\ . Since a € R, we have [4, Proposition
6.3):

~

o = bc+ @, where bel,&efl; or bek'l,a&ﬁe.

Since <A,e> €T, it follows that (u—1)mb € Z. Hence, by (2.1b), u divides b. Thus,
by (2.1a) we have:
@ =nuc + a if &EA; and =k nuc + & if aeﬁz,

where n € [, hence a€e IS u) -

In the case A = Aé%) , the proof is similar. 1o

The following is an immediate consequence of Lemma 1.1 and Theorem 2.1:
Corollary 2.1. The set of all admissible weights for A = A%l) is U Pm u,y
u,my -’
where (u,m,y) runs over all triples satisfying (2.1a—d).
The following proposition describes the redundancies in Corollary 2.1.
Proposition 2.1. Let (m,u,y) and (m,u,y’) be two triples satisfying conditions
(2.1a—d) of Theorem 2.1. Then the following three statements are equivalent:
.\ p
U)Puyan 40,
(i) p™ =Pl s

Ly Suy’ N
(iii) Y(S(u))= Y'(S(u))- \
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m
u,y
Suppose that y(S(u)) = y’(S(u)) and let A€ P?ll v We want to show that

Proof. Let A€ PIS’y NP~ _,;then y(S(u))z $A = y’(S(u)) , proving (i) = (iii).

AE Pﬁiy, . Note that by Lemma 2.2 we have

(2.3) A€ Prl?,y = y—l./\ € Prlr;’l = <y"1(/\+p),7i> eN forall iel.

Hence, it suffices to show that <(y’)_1(/\+p),7i> eN for iel, which is equivalent to
<y—1(/\+p)|w(7i)> eN,iel, where w= y—ly’

Note that W(S(u)) = S(u) , hence the last condition is equivalent to <y—1(/\+p),7i> eN,

[. Thus by (2.3), (iii) = (ii). a!
We proceed now to classify all admissible weights for the affine matrix A , using

Theorem 2.1. Let S be an admissible set listed by Propositions 1.1 and 1.2 (i.e.
= Ji(HV) if k" =1 and S is one of the sets from Table 1 if k™ > 1). Decompose S

into a union of orthogonal indecomposable subsets:

(2.4) S=SuSu...
Pick one of the subsets, say, S = {c’y“,....,c’yé} . Let ¢ = 'E(SO aic‘vi be its canonical central
i=
element . We have:
(2.5) ¢= éc for some é€N.
For ueN we let
(2.6) u=u/g.c.d.(u,e) .
Let (.|.)" be the normalized standard bilinear form on §” := €S ; then
(2.7) (x|y) = K l(x|y) for some K € for all x,y € b’
Here and further, for subsets S, S ,... we use similar notations. We have in the case
km=1:
(2.8) é=¢é=..=1;
(2.9) K= k 1f Sc Rsho b and = 1 otherwise,....
The values of ¢,8,... and K,K,... inthe case k™ > 1 are given in Table 2.
The elements c'y('),ai, ae 0 e L’ . form a basis of § ; define A € b

(i=0,..,¢ by <Ai,c'rJT> = 5ij , <[\i,a> = 0 for all other basis elements « . Let
¢
p=1% A g=<p,é>=2ai.
i=0
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As in Section 1, define the lattice M C b7 . Choose a set of representatives M(S) of M’
+M" + .. mod M. Inthecase k™ =1, wehave: |[M(a (II"))| = a_, and we can

choose M(o (I17)) ={jAy|j=0,...a;-1} . Inthecase k™ > 1, the sets M(S) are listed in

Table 2.
X .
Let A eb” beof rational level m whose denominatoris u € N. Define A by
(2.10a) Atp=A+p|.
_ ”

so that
(2.10b) m = é(m+g)-¢ .
Then ) is a weight for S of level th whose denominator is @ . The weight A is
completely determined by the sequence (A,A,...) . This gives us a bijective correspondence
between A € E)’* of rational level m and the sequences (A,\,...) such that A€ 6'*,...
and (2.10b) holds (A is then recovered from (2.10a)).

Theorem 2.2. Let S be an admissible simple set listed by Propositions 1.1 and 1.2.
Let m be a rational number with denominator u € N and suppose that the numbers
m,m,... and 0,d,... (defined above) satisfy the following conditions:

(2.11a) ged (k) =1, gcd (k) =1,..;
(2.11b) Mg > §/u, kg > §/il

Let B+ B+ .. € M(S) and y € W be such that
216 (g0 + ) CRy e

Pmkxo=gﬁﬁiepim”g*gwwamnm A= A0—(u-1)(h+8)A g o
1

Then A = (yt .A, yt_.A,...) is an admissible weight for- A such that A ig equivalent to
16

S if and only if fli,ﬁi,... satisfy certain "matching condition". In the case k™ =1 and

B=JjAg
(2.12) u( X a;h. + ) a;fi, + ...) # mu(u—j) mod p for every prime p dividing ag.
1€l iel
In the case k™> 1 the matching condition is given in Table 2. All admissible weights A
for A with S’\ equivalent to S are obtained in this way. We thus obtain a complete list
of admissible sets for A .
Proof. Let A be an admissible weight for A and let SA=$uUSu.. bethe

(0<j< a;) this condition is

decomposition (2.4) of S* . Then § = S’\,... hence \,... is an admissible weight of type
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A and we can apply Theorem 2.1. Hence A is obtained as described by Theorem 2.2,
S

except that it remains to show that matching conditions given by Table 2 are necessary
and sufficient for A to be admissible if all A,\,... are admissible for §.S.... .
We show this on the example of A,():Z,) , case 31. Let A be an admissible weight of

level m whose denominator is u . the corresponding admissible set is S =S U S, where
S={(u-1)¢ + & oy} = {2(u-1)c + o, 2¢— ao}

S = {(ii—1)6. OC + &; }0<1<1f 1 = {(u=1)e + ag + 2ay,05,...,0,}
(Table 2.2 shows us that é =2, =1 and hence t =i =u.)
We have: A = (A\,\), where

