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Lectures on the infinite wedge-representation
and the MKP hierarchy

V.G. KAC and D.H. PETERSON

These are the notes on a series of lectures given by the first author in
August 1985 at the summer school on completely integrable systems in Montreal.
The goal is to demonstrate in a simple example, the group GL_, the main con-
cepts and constructions of the theory of affine Kac-Moody algebras, and then to
link this to the study of the "universal' system of soliton equations, the KP
hierarchy. This link was discovered by Sato [12] and developed, making use of
the spinor formalism, by Date, Jimbo, Kashiwara and Miwa [1], [2], [4]. In these
notes, we use the wedge formalism developed in [7], which we find more elegant
and transparent.

In the first part, we discuss two constructions of the fundamental
highest weight representations of the group GL_, the wedge construction (sec-
tion 1) and the vertex construction (section 3). The general theory of highest
weight representations.of GL_ (section 2) together with the wedge formalism
(section 3) allows one to explicitly give isomorphisms between these construc-
tions (section 4), a kind of boson-fermion correspondence (Theorems 3.1 and 4.1).

In the second part, the results of the first part are applied to give
several (six) equivalent definitions of the KP and the modified KP hierarchies

(Theorem 5.1). Furthermore, we construct polynomial and soliton solutions of
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these hierarchies (sections 6 and 7).

In section 8 we recall Sato's parametrization of the solutions of the KP
hierarchy by an infinite Grassmann variety and then give a simple geometric in-
terpretation of the MKP-hierarchy (Proposition 8.1) which allows one to para-
metrize its solutions by an infinite flag variety.

Following the idea of [1], [2], we study in section 9 the reduced MKP
hierarchy, using the wedge representation of the "big'" group A discussed in
section 8. The main result of section 9 is a very explicit description of all
polynomial solutions of the KdV and MKdV hierarchies (Theorem 9.1).

Recall that the key observation of the work of the Kyoto school is that
the KP hierarchy describes the GLm-orbit of the highest weight vector of a fun-
damental representation of GL . A new point of this, on the most part exposito-
ry paper, is the remark that the MKP hierarchy describes the GL_-orbit of the
sum of highest weight vectors of fundamental representations of GL_.

The first author wishes to thank T. Miwa and G. Wilson for valuable dis-
cussions. This work was supported in part by the NSF grant DMS-8508953.
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1. Representation theoretical interpretation of the Dirac theory of the positron

Let us start with a (somewhat lengthy) quotation from Dirac's book [3]:
the wave equation for the electron admits of twice as many solutions as it
ought to, half of them referring to states with negative values for the kinetic
energy ...

.. we are led to infer that the negative-energy solutions ... refer to the mo-
tion of a new kind of particle having the mass of an electron and the opposite
charge. Such particles have been observed experimentally and are called posi-
trons.

. We assume that nearly all the negative-energy states are occupied, with one
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electron in each state in accordance with the exclusion principle of Pauli. An
unoccupied negative-energy state will now appear as something with a positive
energy, since to make it disappear, i.e., to fill it up, we should have to add to
it an electron with negative energy. We assume that these unoccupied negative-
energy states are the positrons.

These assumptions require there to be a distribution of electrons of
infinite density everywhere in the world. A perfect vacuum is a region where all
the states of positive energy are unoccupied and all those of negative energy are
occupied. ... the infinite distribution of negative-energy electrons does not
contribute to the electric field.

.. there will be a contribution -e for each occupied state of positive energy
and a contribution +e for each unoccupied state of negative energy.

The exclusion principle will operate to prevent a positive-energy
electron ordinarily from making transitions to states of negative energy. It
will still be possible, however, for such an electron to drop into an unoccupied
state of negative energy. In this case we should have an electron and positron
disappearing simultaneously, their energy being emitted in the form of radiation.
The converse process would consist in the creation of an electron and a positron

from electromagnetic radiation.

This positron theory of Dirac's may be interpreted as follows.

Let V= &® (€v. be an (infinite-dimensional) complex vector space
je

with a fixed basis {vj} Each Vs is thought of as a state of an electron

jez -’
of energy j(e z ). Introduce the .nfinite wedge space F(O) = A?O)V to be the
vector space with the basis consisting of ensembles Vi AV, AVE A
0 -1 -2
such that

(1.1) '10 > i_1 > ... (Pauli exclusion principle),
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(1.2) ik -k for k<0 (all but a finite nunber of negative energy states are
occupied) .
The ensemble Y = Vo A V_j AV 5 A .- is the perfect vacuum. We de-
fine (following Dirac) the eneray of an ensemble Vv, A V; A ..- to be
0 -1
(1.3) ) (ig > 0 which occur) - } (i,=0 which do not occur).
s s

Denoting by Fk the linear span of all ensembles of energy k, we get the

vector space decomposition

(1.4) F(O) = @ Fk ‘
k=0
The corresponding q-dimension (partition function) diqu(D) iz z (dim Fk)qk
k=0

is easily seen to be (the j-th summand corresponding to the set of all ensem-

bles with j 'holes') 2

. (0) qj
(1.5) dim F =1+ : .
a 21 (1 - @2...0 - @)

The map z cjv. -+ (cj)jez jdentifies V with the space of column
j

vectors whose coordinates are indexed by Z , all but a finite number of them

being 0.