A= A3%— (u-1)(m+g)Ay , A= 10— (u- )(m+g)A0

. ) —
A0 =gy + A e PY u(m+g)—¢ 0 _ EOnA epY u(h+§)—§
l

Note that
<A+p, 2u-1)e + ag> =iy + 1, <A+p, (u-1)c + ay + 207> =iy + 1,
which is equivalent to:
<A+p, 2(u-l)e + ag> =1y + 1, <A+p, (u—1)c + ag + 20> =1, + 1.
Hence we have: <A+p, %(1—u)c + o> = %(iio - 1‘10) . But %(1-—u)c + o € R+ since u
is odd. Since nc + ai ¢ R_’*\_ for any n € Z , we deduce that ﬁ() - 1'10 is odd, proving that
the matching condition of Table 2 is necessary. It is also easy to see that this condition is
sufficient. u!
Remark 2.1. Condition (2.11b) of Theorem 2.2 is equivalent to:
m + g > max(g/éu,g/éi,...) ;
It is easy to see from Theorem 2.2 that any rational m satisfying this condition is the
level of a modular invariant representation provided that the following additional
conditions are satisfied:
m + g > min(g/eu,g/éi,...) if Ag#A;
m + g > max(g/éq,g/él,...) in the following cases:
(ASD o (1)) and (ALY, type3), where 3 (e+1) <5 < ¢,
2 1 . 1 .
(ELD, o)), (B, oy, (ELY, o511
Remark 2.2. If a{ and aJT lie in the same orbit of Aut II” , then the sets of

admissible weights A with gA equivalent to ai(H') and to aj(H') are the same.
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Table 2
case 8,8,... KXK,.. M(S) matching condition
1 1 1 0
2 2 2 0
2, 1,1,2 1,1,2 0.4,
2,(3¢s¢t-1) 2,2 1,2 0.4,
2, 2 1 0
3 1,11 1,1,1 0 flg+i, il +ii; odd
A, figHig i+l odd
3,(3¢s<6-2) 1,1 1,1 0 fi+ii, _ odd
301 1,2 1,2 0 i, |+, odd
g 1 1 1 0
2 2 2 0
2, 1,2 1,2 0
2,(2¢5¢%) 2.2 2.2 0
3, 2,2,1 2,2,1 0 fi+iig 0dd
3 2,1 2,1 0 fi+1, odd
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3,(4<s¢6-1) 2,1 2,1 0 fig +ity odd
3£ 2 2 0 ﬂ0+f11 odd
2

Al 1 1 0
20 2 1 0
2 (1<5¢6-2) 2,2 2,1 0

1
2, 2,1 2.5 0
25 2 2 0
31 2,1 2,1 0 f10+f10 odd
3, 11 11 0 fig i, 0dd
3,(3¢s¢6-1) 1,1 1,1 0 i+l odd
3€ 1 1 0 1'10—{-1‘11 odd
(1)
5 1 1 1 0
20 3 3 0
2 1,3 1,3 0 u(ﬁ0+ﬁ0)¢u2m mod 2
Ay u(iiy+iip)Fum(u—1) mod 2

22 3 1 0
3 3 3 0 fll,%ﬁQ mod 3

ril) 1 1 0
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2 2 2 0

2, 2,2 1,2 0

2, 1,2 1,2 j[\l u(f; —ng—fi; +iiy)F—jum mod3
(J=071’2)

24 1,2 1,2 0, 244

2, 2 2 0

3 1 1 0 i, +1, odd

3, 1,2 1,2 o,A1 fi, +iiy odd

34 1,2 1,2 0 flo+ii; odd

We give now a more explicit version of Proposition 1.1 and Theorem 2.2 in the case
ki=1.
Given s €1, let I, =1\{s} . The set II"\{a } decomposes into a union of

orthogonal indecomposable subsets; let IS =fulu.. bethe corresponding

decomposition of IS . Theset X Zai' NR is a finite root system; let 4" = ¥ a a; be
i€l jel
its highest root and let g=1+ X% a; .
i€l
Given a triple (s,ﬁ,u) , where sel, k= (ki)ieIS with k. € l+ ,uelN, we let:

S ., ={kc+a; (iel)uc—8,uc-0,.}.
(S,k,U) 1 1 S

"% Theorem 2.3. Let k™ = 1. Then

(a)  Every admissible simple subset of R 4 s of the form y(S , )
(s,k,u)
for some y e W .

(b)  Given a rational number m , the set PT . ) of all admissible weights
5,k,u,y
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\ of level m with S =y(S . ), where y € W, is non—empty if and only if

(s,k,u)

(2.13a) u is the denomiator of m;
(2.13b) Lotk <u-l, B a7k Cul,...;
jel jel

(2.13c) m+g > max{g,g,...}/u ;
(2.13d) m+g > min{g,g,...}/u if ag > 1

(2.13d") m+g > max{g,g,...}/u in the following cases: (A%Zl, o (II7)) with
L) <s < 4, (B (1)), (B, 0y(m)), (LM, 0g(11)).

(2.13€) v(S , )CR,.
sku’ T
(¢)  If conditions (2.13) hold, then
v—1 - |
p™ =y.{m@a) A + ¥ (n—k.(m+g))(A—alal A)},
(8,k,u.y) o8 e s s

where the (ni)i e are non—negative integers satisfying the following conditions:
8

(2.14a) L ain <u(m+g)—g, ¥ &in, < u(m+g)g,...
iel iel
(2.14b) gcd.(u(m— X a;(n—k(m+g))),a.)=1.
i€l iV S
(d) The set of all admissible weights for A is the union of all p | from (c).

(8,k,u,y)
Proof. Let A be an admissible weight for A of level m with denominator u,
andlet S*=8U§U... bethe decomposition (2.4). As in the proof of Theorem 2.2,

§ =g .S = S’\,.... , hence A,... is an admissible weight of type A ..., and we can apply
S

Theorem 2.1. Also, by Lemma 1.1, $* is equivalent to aS(H') for some s € 1. Hence

S={kc+ e} U{uc-8},8={ket+ e} _U{uyc—87},.... But by Theorem 2.2,
iel P Ved

u=u; =uy=... Thus, A = y(S( . )) , which proves (a). Similarly, Theorem 2.2
s,k,u

implies the necessity of (2.13) except for (2.13d and d*) (namely, (2.1b) implies (2.13a),
(2.1c) implies (2.13c), (2.1d) implies (2.13b) and (2.13e)).
Furthermore, we have, by definition of S’\ :

() - — .
(2.15). <A+pkict+o;>=n, + 1, where n, € l+ (i€ IS) ,

1
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(2.16) <A+puc— X aJ(ch+aJ)> =n+1,where ne Z
jel

Adding up all (2.15);, multiplied by 4; , for i€ I, plus (2.16), we get:

um+g)=n+g+ % ang,...

iel
which proves the necessity of (2.14a).
Rewriting (2. 15); as <A, a;> = n,—k.(m+g) := n; , we see that
=X ﬁi(Ai - (ai/as) ) (m/a )

1EIS
where the last term arises because <A,c> =m
In order to complete the proof of the "only if" part of (c), it remains to prove the
necessity of (2.14b). For this we add up all (2.15)i, multiplied by a; ,forall ie L
obtaining:
g

where K=1+ ¥ ak, ,N=g+ % a;n; €N. Adding ju(m+g) (j€Z) to the last
i€l 1EI
S

</\+p,Kc—a,'a"> =N-a

equation, we obtain

(2.17)j <A+ p,(K + ju)e — aga > =N-—a_ + ju(m +g) .
Note that
(2.18) a=Eba; eR* =2’ [b_.