Introduce the (infinite complex matrix) group

)

GL = {A = (a, | A is invertible and all but a finité number of the

ij’i,je2

&, . = 8z prey OF.
ij ij

Its Lie algebra is

8, = 1(3;5)5 jez | all but a finite number of the a;; are 0},
with the usual bracket.

Both the group GL_ and its Lie algebra gR,  operate on V via the

multiplication of a matrix and a column vector. Namely,

El] (VJ) = Vi 3
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where Eij denotes the matrix with the (i,j) entry 1 and all the rest 0.
REMARK 1.1. The Lie algebra g2, (or rather s%_) may be thought of

as a Kac-Moody algebra (of infinite rank) on Chevalley generators

e. =B £f. = E h, = E.

s =By . ; . . = B g i
i ii+1? i i+1,i’ i 1,4 i+l,i+1’ LEF g

its Dynkin diagram being the infinite-in-both-directions chain

Define a representation RE of the group GL_  and a representation rg

of the Lie algebra g%, on the space F(O) by:

F
(1.6) RO(A)(vi AV, A s S Avi A Avi A..., AeGL_,
0 -1 0 -1

F
(1.7) © (A)(v. A v. A ol) = AV, AV, A vee + V., A Av. AV, A vae #

0 10 i, 10 i, i, i, i,

t ..., Ae gh .
In these formulas we assume multilinearity (i.e., .. A (ou+ BV) A ... =
=al..o. AuA...)+B(... AVA...)) and anticommutativity (i.e.,
+cAUA . AVA... 2= ... AVA ... AUA ...) tobe satisfied. In par-

ticular, we have the Pauli exclusion principle: ... A UA ... AUA ... = 0. It

is easy to see that Rg and rg are irreducible representations of GL, and

gl on the space F(O), and that they correspond to each other, i.e.
F F
(1.8) exp rO{A) = Ro(exp A), Aegr .

Note that the action of rS(Eij) on an ensemble exactly corresponds to
the effect of the electromagnetic radiation.

Introduce the principal gradation gf = @ gj by putting
jez

(1.9) deg Eij =j-1i,
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so that [gi,gj} =g Then we have

i+j’
(1.10) rg(gi)Fj @ Fj-i and Fo = @) (here we assume that Fj =0 for j < 0).

It is easy to see that (1.10) determines uniquely the decomposition

(1.4) (since, by the irreducibility of rg we have

F F
F, = ’ r, (g, ).-~r0(91k)w)

11+...+1k=- 1

Thus we obtain a representation theoretical interpretation of Dirac's definition
of the energy of a system of electrons and positrons.

In order to perform calculations it is sometimes more convenient to deal
with a bigger group:

Ef; = {A = (a.:) | A is invertible and all but a finite number of the

ij7i,jez
aij - Gij with i > j are 0}.

Its Lie algebra is

)i,jez
Both GL_ and gf act on a completion V of the space V, where
[+ co

g, = {(

(o]

35 | all but a finite number of the a5 with i >3 are O0}.

Ve {] covple, =8 for 4w 0f .
j ]3]

In contrast, both Rg and rg extend to representation of Ef; and EE; on
the same space F(O) = A?O)V = A?O)VZ Note also that the exponential map is de-

fined on the whole gf_  (with image in GL ) and formula (1.8) holds for
A e g&w.
In section 3 and further on we shall deal with a yet bigger group and
Lie algebra: let
E; = {(aij)i,jez | for each k the number of non-zero 25 with i < k and
j =2 k is finite}.

It is clear that a, still acts on V (by matrix multiplication) and is an
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algebra of endomorphism of the vector space V. The (associative) algebra a_

has the following meaning. Let V{n} = {X cjvj € V[ Cj= 0 for j > n}; declar-
_ ] _
V(n), ne Z, a fundamental system of neighborhoods of zero, V be-

ing the
comes a topological vector space. Then E; is the algebra of all continuous
endomorphisms of V.

We denote by K; the group of invertible elements of the (associative)

algebra a;. The '"corresponding' Lie algebra is E; with the usual bracket.

Note that the exponential map E; -+ is not everywhere defined. Note also

o'
8

that the representations rg and R, do not extend to representations of E;

and K;. We shall tackle this problem in sections 3 and 8, respectively.

The construction of the representation Rg of GL_  and rg of g

(=] (=]

can be generalized as follows. Fix an integer m. Let F(m) = Afm)v = A(m)V' be
the vector space with the basis consisting of expressions of the form

P AW A ... such that i_ > i > ... and i, = k for k €0. Let
1m 1m-1 m m-1 k

F E : (m)
Rm (resp. rm) denote the representation of GL_ (resp. of gf ) on F

defined by (1.6) (resp. (1.7)). Put

As before, the space F(m) has a unique vector space decomposition

F™ - & ™ sitisfying the analogue of (1.10). Tt is defined by a formula
j=20

analogous to (1.3) (in which 0 is replaced by ~m). Note that

dim F(m) = diqu(O) and that, moreover, denoting by Vg € E; the shift

v.e» Vv, , je@ , we have:
] J-s J

F F F -1 F
(1. 11) \)srs\)s = ro, \)SRS\)S =- Ro .

. F
Note that we have the following formula for the representation Rm of

Ae GL on g,
[++]
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a3 S

(1.12) RF(A)(V. AV, P z det A" .m'l V. A V. A e

m j j S gl 1 43 sosn| 1 i

m m-1 i1 p. S m’ m-1 m m-1
m m-1

Smedme1 |
where Ai ; denotes the matrix located on the intersection of the rows

e ipa12e
iaip s and columns Jgrdpaget e of the matrix A. Note also that the

matrices that occur in (1.12) have only a finite number of non-zero entries under
the diagonal and a finite number of entries not equal to 1 on the 'diagonal; the
determinant of such matrices is defined in an obvious way.

The most convenient space to work with is the full infinite wedge space

F:AmV=AmTf-=@ F(m).-
me Z
Ensembles of the form Vs A Vi A ..., With i1 > i2 > ... and a finite number

1 2
of "holes", form a basis of F. We have representations rF =@ r; of gf  and

m
RF =@ rF of GL on F.
m [ =]
m

2. Highest weight representations of GL_

Given a collection of numbers A = {)\i}iEz , called a highest weight,
we define the highest weight nepresentation w, of the Lie algebra g% as an
irreducible representation on a vector space L()) which admits a non-zero

vector v, called a highest weight vector, such that
(2.1) “A(Eij)vk =0 for i< j; ﬂA(Eii)VA = Aivh ‘

It is a simple and standard fact that for every A, the triple (L(A),m,,v,)

satisfying (2.1) exists and is unique up to a unique isomorphism; also, the

properties (2.1) determine vy UP to a constant factor (see e.g. [5, Chapter 9]1).
For ke Z, let L(A)y denote the linear span of all elements of L(A)

of the form WA(Eil’jl)...ﬁA(Eis’js)v with (11+...+1S) - (]1+...+js) = k.
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Then we have the decomposition

(2.2) L) = @ LA, ,
k=0

called the principal gradation of L{(\). Note that in the definition of L(A)k

we could assume that < i for all 1<t < s (by the PBW theorem); it

Je < ¢
follows that L(;\)k =0 for k<0 and L(?\)0 = EVA. It is easy to see that

dim L(A)k < » for all k if all but a finite number of the Ai - Ai+1 are 0.
Assuming
(2.3) Ai =0 for i» 0 and Ai = Ai+1 for i <0,

we may write the formal power series

dim_L(A\) = } (dim L(A)k)qk s
q k20

called the q-dimension (or the partition function) of L(}).
The most interesting of the representations T, are those which can be

exponentiated to GL_. Necessary and sufficient conditions are

(2.4) Ai e Z and Ai 2 Ai+1(i e 2) .

(These are the conditions for L(A) to decompose into a direct sum of finite-

dimensional representations with respect to Gei + thi + Ifi o SZZ(G).)
Furthermore, provided that the Ai are real, L(A) carries a unique

Hermitian form < , > satisfying (* denotes the adjoint operatér with respect

to <, >):

t—
(2.5) <VA,VA> =1 and (wA(A))* = wl( A), A e g&w 5

called the contravariant Henmitian 4orm (see e.g. [5, Chapter 11]). Using the

fact that g&n is an inductive limit of the finite-dimensional gzN, one deduces

that the contravariant Hermitian form on L()) is positive definite if and only
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if (2.4) holds.

me 2 ,

i > m}.

number of them are

Y. =Y

\Js'ﬂ')\\i_

By the hook of a box j

j on the same row and all the

A U

5

We denote by P+ the set of all A

define the fundamental weight wy =

satisfying (2.3) and (2.4).

{he = 1

Given

for i 0 for

IA

m, A. =
i A |

Then P+ = {z kiwilki are non-negative integers and all but a finite
i

0}.