We claim that
(2.19) g.cd. (K + ju, N + ju(m+g),a;) =1 forall jel.

Suppose the contrary. If ag is a prime number, then we get from (2.17)j that

(K + ju)(aé)_lc —ag € R} , which contradicts (2.18). If ag is not prime, which happens
only for (1) A=E$1),s=3;(2) A=E§1),s=3,5or6;(3) A=Eé2),s=3,the
argument is similar. For example, in case (1) we argue as follows. In this case ag =4

and g.c.d.(K + ju, N + ju(m+g)) = 4 or 2. In the first case the argument is the same as
above. In the second case we have, as above:
</\+p,ac—2¢vé> €l , where a€l.

Furthermore:
</\+p,k2c+ aé>, </\+p,k4c + aéi>, <A+p, k7c + o> € z.
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- . . - A s
Hence the coroot (k2+k4+k7—a)c +ag+ 20+, +a>€ R contradiction.

But (2.19) is equivalent to
(2.20) g.c.d.(uN — u(m+g)K, aé) =1,

which is (2.14b). Here we have used statement (b) of the following elementary lemma.

Lemma 2.4. Let u and t be coprime integers and let p be a prime integer. Then
(a)  {(ju,jt) € (Z/pl)2|j €el} = {(K,N)e (l/pl)2|K,N € Z, tK = uN mod p}
(b)  Given integers K and N, we have

(K + ju, N +jt) # (0,0)mod p forall jel

if and only if tK # uN mod p .

Proof. It is clear that (a) implies (b). In order to prove (a), it suffices to show that
if tK =uN mod p for some K,N€Z,then (K,N)=j(u,t)mod p for some j€Z. Since t
and u are coprime, either t or u is coprime to p,say,t. Then st =1 mod p for some
sel,andwelet j=sN. Then ju=sNu=stK=Kmodp and jt =stN=Nmodp. o

End of the proof of Theorem 2.3. The necessity of the (2.13d and d”) follows from
(2.14b),(d) follows from (a) and (c).

It remains to prove the sufficiency in (b) and (c). Let
A =m(a) A+ jgl (n;~k;(m+8))(A; “(ag)T'A) , where (s,k.u) satisfy (2.13a—d")

j i
S
satisfy (2.14). Let a=Zb.a; e R

(u is the denominator of m), and (ni)ieIS , Iy € l+ ,

We have to show that
(2.21) ag divides by -

Let 7, =kc -a; (i€l). Then

A A

(2.22) % €RY

since </\+p,7i> =1 + 1. We also have:

(2.23) <,\+p,a;> = (aé)—l(a(m+g)-—b), where a—g:= ¥ a‘k:,b—g:= ¥ ain:.
jel, I jel, 1)

Condition (2.14b) can be rewritten as follows:
(2.24) g.c.d.(—ub + ua(m+g),a;) = 1.

Rewrite a in the following form:

S S

Since « € R , we have, using (2.23):
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I3 <Apa>= 1L b<i+p,7>— (m+g) XL bk, + bs(aé)_l(a(m-%-g)—b) :
iel 1€l
3 S
Hence, using (2.22):
—m I bk +b(a]) " (a(m+g)-b) e L.
i€l
8
Multiplying this by u we have:
bS(a;)_l(——ub +ua(m+g)) el.

This together with (2.24) implies (2.21). a!

§3. The character formula, the asymptotics of characters and transformation
properties of characters.

k)

Let g be an affine (Kac—Moody) algebra of type XIEI and let b beits Cartan

subalgebra. We have: h=h” @ (d, where " = X Ca; is the space considered in §§1
i€l

and 2. The standard bilinear form (.|.) extends from 5’ to § to a symmetric

non—degenerate bilinear form by

(3.1) (dlag) =2y, (d|a;) =0 for iely,(d[d)=0.
Given a € R, we denote by r o the corresponding reflection.
Then b isr _—invariant,r . =T, and the restriction map '

W, :=<r,|a€R>— Aut b’ induces an isomorphism W, —— W .

*
;l“he bilinear form (.|.) induces an isomorphism »: h— b and we shall identify b
with b via this isomorphism. Note that v(d) = aOAO. The space b will be identified

with a subspace of FJ* via extending a linear function on h” to h by <Ad>=0.
Introduce the following domain Y in § and coordinates (r,z,t) on Y :
Y = {E&e h|Re<A,c> > 0}
= {(r,z,t) := 27ri(—ra61d+z+tc) |7t € C, Imr>0,z€h}.

Define a holomorphic function Q g o° Y by
Q. (h) = e<p,h> I (l_e—<a,h>)rnult a
g Q€ A+

Here A+ = Aie U Nc , where Aie ={27/(7]|7)|7e R is the set of positive roots of

R
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g,mult =1 if a€ Aie , mult kjc = ¢, mult jc = (N-¢)/(k—1) if k>1 and j#0
mod k (see [4,Chapters 6 and 8] for details).

*
Given Aeh | welet

A

A_
=<r |aeR">.

\%Y%
One knows that, in fact, W’\ = <ra| a€ S’\> :

Let L(A) denote the irreducible highest weight g—module, and let
h

be its character.
Let §= ‘E aa let
1EI0
D (resp. DO) = {z € bl oy(z)> 0 (resp. 2 0) for i €1y, 0(z) < ay (resp. < ag),

and let
D (resp. D) ={(r,z,t) € Y[z € D (resp. € DO)} .

By (4, Lemma 10.6b) and (11.10.1)], ch, convergesin D . The following result is a special

case of [7, Theorem 1].
Theorem 3.1. Let A be an admissible weight. Then ch, converges in the domain

D and is given in this domain by the following formula:
(3.2) chy(h)= 5 we< k> g M. o
wEW/\
Remark 3.1. Both the numerator and denominator in (3.2) converge in Y [4,
Proposition 10.6d] and the denominator Q g does not vanishin D .

We proceed to rewrite formula (3.2) in terms of characters of integrable modules.
As in §2, we start with the case of S’\ being of the same type as A (see Theorem 2.1). In

this case the admissible simple sets are of the form y{7i= (u—l)&i 0t & (iel)}, where

u€N and y € W. Introduce an automorphism ¢ = ¢u y of b, denoted by h+— h, by

the following formulas:
Bly(1) =a; (iel), o(y(d)) = ud.

This is an isomety of h which intertwines the actions of W( = <T ) (ieI)> and

u,y) y(%
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: -1
V., ie. qbry(%)qb =T,

1
Theorem 3.2. Let X\ = y.(/\o—(u—l)(m+g)AO) be an admissible weight from

P where A°=SuA e PUTHEE e
; i

(3.3) chy(h) = Ch/\o(fl)Qg(ﬁ)/Qg(h) :

Proof. Note that W/\ = W(u y)’ hence by Theorem 3.1 we have:

ch) (h)Qy(h) = wgw( )e(w)exp<w(/\0+p—(u—1)(m+g)A0,h> .
u,y

= 3 e(w)exp<w(/\o+p—(u—1)(m+g)A0),ﬁ>
But </\O+p——(u—1)(m+g)A0,7i> =u+l,i€l, hence ¢(/\O+p—(u—l)(m+g)A0) =%,

o \
Therefore, ch/\(h)Qg(h) = X e(w)e<w(’\ +p);h> , and we apply formula (3.2) for
weWw

ch O(ﬁ) to the right—hand side. u)
A

The following result is a straightforward consequence of Theorem 3.2 and §2. Let A
be an admissible weight and let S = s* Let S=SUSU... bethe decomposition (2.4),
and let b = €S+ Cd,.... Given heb, we define h ¢ by: (h|h”) = (h|h*) for all

h’ € 5,... and define the autornorphlsm B b of b relative to the set § for ueN
and yt ,.... Define A€ b by A+p=X+p| ... Let g be the affine algebra with
B b

the coroot basis S and let ch’ denotes the character for §,.... Then we have the
following formula for he D :

~

(3.4) chy(h) = Q;'(h)(ch ; O(ﬁ)Qg(fl))(chio(ﬁ)Qg(ﬁ))-.-

We turn now to the calculation of the asymptotic behavior of ch A for admissible

weights A . The basic tool for this calculation is the functional equation for
theta—functions. Let A€ P® ,neN,andlet X denote the restriction of A to h. The
associated theta function is a holomorphic function on Y defined as follows:
8,(rzt) = 8_ (rat) = e2mnt o oMnT(y[7)+27in(7|2) '
ot 7€M+)/n
This function satisfies the following functional equation:



24

1 z
(3.5) 0 (-phis (zl2)
T 1
T 3 o <
= (=M /M| 2 % * (exp =22 (A|))8, (r.t)
peM modnM

The characters are expressed in terms of functions
_ n

wew
Formula (3.5) gives us the following functional equation for A, :
¢ 1
VIS 2
(3.6) A\(mzt) = ()7 IM /uM| ¥y I e(w)

weW uEM*moan
2 1
« (exp — 28 (w() | 1))B, (- 5 -2 - 512

n T 27

Denote by d(XN) the dimension of the simple Lie algebra associated to a finite

type matrix Xy . Let T =—ir. Introduce the following (finite) set:

R+:R+ﬂb if k'zl;R+=A+ﬂb if k">1.

Lemma 3.1. (cf. {5, Proposition 4.21]) Let g be an affine algebra of type x&k)

and let A be a strictly positive integral form (i.e. <A > € N,iel)oflevel n. Then

" one hasas T |0:

4 r 84Xy
(3.7) A (IT=iT20) ~ BAZT Ze PT KB
where b(\,z) = n——e/2|M*/M|_1/2 I 4sin ﬂi\iﬂ—al sin m(z| @) ;
Q€ R+
14 T d(XN)
(3.8) AT AT20) - b(pz)T Ze 12T K

where b(p,z) = I 2sin 7(z| ) .
aER+

Proof. We calculate the leading term of A /\(iT,—iTz,t) as T | 0 using (3.6).
Since non—regular y (i.e. p fixed under some r € W) give a zero contribution, we may

rewrite (3.6) as follows:
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4 1
o _ 20y 2
(3.9) Ay (iT,-iTz,0) = (Tn) “[M /M|
271
Mmoo,
x Z_ ) \ e(w)e u,n(_TT’Z’—? iT(z|z)).
weW ueM modnM

@ regular

By definition, we have:
— (7] 7)+27in(7]2)
Bun(-TTe—gilzlz) =e™TEe) g T .
H ¥eM+u/n
Plugging this into (3.9), we get: ,
1
(3.10) 8, (iT,-iT2,0) = (Tn) Ze™T(=l2)|y* " 2
271 T :
= (W) [w)—qa(7]7)+2rin(7]2)
<3 3 L ewe D T .
weW ueM modnM 7€/
i regular

In order to complete the proof we need the following lemma.
Lemma 3.2. Let ue€ M be regular.
() If k™ =1, then (ulp)> (p"|p") with equality iff p = o(p”) for some ce W .
(b) If k™ > 1, then (ulp) > (p|p) with equality 1ff p= o{p) for some ce W .
Proof. (a) If k" =1,then M= X Ie; M = =X ZA . Let o€ W besuch
1610 1EIO
that a‘l(u) is (strictly) dominant. Then a_l(u) = Zbiﬂi =X bfa , where b eN,
i i
b € Q. Hence: (ulw~(p"177) = (0~ W1 o ™ (W)~p"17") = (¢ w)p" | oL () +7")
=X (bi—l)(f\i' | a—l(u)+b’) . Since a_l(u) + p~ is a linear combination of the
IEIO
a i€ Iy, with positive coefficients, this completes the proof of (a). The proof of (b) is

similar. a

End of the proof of Lemma 3.1. Using Lemma 3.2, it is clear from (3.10) that the
asymptotic behavior of A /\(iT,—iTz,O) as T | 0 is determined by the terms with
p=0(p"),v= n_la(p“) (resp. p=0o(p),y=n 10( ))if k'=1 (resp. k™ > 1), where
o€ W . Thus we haveas T | 0:
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_1_x (&l
AL(T=iT20) ~ (T W2 M ] 2e T 00
27
C T (3 e(w)e—T(m(A)lg))eQﬁ(ﬂU(Z)),

W weW
where £ =p  if k" =1 and €=p if k" > 1. (Note that p = p" in the simply laced
case.) Using twice the Weyl denomiator identity and the "strange" formula (cf. [3,
Proposition 1.11]):

(3.11) 7 40Xy =55 (€16),
we obtain the proof of (3.7). The proof of (3.8) follows from (3.7) and the identity [5,
Proposition 4.30]:
M 2sinn(p|a)/g = |M /M|2H2. 0
o€ R+

Let now 5y = é\+m+g+ —%—gl-gl , where m is the level of A . We have by the

Weyl—Kac character formula (which is a special case of (3.2)):

27n'rs/\ _ m
(3.12) e ch/\=A/\+p/Ap if AeP,

2mir(plp)/28n _
(3.13) e Qg = Ap .

Remark 3.2. Formula (3.12) holds in the whole domain ‘Y ; more precisely the
left—hand side converges in Y and the right—hand side has removable singularities along
hyperplanes

Ta’n={(r,z,t)EY|(a|z)=n},aE R+,nel.