A Xe P+ may be represented by an infinite Young diagram YA;

of Y

we hav

if p can be obtained from A by a shift Ve of indices, so that
= wu (cf. (1.11)). For example, we have the following pictures (m < r
Y = ] Y =
“a _— Ygtp ||
r - m boxes

boxes downwards from j

we mean, as usual, all the boxes to the right of

in the same column (in-

cluding j itself); the hook length hj of the box j is the total number of

boxes in the hook.

LY

(2.6)

Now we can write the formula for the

with A ¢ P+ £51:

dim_L(A) = I
1 jeYh

(the product is taken over all boxes of Yk)'

To prove (2.6) recall that dimq L(A)

h,
(1-q7)

g-dimension of the representation

= |

e

Ik

“d

S5 1)

T4

—

or ﬂLmr L(“;"f'.--*“-’.r,‘) =

has a product decomposition (see

[5, formula (10.10.1)1), which in our case takes the form:

(2.7)

A.o=A.+j-1

T ((1-gq°
i,jeZ
i<j

di L(A) =
im (A)

y/a-dhy

‘P(p“’
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Formula (2.6) is a nicer form of (2.7).

The following basic example is a link between section 1 and section 2.
It is clear that the representation rg of gf_  on the space F is the highest
weight representation with highest weight Wy s the highest weight vector being
the perfect vacuum . Thus the representation rg is equivalent to the repre-
sentation wmo called the basic representation of gl_. More generally, the
representation r; of g on F(m) is equivalent to w , called the funda-
mental rephesentation of gt _, R being the highest weight vector. Thus, the
representation rf of g&_ on F is the direct sum of all fundamental repre-
sentations of g% .

Furthermore, it is easy to check that the ensembles form an orthonormal
basis of F(m) with respect to the contravariant Hermitian form.

Finally, using (2.6) we get a very simple formula for the g-dimension

of the fundamental representations of g% :

F(m) . S

(2.8) dimq L(wm) = dimq ol ’

where o¢(q) = T (1 - qJ).
j=1

Comparing (1.5) and (2.8), we get Euler's identity:

1L, & .
¢(a) k1 (1 - )°...(1 - 492
Another important example is the .following:
) i - 4 n-m+1
{2.9) d1mq L(wm + wn) = w(q)z s

where n,me Z and n = m.
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3. Vertex realization of fundamental representations of g

We return to the wedge representation rg

A?O)V constructed in section 1. It was remarked that rg can be extend-

ed in the obvious way to a bigger Lie algebra Eim (which consists of matrices

of gf_  on the space

£ (0)

(aij)i jez with a finite number of non-zero entries on and under the diagonal).
> i
However, if we try to extend the representation rg to the Lie algebra E;, we
; F_..
t " =
encounter an "anomaly'", e.g. 1n ro(dlag(,‘\i)iEZ W= (AO + k-l + ...)¥, the

right-hand side is in general a divergent series. To remove this anomaly, we

correct the representation rg as follows. Put:
$F(E.) = (E..), if i=2j or i=j>0
g~oift = Faimighe J =) ’

F F . .
?D(Eii) = rO(Eii) - I, if i< 0.

11

We correct the representations r_ in exactly the same way.

3

Extending ?E (resp. * ) by linearity, we get a projective represen-

m
tation of the Lie algebra E;. Equivalently, introduce the central extension

a, = E; ® €c with the center €c and the bracket
[a,b]l = ab - ba + a(a,b)c, a,be a,
where the 2-cocycle o is defined by:
(3.1) a(Eij,Eji) = -u(Eji,Eij) =1, if i<0, j=21,
a(E..,E ) = 0 in all other cases.

ij’ 'mn

Then, extending ?E to a_, by ?E(c) = I, we obtain a linear repre-

sentation of the Lie algebra a_ on the space F(O) (resp. F(m)], which we

again denote by fg (resp. T;). Of course, we have representations r = @ ri
m
and fF = ® ?F of @ and a_ on F.
m =] =]

m
Now, consider the matrix of the shift by k:
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(3.2) Be = L By spp -
lez

The advantage in introducing a_ is that Ak € E; ca_. One easily computes in

.
co

(3.3) [A A ] = k8 _ c .

Thus, the Lie algebra s = | €A, + €c ca_ is an infinite-dimensional

k=0
Heisenberg Lie algebra. It is called the principal subalgebra of a_.

We restrict the representation ?i of a_  on F(m) to 4. We have:

-F ) F F :
rm(Ak)wm =0 for k>0, and all the elements ?m(A_kl)...fm(A_kS]wm with

kl > e ks > 0 are linearly independent (this follows easily from (3.3)).

Note also that Ak has degree k in the principal gradation. It follows from

(2.8) that the elements 2 (A , )...2 (A . ) with k. + ... + k =k form a
m —kl m -ks m 1 s

(m)

basis of F
Thus, by uniqueness, viewed as a representation of the Lie algebra s,

the space F(m) may be identified with the space of the canonical commutation

relations representation:

(3.4) o, M g _ gy

so that the vacuum vectors correspond:

(3.5) o W) =1,

and the transported representation, which we denote by ?ﬁ, of 4 on the space
B(m) is given by the annihilation and creation operators (k > 0):

) B B
(3.6) (Ak) 5;; » ) = kx, T o(c) =

The map On which identifies the (irreducible) representations of the

Lie algebra 4 in the spaces F(m) and B(m) may be viewed as a kind of
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boson-fermion correspondence. This map will be described explicitly in the next
section. Here we will show what the principal gradation and the contravariant

Hermitian form transported by o look like, and how to extend the representa-

tion fﬁ of 4 on B(m) to the whole a_.
It is clear that the principal gradation B(m) = ® Bk is defined by
k=0
(3.7) deg xj = 3

(and the degree of a product is the sum of the degrees).
Furthermore, the contravariant Hermitian form < , > must satisfy the

following conditions (cf. (2.5)):
(3.8) <1,1> =1 and (E2(AN* = 22(A )
) ? m- k T m-k

One checks immediately that the Hermitian form (here Q means taking complex

conjugates of the coefficients of Q):

(3.9) <P,Q> = Pz »1 53— 5+ DA | g

satisfies (3.8). This is therefore (by uniqueness) the Hermitian form transport-

(m) (m)

ed from F Note that monomials form an orthogonal basis of B and that

the square of the length of a monomial is:
k k. k k koloask
(3.10) < X 1...x mx 1...x n> SN NSttt S

Put B = C[X;,X,,...; 2,2 1. Identifying 8™ with zmu:[xl,xz,...]

by P +» sz, we have:

Let v = @ rﬁ (resp. - o ?3) denote the representation of gf
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(resp. a_) on B. The representations rF and rB (resp. TF and ?B) are
equivalent via the map ¢ = ® g_. Recall that o) =1 := 2™,
m M m m

An element v e V gives rise to a wedging operator ¢ on F defined

by

where the right-hand side is interpreted in the obvious way. Let V* denote the
space of linear functions f on V such that £ = 0 on V{l) for i €0. An

element f ¢ V* gives rise to a contracting operaton £ defined by:

f(v. Av. A ced) 2 VLIV AV A cs = £(VL)V. AV, A e+ ...
T 1 o . 211 13

We have: V(F(m)) c F(m+1), f(F(m)) c Fﬁn-l)‘
Furthermore, we have the following simple formulas:
(3.11) G0+ 98 =0 for u,veV; fg+ gf=0 for f,ge V* ;
(3.12) Gf + f0 = f(u) for ueV, fe V*.
It follows that all the operators i for ue V and f for f e V*
generate the Clifford algebra, which we denote by C%, on the space V @ V*

with the symmetric bilinear form (.I.) for which V and V* are isotropic and

(u[|f) = f(u) for ueV and f e V*. The representation of C% on F is ir-

reducible.

The operator adjoint to ?i is ¥*, where vie V* is defined by

Z _ i
vi(vj) = Gij’ j € Z . Note that

F y
(3.13) r(Byp) = 0V

Introduce the following two operators on F ® F (which are adjoint to

each other):
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s= ] 9,@V} and S*= I Ve

The following lemma is immediate by (3.11-13):

LEMMA 3.1. S and S* commute with rF®rF[g2m). 0

We turn now to the computation of the "transported' operators o?jG-
and Uﬁfc-l on B. As we shall see in a moment, each individual Uvjo_l, etc.,
is a quite complicated differential operator (of infinite order), whereas their
generating series is represented by a very simple differential operator, called a
vertex operator.

Let ﬁ(m) and ﬁ(m) denote the formal completions of Ffm) and B(m)
respectively (i.e., arbitrary infinite sums of monomials are allowed), and put
f- e ™, 3:-0 B30

me Z meZ
Introduce the generating series:

x
, where ue @

1]

X(u) = 7 ujvj and X*(u) = J u v

%
jeZ je2 ]

These are operators which map F into f. The "transported'" operators oX(u g
P P p P C

and GX*(u)c'1 map B into 8. 1In order to describe them explicitly, define

the linear map T(u): B+ B by:
T(u)f(x,z) = uzf(x,uz)

THEOREM 3.2. One has:

(3.14) GX(u)c'l T(u)(exp ] Uu xj)(exp - B 23

jz1 jzl j

(3.15) oX*(u)o

"

o) exp - T wx)(exp ] 5
3zl . izl ? J

PROOF. One checks easily, using (3.11-13), the following relations:
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[?F(Aj},X(u)] = qu(u) and [fF(Aj),X*(u)j = -qu*(u)