For general admissible A not all singularities Ta are removable. For example, in the

n
right—hand side of (3.3), T , =~ is removable if and only if

)

(Bla) € n 4+ ul , where yztﬁy,ﬂeM,yeW.

The same argument as in [4, Chapter 10] shows that ch /\(r,z,t) converges in the interior

0

of W/\(D) , where W?\ = <ri|</\,a§> € l+> .

Applying Lemma 3.1 to (3.12), we obtain
Theorem 3.3. Let g be an affine algebra of type XIEIk) and let A€ P:r_l ,mE€ l+ .
Then we have foreach z€§ as T | 0:
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-1 T (m)
27T (a, d+z) g
(3.14) e va(Nel2T®
where
S
(3.15) a(A) = (mtg) M /M| 2 m QSinE(r/r\l—_tg@,
) aER+
m m

Now we turn to the calculation of asymptotics of ch \ for A€ Prlrl1 g For this we

need an explicit expression for h (defined before Theorem 3.2).
Lemma 3.3. Let h = (r,—7z,t) €Y, let ueN andlet y = bgy € W , where

BeM,yeW. Then
b= (ru, 5 (F2)u " (t=(z| B)+ § 761 9)) -
Proof. Let h’ denote the right—hand side. We check directly that
(a;|h) = (y(%)|h),i€l;u(d/h’) =(y(d)|h). o

Combining Lemma 3.3, Theorem 3.3, formulas (3.3), (3.13) and (3.8) gives the
following theorem.
Theorem 3.4. Let g be an affine algebra of type XIEIk) and let

A= y.(/\o—(u—l)(m+g)A0) € PT y be an admissible weight. Recall that u € N is the
denominator of the rational number m, A€ Pi(m+g)—g and y =t /33; , where e M

and y € W. Then for each z€D,,wehaveas T]0:

27rT(a61d+z) %T g(m)
(3.17) trL(/\)e ~ b(A,z)e ,
where: p
(3.18) b(A2) = e(f)u 2a(A® M sin 2Bl ssin n(z 0y,
a€R
_2 +
(3.19) g™ = mﬂ((%;ig))g d(Xy) - 0

Applying Theorem 3.3 and (3.13) to (3.4), we derive asymptotics of ch, for

arbitrary admissible A of level m as T | 0:
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27T (a, d+2) 5T &
(3.20a) trL(/\)e 0 ~ const eﬁIr A ,
where const is equal to the product of the b(J,z) corresponding to indecomposable
components of §* and the growth g \ s given by the following formula:
(3.200) . - d(XN) 1 Kgd(XN) N Kgd(XN) .
AR m ) k(si)2
The growth g ) measures the "size" of the representation L(A) . In the integrable

case, i.e. the case \ € P+ » &) 8rows linearly with ¢. Using formula (3.20b) it is not
difficult to find all other cases of admissible A with g A 8rowing linearly with ¢ (in all
other cases g A &rows quadratically).

Proposition 3.1. Let A be a classical affine matrix of rank /.
(a) Let A be an admissible weight of level m of type 2S or 3S with s asin Table 3. Then

(i) mel= g, 8rows linearly with ¢,
i) A=(C 1) and mel 4 I=g, grows linearly with ¢.
2 A8
(b) All cases in which A is non—integrable admisible and g, grows linearly with ¢ are

given by (a) and are listed explicitly in Table 3 (r = l—s):

Table 3
A case s me
Bél) 3 2<s<1Z =25 + 7
s =02 +
1
3S §€<SS€—‘1 —2r+l+
1) 1 1
Cg 2S 053<§£ —s—§+l+
14
3S 25s<?-+1 —s+Z+
4
3S §+1<SS[ —r—2+l+

1) ]
DE, 9 2¢s<ie 2541,
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Ag%) 3, 1¢s< 8L 25 +1,

3, Blosct 2r—1+1,
Aé% 2, 2§s<%—'—l- 25+ 1,

2, Bloscy 2r-1+1,
D{2) 2 1<s<be 25+,

Explicit constructions of these representations are known only in cases
1) . 1 2 2
(e 2p,m=-1, (ald 3, m =), (A2 2, m = 1) [3],[8]. It would be

interesting to find explicit constructions of other representations from the list.

For the study of transformation properties another form of the character formula is

useful. Define the normalized character (cf. (3.12)):
27rirs/\

Xy, =e ch/\ .
-~ Theorem 3.5. Let A be an admissible weight for A of type A, i.e.
A = y.(A%~(u-1)(m+g)A,),

"~ where m is a rational number with denominator ueN, A0 ¢ Pi(m+g)—g and y = tﬁ?
with JeM,y€eW and y(S(u)) CR, . Then

x\(rzt)= T (yw)8 (rafut/u®)/A (r2,0)

weWw uw(A%+p)+u(m+g)B

Proof. Formula (3.2) can be written as follows (see the proof of Theorem 3.2):
(3.21) xy(h)=A _ (h)/A (h).
A /\o+p P

Furthermore, Lemma 3.3 can be stated as follows:
h= uy_lt_ﬂ/u(r,z/u,t/UQ)
Using these and the obvious formulas

BNR) = By aglh) = By, (0/0), By () = B(_gt).

we get the result. a
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We turn now to the transformation properties of the characters. We consider here
only the case when A has type A (in other cases formulas are more complicated).
Denote the set of such X having level m by P™(A) ; explicitly (Theorem 2.1):

PI(A) = {t7.(\°~(u-1)(m+g)Ag | € M, 7 € W, A% ¢ PUMFEIS 5 tﬁy (S() €

R } (Recall that u €N is the denominator of m , and that g.c.d. (u,k”) = 1.)
We first consider the case when A is either non—twisted (i.e. has type Xgl)) or has
type Aél) . Note that in this case (due to (3.11)) s sy can be rewritten as follows:

_(e2plD) 1 MUY
S)_ 2(m+g) ﬂk(m+g7’
and also that M = Q™ , M= M—P( {/\Eb|</\a>elforalll—1 A4}),

(Q71Q7) c T. Recall that in this case we have [5, Proposition 4.6(c)]:

A
%, t — M): (—l)l +|(—£T)Z/2AP(T,Z,t) .

For A =tgy. A%—(u—1 )(m+g)A ) € PT(A), let
By(rat)= I e3w)8 (r,z/ut/u?) .
weW uw(A+p)+u(m+g)s
Then Theorem 3.5 can be stated as follows:

(3.23) Xy =By/A, .