Due to (3.6) the first of these two formulas transports into B as follows:

-k
3 -1 -1 - -
(3.16)  [=1 ,oxo 1 = ur(oX@o Y, [x,0Xwo 1 = E(oX@a )
Xy k k
Note also that UX(U)G-l maps B(m) into B(m+1) But up to a constant factor

(depending on u) there exists only one operator which maps B(m) = E[xl,xz,...]

into (™D - arx ,x,,...1] and satisfies (5.16), the so called vertex opera-

goee
ton (see e.g., [5, Lemma 14.61):

i j __‘__'a_
T(u) = (exp jgl u xj)(exp ; : B

Thus, we obtain:
-1
oX(uw)o = = Cm(u)zr(u) .

m+1

But the coefficient in X(u)(vm AV A ...) of Vg & Vg & ass is u 5

from which we conclude that C_ () = um+1. This completes the proof of (3.14);

the proof of (3.15) is similar. O
Further on we will denote, for brevity, the transported operators
Oﬁo_l, cX(u)o_l, etc., on B simply by @, X(u), etc
It is easy now to compute the representations rg and ?ﬁ of g and

(m)

a_, on B(m) transported from F via o . Due to (3.11) we have:

rF( 7 ulv'JEi.) = X(WX*(V), u,ve ¢
i,jeZ J
Using Theorem 3.1 and the relation

(exp a %;D(exp bx) = (exp ab) (exp bx) (exp a gx ¥

we deduce (taking |v| < |u[):
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B i -j N
(3.17) rm(i§j u'v Eij) =1 - Vi T(u,v)

where T (u,v) is the following vertex operatonr:

o 5
(3.18) Tu,v) = (exp § (0 - v)x)(exp - § 23 33 )
jz1 J =1 ] Ay
Taking into account (3.1), we also have (cf.[1]):
(3.19) 807 uiviE ) s (¥ rww - D
: m", : ij 1 -v/u'lv *

Here and further on we do not attempt to justify our manipulations with vertex

operators.

In order to calculate ?B(E..) or rB(E..), we develop (1 - !J'l =
mijc m™ 1] u

) [ﬁlk and T(u,v) in formal power series in u and v and then collect

th§220efficients of uiv-j. As a result we obtain quite complicated differential
operators of infinite order in infinitely many variables, which we will not write
here as we do not need them.

Note that any highest weight representation m of gt ~on L(A) with
highest weight X = {Ai} satisfying (2.3), extends to a representation ﬁk of
a_ on the same space L(\) as follows. Put m, = mgx(ki); put (cf. formulas

%
(3.131):
ﬁA(Eij) = ﬂA(Eij) for i2j or i=3>0;

WA(Eij) = FA(Eii) - mAI for i< 0; wA(c) = mlI 3

4. Boson-fermion correspondence and Schur polynomials

Introduce the "elementary' Schur polynomials Sk(x) € E[xl,xz,...] by

the following generating series:
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o
(4.1) 7 szk(x) = exp ) zkxk .
kez k=1
Then we have Sk(x) =0 for k <0, So(x) = 1, and
xkl ka
Sk(x) = ) —17-—27 cox for k>0 .
k1+2k2+. =k 1 2
For example, S,(x) = X S.(x) = l-x2 + X, S,(x) = l-x3 + X,X, + X
| 1* "2 28 T fgw Sgas T g 1% * 23
S,(x) :-l— x4 + l—xzx + l-xz + X.X, + X etc
4 24 717 27172 7 2 72 173 4’ ’
Given a partition A = {Al > AZ > ...} € Par (i.e., a finite non-

increasing sequence of non-negative integers), define the associated Schur poly-

nomial by:

4,2 S x) = det(5, . . v
(4.2) WG R CUVINC
For example,

(S, S.)
15| 1 2
Sj,07 9t s ) T7 T 2
(S S,
253 1.3
Spu = BN 5] *ENLT s
S, S
_ 2% 1 4 2
5.3 de"[sl sz] Bk ekt AR

etc.

Note that S, (x) is a homogeneous polynomial with respect to the princi-

1!A2,'
pal gradation (deg xj = j) of degree ll + Az + e

The Schur polynomials have the following simple interpretation in terms

of the representations of the group GLN(I) (big N). One easily shows that
> j j
1 €7t .vstE

J
_ _ g N :
tr SkmNﬂk . £ Sk(x), where xj = ————3———— . Furthermore, if (L(A),wk)
N
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is a representation of GLN{E) corresponding to a partition ) then
€
1
= SA(X) (see e.g., [10] for a proof of this fact).
€
N
Now we are in a position to describe.explicitly the isomorphism

tr L(J\)TT)\

o F(m) g B(m) & E[xl,xz,...] between the wedge and the polynomial realizations
of the fundamental representations L(wm) of gL, (and GLm) (cf.[5]):
THEOREM 4.1. o_(v. A v, A ...) =S, . (x)
m- i i i -m,i -m+l,...
m m-1 m m-1

PROOF. Consider the operator

A=exp ] y:A eGL_,
5%y 737

where ¥s are some complex numbers. Given an element Vv ¢ L(mm), consider the
matrix coefficient Fv(y) defined by:

nwm(A)v = FV(YJVwm + (terms from L(wm)k with k > 0)

First we calculate Fv(y) in the polynomial (bosonic) realization for

v = G(x) e B(m):

o0 = (exp )y, S%EJG(X)Ix=o Glx + Yy = 6O

je1
Thus, we have

6(x) ¢ 8™

(4.3) FVU)= G(y), where v

Second, we calculate Fv(y) in the fermionic picture for v = V. AV A ..
m m-1
Note that the matrix of the operator A (acting on V) is (cf. (4.1)):

55_:0)4 5.7

But RE(A)(v. A V. A ...)=Av. AAv, A ... (cf. (1.8)), and therefore,
m 1 1 1 1
m m-1 m m-1
using (1.12), we get
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- : S
(4.4) REQAY(v. Av. A...) = ) det(S. .. .Y v Av. A

o o tmol 1.2 5y e In?Im-12"" Im a1

m “m-1
im,im_l,...
Thus, Fv{y] = (det(sj-i(Y)))m,m-l,... and so
(4.5) F (y) =S, . ()
v i m,1m_1-m+1,...

Comparing (4.3) and (4.5) completes the proof. 0

Theorem 4.1 together with formula (1.12) gives us explicit formulas for
the representations Rﬁ of Gyw (and even 'Eﬂn) on B(m) = G[xl,xz,...] in

the basis of Schur polynomials:

A,+m,A +m-1,...

B 1 2
(4.6) R_(A)S, = ) (det A )S. .
m A pePar u1+m,u2+m-l,... U

For example, if A(vi) = VT(i), where T 1is a permutation of Z which leaves

fixed all but a finite number of elements, then:
RB(a)s. = e(r,\)8
m A - T’ u 3

where e(t,A) = *1 and u € Par are obtained as follows. Consider the set
MA = {Al + m,kz +m-1,...}, and let a >a ;> ... be a reordering of
T[MA). Then e(t,)) 1is the sign of this reordering and
1, = {am -ma ;- m-1),...} .
Note finally that the following well-known fact is an immediate conse-

quence of Theorem 4.1:

COROLLARY 4.1. Schur pofynomials S,, A e Par, foam an orthonormal

basis of CLxy,X5,...] with respect to the Hermitian form (3.9).

5. The KP hierarchy and the modified KP hierarchy

As we shall see, the modified KP hierarchy is the system of equations of
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1 e g™
(m)

the KP hierarchy being the system of equations of the orbit of 1m in B,

the orbit under GL_ in B of the sum of highest weight vectors

However, we find that the most convenient (though the least illuminating) way to

introduce these hierarchies is as follows.

Fix k € 2+ and consider the following equation:

s v - ()
(5.1) izz v,£ . ® VIf =0, where fj e B

The equation (5.1) is called the k-th modified KP hierarchy (its form is, obvi-
ously, independent of m); the O0-th modified KP hierarchy is called simply the
KP hieranchy; the union of all k-th modified KP hierarchies is called the modi-
 f4ed KP hierarchy.

We think of B(m+k) ® B(m) as of a polynomial algebra E[x;,xg;

j =1,2,...]. Note that (5.1) can be rewritten as follows:

du _
%X(u)fm+k ® X*(u)f_ — 0.

Hence, using Theorem 3.1, we can rewrite (5.1) in the form of the bilinear equa-
tion of Kashiwara-Miwa [9] (here and further on the integration is taken along a
small contour around 0):

=]
u ? 3
j (ij B ax;)fm+k(x

(5.2) % exp J ul(x DE (xufdu = 0 .

- x" Jexp - )
j21 J

!
J jz1

This equation can be rewritten in the form of a system (hierarchy) of Hirota bi-

~

linear equations as follows [ 2 ]. Further on, i stands for

au
2 1 1
aul 2 Bu2 3 'c)u3
Recall that for a polynomial P, the corresponding Hirota bilinear

equation on functions f and g is

Pfeg = PEI)F(x - wg(x + u)| = 0.
Ju u=0
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Let x=3(x'"+ x") and y = 3(-x'+ x"); then a_ _ = - and (5.2)
x! Y.
becomes:

: j
5.3 exp - 2uJ .) (ex E?—'—g—'f - k —
(5..3) %( p jgl YJ)( p jgl : ayj) m+k(x y)fm(x + yJudu= 0.