Using formula (3.5) we get:

_1
(3:24) By(—£Z0 -2 = 92 M jd(megM| 2 T e(yw)
wew

2 mi 0 _
- (w(A"+p)+(m+g)B| 1) .
<3, e mFE) B,(ra/ut/u?),
uEPu (m+g)mod u“(m+g)M
since M = P in our case. To go further, we need the following lemma (which will be

proved later).
Lemma 3.4. Suppose that A is of type X%l) or Ag g)

(a)  Given B€ M, there exists a unique y €W and a unique 7€ M such that
pun S € Ry

(b) Let u and v be relatively prime positive integers, and let u be relatively

prime to k'aua1 .

Then:

(i) any element ze PYY

can be written in the form
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(3.25)V ¢ =uw(v) + v§, where ve P_T_ ,BeM and we W ;

(ii) there exists precisely n:= |M/M| such solutions mod uM of the equation

(3.25) for given u : (Vi’ i’wi) ,i=1,.n;

(iii) for each triple (Vi,ﬁi,wi) there exists a unique v € W such that

-1

EIBIY-(S(U)) CR, ;jwelet y, = b € W (i=1,.n);

(iv) S:= yi(S(u)) is independent of i ;
(v) the elements /\i+p:=yi(ui—(1—u—1)vA0) lie in the fundamental chamber for

S;
(vi) A= A; is independent of i ;

(vii) A+p is regular with respect to S iff v, is regular with respect to II" for

some (resp. all) i;

(viii) if A4p is regular with respect to S, then A is an admissible weight (of
level u—lv—g) with S* = ;

(ix) if A+p is regular, then C(Wiyi) is independent of i ;

2, , , .
(x) WEW e(y;w) Buw(l/i)+vﬁi (r,z/u,t/u”) = Apch/\(r,z,t) if v, is regular, and

= 0 otherwise; in particular, it is independent of i .

Using Lemma 3.4(b)(i), we obtain:

— 271 W O+ +{m+ 7
. u_(ﬁf( (A7+g) +( g)ﬂlﬂ)e (t,z/u,t/u2)

(3.26) % )

pep! (m+g)qu u2(m+g)M

. —%(w’—lw(,\ow) | ) =271 ((A%+p
= e

) weW
+
[ eMmoduM
x 8 (t,z/u,t/u2) ,
u(w (v)+(m+g)f)
where the summation is taken over all equivalence classes of triples (w”,v,0”) (two such
triples are called equivalent if they give the same x in the equation (3.25)u( m +g))’

We have used here that (w(A\%+p) 16) = (\°+p| 8 )mod I and (Blw’(v)) = (v|B) mod T .
Plugging (3.26) in (3.24), we can replace v € P}:(m+g) by A-%+p, where

B7)+(v|B)+(m+g) (B157))
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A 0€ Pi(m+g)_g (otherwise v is non-regular, hence the corresponding contribution is

0), obtaining (the summation is again taken over all equivalence classes of triples):
1

B, (1,20 - 212)y - i) 20 pu (eg) M| {ﬂgw e (3v)
A,Oepg(mg)—g

_ J7 €M mod uM
— 271 (32 (1%+p) | A+ Oxp) =27 (A% | B) + (A Op | ) +(m+g) (8

m+g

)

x €

2

x YL _e(w)B (r,z/u,t/u”) .
w el uw’ (A %+p)+u(m+g) A7

Using Lemma 3.4(b)(x), the last factor can be written in the form e(y’)B/\,(r,z,t),

y’ € W . Thus, we obtain the following
Theorem 3.6. Suppose that A is either non—twisted or of type A%) . Then we

have the following transformation formula for A € P™(A) :
1
GL1E - = a0y (ra),
where

A . '
o a(MA) :il +|u—_f(m+g)-f/2|M /M|—1/26(—y,)e—2m((x\o+p
(w(A%+p) [ A" O+p)

B)+(A%+p| B)+(m+g) (B8] 57))

2
x L ¢(w)e MTE . 0
weW

Proof of Lemma 3.4. In order to prove (a), note that S (u) is the simple coroot set
for R(u) = {a € R| <Ag,a> € ul} , uc is its canonical central element and W(u) =
{v‘vtua{v‘v € W, a € M} isits Weyl group. Let & = p/g in the case A symmetric or
A‘g%) ,and let £ = p”/h otherwise. We have to show that, given §¢€ P, there exists a
unique y€ M and a unique §¥ € W such that <€’tﬁ+u'yy(7i)> >0 forall iel,or,
equivalently, such that y_lt—ﬂ—u'y(O lies in C(u) , the fundamental chamber for S(u) :
Since t_ﬁ(f) = é—fmod €6 and <&,a> ¢ 1 forall o€ R, the element t_ﬁ(f) is

regular. Hence there exists a unique w € W(u) such that wt_ﬂ(f) lies in C(u) .
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Writing w = y_lt_u,Y with § € W, 7€ M, we obtain the result.

To prove (b), write p=uvA, + ) nif\i )1y € . Thereexists n{,n} € I such
i€l
0

that n, = un{ + a b~ vnf (i€ly) . Hence p=ur'+ vB3, where v’ =vAj  + L on A
i€l
0

eP' and f=ag'k” ¥ n'A ecag'k  PcM. Choosing weW such that v=w L)
i€l
0

€ PX_ , we obtain the decomposition (3.25) . Statement b(ii) is clear since choosing
representatives ‘fl""’fn of M mod uM , elements ﬂ+u§1,...,ﬂ+u§n are also solutions of
(3.25),, for some uniquely defined w,...,w € W . Statement (b)(iii) follows from (b)(ii)

and (a).
In order to prove (b)(iv), let

W+ ={we v"v(u)|w(n') =1}, W(u)+ ={we v“v1w(s(u)) = s(u)} .

We have [5, Proposition 4.27]: W = {t _w(i)li =1,...,n} , where 51"""511 is certain set
of representatives of M mod M and w( 1) e W . Hence W( )+ = {tué_w(i) |i=1,...,n}.
i

Fix now a solution (v,4,w) of (3.25) . By b(iii) there exists a unique y € W such
that t ﬁyS(u) CR e Then we can construct the following set of representatives of M mod
uM : ﬁiz 0+ uy(éi) ,i=1,...,n; for each ﬂi the corresponding 2 is yw(l) , since

) _
USRI OY) tﬁ(tuy(é-

1 1

)y)w(i)(S(u)) — ﬁ?tugiw(i)(s(u)) = t47(S(y))C R, - Using

b(iii), we obtain tﬁy ﬁy

b(v) is clear since S = y(S (u )) and v, — (1 —u )vA0 is in the fundamental
chamber for S(u) . |

To prove b(vi) note that WS =Y W(u) y{l is the Weyl group of S, hence is
independent of i. Equation (3.25) can be written as follows:

-1 -1 -1

u p—(l—u )vA0 =¥, wi(Vi (1—u )VAO)

Hence we have:

-1

(3.27) Atp =y, (w yiy; (u” - (1™ )VAO) )

i.e. A+p is Wg—conjugate to u 1u—(1—u_1)vA0. Thus, the elements A.+p from the
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fundamental chamber for W¢ (see (b)(v)) are Ws—conjugate, hence they are equal.

b(vii) is clear since v lies in the fundamental chamber. b(viii) is also clear since
A = y..((v=p) = (1=u"1)wAg). b(ix) follows from (3.27) and b(vi). Finally, b(x) follows
from Theorem 3.5. o

(2)

K)
We consider now the remaining cases, i.e. A of type Ag%zl , D%;% , Eg™/ or

D{>) . Welet A~ tobeof type D}2) AL E(Y and D{®) respectively. Let § =

" BN " 2
{(+1-s for s€ly,andlet AL = (ag/ag)Aq (resp. = (a /aS) §) if A= A§£)1 or D(H_%

— (2) (3) ;o— A V2 ’ ’
(resp. = Eg™/ or Dj ). Let A7 = A7 +af /\.0(1<EIO),A0 Ao,p —IEIA

co=c,P =13 ZK{,P’z.E ZA{,M’:Q“,W’zW. Then pr=M and P’

is the set of integral weights for A’ . As before, we define functions 8 50 A 4 and x§ for

the affine matrix A-.
Then we have the following transformation properties [5] for A € P™ (meN):

271y
—=—=(AlB)
1 )2 =12 (
8, (- 12— 2y - in¥2 )M M| 72 3 . e B (ERY,
pe€P” " mod mM~
1

W TGP L

| - ,
+ e 2 4.
5= M /M| Ap,(ﬁ,ﬁ—,t) ,

Using these transformation formulas and Lemma 3.4 applied to A’ , we deduce

2) g2 o Df:é)

. 2
Theorem 3.7. Suppose that A is of type AéeL , D$+l , Bg . Then we

have for A € P™(A) :

X/\(_ lT’%'-’t _L?%_ZFZ) = Z a(/\a/\,)x/l\/({{’lzz’t) )
A eP™(A)
where
A
a( A\ )—1' +! o) 2 M e 17 (537 S i
2O+ 3) 0O B B18)) g e B T
wEe
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We conclude this section with the following interpretation of the matrix (a(A,u)) .

Theorem 3.8. Let A be of type X(el) or Ag%) ,and let A\u€ Pm(A) . Define

©* € Pi(m+g)—g and ce€ W by uo.u=p*,andlet e(g) = ¢(o) .
Then we haveas T | 0:

/ﬁz__ﬁ _ D2
ch (iT,~ £22.0) ~ () Tg‘ 9 g

m+g’
Proof. We have for A € P++ (cf. (3.10)):

¢ 1
(3.28) Ay(iTzt) = (0T) 2 [M*/M| 2?0t
- . )e—%@(w(ﬂ)lv)—%ﬁl +2?
x €Qw

weW veM*mod nM 7€M+-
v regular

Using (3.28) for h given by Lemma 3.3, where h = (7,2 z,0), we have:
L L mmie) (g, L)

(3.29) A, ()= (i(mtg)T) *|MeM| Ze O
A +p
x ¥ X ) e(w)
weW veM*mod u(m+g)M 7EM+—(————5V
v regular u{m+g

2 2
x exp(——aa%é—y /\ +p)| ‘LTiZ | vy 1Tﬁ+z)l ).

Now we let z = —(g+p)/(m+g) in (3.29). Since p+p = §' (B0+5) + (m+g)s
rnod(tEA0 + C6) , we have: z = —(uj’ (B°+p) + u(m+g)s’)/u(m+g) . Since

B € M ¢ M* | the element v = y—l(uy’(ﬁo+p) + u(m+g)f’) liesin M* | hence the

leading term in (3.29) is given by the pair v = uy—l(y'(*°+p) + (m+g)s3’) ,
v=v/u(m+g) . Thus, we haveas T | 0:

iy L ,
(3.30) A/\O (R) ~ (WP(m+g)T) 2|M*/M| 2 2mi(y’ (B7+p)+(m+g)8’ | )
+p
2 i, -0, - " )
s o mEOTRAIT 2RO
wew

Since A°+7 € P, we have: w(1°+p) — (A%+p) € M forany we W . It follows that
(w(X°+p) — (X°+p)|7) € I forany we W, ye Mc M* = P. Hence we haveas T | 0:
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}_‘_‘fflg

(3.31) A (A)~T 2(<) T a(Ap),where h=(r, - E0).

A0+
Furthermore, applying (3.28) to the case X, = A, A=p,we obtain, using (3.13),

for 0 <z<1l,as T]O:

_ T 2 +l)
(3.32) T (1 2mT-2riny  ~2n(n-l)TH2ris) iz (2" 2+5)
n>1
Asymptotics (3.32) together with (3.13) and .
(3.33) T (alN)(alr) =g(AlA7) for A A7 €h
aEA+

gives for z € Dy
14 3 T 0,2
LA =R
(3.34) A(T=2,0)~T 24) te T2

An immediate generalization of (3.34) is the following lemma.
Lemma 3.5. Let z ¢ E) be such that A + z is regular. Choose ¢ € W and

22 € D, such that o(z)—z” € M. Then wehaveas T | 0:

0

<12
| L ut AP
Ap(lT,—Z,O)~6(0’)(-—1) 2e & . o

Theorem 3.8 follows immediately from (3.21), (3.31) and Lemma 3.5. O

§4. Appendix.

4.1. On complete reducibility. We have the following simple general result:

Theorem 4.1. Let g be an affine algebra and let V be a g—module from the
category ¢ such that every its irreducible subquotient L()) satisties the properties
(4.1) <Ap,a> ¢ {-1,-2,..} forall a€ R+ ,

(4.2) Re<A+p,c> > 0.
Then V is completely reducible.

Proof. Condition (4.2) means that A+p lies in the interior of the Tits cone and
condition (4.1) means that A+p lies in the fundamental chamber for W’\ Now we can
apply [2, Theorem 5.7]. o

> Corollary 4.1. Let A€P n and let A\ be an admissible weight. Then the

g—module L(A)® L()\) decomposes into a direct sum of irreducible g—modules with
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admissible highest weights x with R* = R

Proof. First, ¢ actson L(A)®L(\) as ascalar A(c) + A(c) > —g, since A(c) >0
and, by (1.8), <A+p,c> > 0. Second, we have:
Uy erpy) =M =
wew
by (3.2). Since chA is W—invariant, we deduce that Qg Ch(L(A) ® L(\)) is

f(w)ew()‘+p)
A

W’\—anti——invariant, hence is an (infinite) sum of expressions of the form
) c(w)ew(“+p) , where u+p lies in the interior of the fundamental chamber for
WEW/\
wh Hence <p+p,a> ¢ {0,—1,-2,...} and we can apply Theorem 4.1. It is clear that the
p are admissible and that WA = WH Applying (3.2) to A = u completes the proof. @
Remark 4.1. Applying the arguments of [2] to the Virasoro algebra, we conclude
immediately that if V is a Vir—module such that L, is diagonalizable with spectre

bounded below and all irreducible subquotients are modular invariant, then V is a direct
sum of modular invariant Vir—modules.

Remark 4.2. In the conditions of Corollary 4.1 the branching functions are modular
functions. In general, branching functions for admissible representations are not modular
functions (see [8}]). It is an interesting open problem to find their asymptotics and
transformation properties. They look very much like Ramanujan's "mock" modular
functions.

4.2. On uniqueness of the vacuum. In [6, §2.5] we proved the uniqueness of the

vacuum for a conformal subalgebra acting on the direct sum of level 1 modules of an affine
algebra. We generalize here this result to the general case. Throughout this and next two
subsections we stick to notations of [6].

Theorem 4.2. Let p- — g’ be a homomorphism of affine algebras corresponding to
the inclusion of reductive finite—dimensional Lie algebras p — § where p is a Lie algebra
of a reductive of a reductive subgroup of the Lie group corresponding to §. Let Lg,p be

the coset Virasoro operator (commuting with p’), see e.g. [6, §3.1]. Let yim) _
®  L(A) be the direct sum of all integrable g’—modules of level m . One knows that

m
AEP+

the specter of L&P on y(m) is non—negative ([6, Proposition 3.2(a)]); let v(m) pe it
0 & 0

0—th eigenspace. Then the multiplicity of the p’—module L(rhAO) in V(()m) isl. In
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other words the highest weight vector of L(mAO) is the unique, up to a constant multiple,
non—zero vector in V(m) which is annihilated by p and Lg’p .

Proof. We consider, for simplicity, the case of semisimple § and p. We have for
AepP™:
+
che= & bMHcni(n).
§ rep () 4

+
Hence as 7 | 0, we deduce, using [6, (2.5.1) and (2.5.5)]:
(4.3) a(A)= L b(A,N)a(A) -

/\ePim)

Let )\ = mA. + aé be a maximal weight (a € €). From [6, Theorem A(a) and Theorem

0
B(a)] we have asymptotically as 7 0

i(z_—2_.)/12T
Ches anan(s i ™

MeP_E_m) uePJ(rm)

A
by

Using (4.3) we can rewrite this as follows:
mi(z_—2_)/127T
RGNS a(AM)a(Mmagle ™

AV T
(m)
MeP |
Using unitarity of the matrix (a(A,M)) , we get:
A n(z_—z_.)/127

0
On the other hand, by {6, (2.5.8)], if hy = hy — h/\ = 0, we have:

i(z_—2.)/12
(4.5) b&(— lT) ~ muItA(A;p)eM(zm m)/ ’ :

Comparing (4.4) and (4.5) we get, provided that hy , =0:
Remark 4.3. Theset S_ := {(A;})]L(A) C L(A) and h, , =0} introduced in [6]

can be described as follows:
(4.6) sz {(A,,\)|/\EP(A)|60P+ and hA,/\=0}.

Indeed, in the contrary case, L(x) C L(A) with p=A+a,a€ Q+\{0} , and we have:
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hu —hy = (u+A+2p| @)/2(m+g) > 0 , hence hy , <0, a contradiction with [6,
Proposition 3.2(a)]. This argument also implies that mult A(A) is equal to the sum of

multiplicities of weights of L(A) whose restrictionto § is .
Remark 4.4. Combining [6, (2.5.8)] with [6, Theorem A(a)] we see that for
(AA) € S, one has:

(4.7) mult,(Ap) = T a(A,M)a(s, \)multy (p) |
A (M;)es M

i.e. the vector (multA(/\;p))(A_/\)ES is an eigenvector with eigenvalue 1 of the matrix
’ m
(a(A,M)a(u,t)\))(A./\) (M;)eS. - The problem (posed in [6]) that all entries of this
b Y 3 m

matrix are non—negative real numbers is still open (by Frobenius theory then (4.6) and
(4.7) together with mult 4 (rh[\o;p) =1 completely determine the above vector).
0

4.3. On "admissible" subspaces. In [6] we gave a conjecture on classification of
admissible subspaces in CHH_Q(AI1 ) (Conjecture 4.7.2). Later we found two more series

of examples:
(d) n=9r-2 (r=23,..)
CH; = {chj|1 <j<n+l,j#0mod 3 orj=0mod 3r}

U {Ch3j+Ch6r—3j’ ch + chgr_3jll <jsr-1};

3r+3j
(") n=18r—-2 (r=1.2,.):
CH = {ch.+ Ch18r—j|1 <j<9r-1, jodd, j £ 0 mod 3}

J
U {ch3j + Cthr—3j+ Ch6r+3j+ Ch18r—3jl1 <j<2r-1,jodd} if r is odd;
CH} = {chjl 1 <j<n+l,jodd, j#0 mod 3}
U {ch3j + Ch12r—3j’ Ch6r+3j+ Ch18r—3j|1 <j<2r-1, jodd}

U {chj + Ch18r—j|1 <j<9r—1, jeven, j# 0 mod 6 or j = 0 mod 6r}
u {ch3j + Ch12r—3j + Ch6r+3j + Ch18r—3j|1 <j<2r—1,jeven} if r iseven.

Note that (d) and (e) of Conjecture 4.7.2 in [6] are special cases of (d*) and (e’) for r = 2
and r =1 respectively. We think that there are no other examples.

Similar new series can be constructed for the Virasoro algebra (see [6, Conjecture
4.7.1]).

4.4. Corrections to [7].
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p. 4957 left, £. 7—13: replace A by A+p and p by ut+p.
p. 4957 right, formula [4]: add’ g.c.d. (uk™) =1.
p. 4957 right, formula [6]: replace d by d in the formula for b \-

p. 4957 right, Theorem 2: conditions on z which guarantee convergence of X) are
these: <ay,z>>0,1=1,..0 <§,2> < a, ; replace A and A+ by v(R) and I/(R_+_)
_ _ *
if k" =1;replace d by aold ; in the formula for a(\) replace P by M .

dim g(Xy) (m+(1—u")g)
Y k{m+g) '
p. 4958 left, £. 6: add factor e_mﬂ‘(zlz)' on the right.

p. 4958 left, Conjecture 2: one should assume that m+g # 0 .

p. 4958 left, £. 2,3: should be g™ =

— %rrngT
p. 4958 right, £ 6: add factor e on the right.

p. 4958 right, £ 9: replace L(A) by: L(A) of level #-2.
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