The latter equation is equivalent to (cf. (4.1)):

Z S (- 2V]SJ+1+k[2y] m+k(x - Y)fm(x +Y) =

¥=

which, by Taylor's formula, is
® 3
5 rglyr aur
Zo S. (- ZY)SJ+1+k[auJ £ -wWE x+uw| o=0.
J_

The last equation can be written as the following generating series of Hirota bi-

linear equations
¥or
Yr*r

(5.4) z 5 (-2y)8 (e} (£ (x) =

320 m+k

j+1+k

REMARK 5.1. Taking the coefficient of Sh(y)(l e Par) in (5.4) we get

a Hirota bilinear equation P = 0, where P is homogeneous (with

k;kfm+k.fm Ak
respect to the principal degree deg X5 = j) of degree Il[ + k+ 1. We will

show that the P are linearly independent (for given k).

Ak
For example, the coefficient of e in (5.4) is

Pr;k = EX 5 (%) - 28,5010

In particular,

—12P (x - 12x1x3 + 12x ) + 12(x X, + x4)

Noting that the Hirota bilinear equation Pf+f = 0 with P(-x) = -P(x) is trivi-

al (0 = 0), we obtain that the Hirota bilinear equation

4 2 _
(5.5) (xl - 12x1x3 + 12x2)f £f=0
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is one of the equations of the KP hierarchy. Actually, it is easy to see that

this is the nontrivial equation of the KP hierarchy of the lowest degree.

Putting

2
' 3
(5.6) X =Xy, Y= Xy, €= Xzs u(x,y,t) = 2 ——E-log f ;

ax

we can see that if f satisfies (5.5) then u(x,y,t) satisfies the classical

Kadomtsev-Petviashvili (KP) equation:

39% 3 (du_ 3 du_ 13
2
4 5y ax|ot 2 ox 4 Bx3
This is a fundamental observation of Hirota.
Furthermore, -PO_1 = xf + 2x2, hence the Hirota bilinear equation
3
(5.7) (xi + 2x,)gef = 0

is one of the equations of the 1'st modified KP hierarchy. Using the change of
variables and functions (5.6) together with v(x,y,t) =log %—, we obtain
2

v [3v‘2 3V

which is the (2-dimensional) Miura transformation (cf.[4]).

Let L(k) = B(m+k) ® B(m); because of the unitarity, this space decom-
poses into an orthogonal direct sum of irreducible higﬁest weight representations
of g&  (and a.)- The element 1m+k ® 1m is the highest weight vector of one

(k)

of these representations, which we denote Lhigh and call the highest component

of 1V We, clearly, have with respect to gf_:

(k) |
(5.8) Lhigh = L(mm+k + wm)
- : ; (k) (k)
We denote the sum of all other irreducible subrepresentation of L by Llow'
Then we have the orthogonal direct sum of representations: L(k) = L(k) G L(k).
high low

As before we think of L(k) as of a polynomial algebra:
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k)

L( = E[x!,x?;j = 1,2,...]. As before we put

J

X, = 3(x" + x}), Y.

= I(x" - x!
j j j = i

(k)

and define the following subspace of L“7:

11209 = aty 0 100

It is clear that Hi]:'(kJ is graded with respect to the principal gradation of

L(k)(deg xj = deg x; = j):

K . o nir®
j20

Hir

Now we are in a position to prove the following proposition.
PROPOSITION 5.1. (a) The k-th modified KP hieranchy (5.1) 4is equiva-
Lent %o the equation

(k)
(5.9) %Hk®fmeihmh'

(b) The equation f ® g ¢ nglit;h 48 equivalent to the system of Hirota bilinear

equationsPfeg = 0, where P e Hir (%),
(¢) [2] The polynomiaks P, .. (see Pemark 5.1) with X e Par(s) (the set o4

partitions of s) form a basis of the space HirS) . In panticutar,

(5.10) din Hirgk) «plf = & = 1) -

PROOF. Note that S(wm+ki® wm) =0 for ke Z+ (where S 1is the operator on

F® F defined in section 3). By Lemma 3.1, it follows that

k)

S(GL_ (¥ ® wm)) = 0. Since the GL_-orbit of ¢m+k ® wm spans Léigh’ we

conclude that (5.9) implies (5.1). To prove the reverse implication, it suffices

m+k

. x® . F_ F )
to show that if v = ] a, ® bu e Ly, 1is such that (r @r )(Eij)v = 0 for

Asu
F F P
i ] = — R , e X, . f
iz, (Eii)al Aial’ T (Eii)bu ulbu and vy Al ty; is independent o
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A and u (i.e., v is a highest weight vector in L{ﬁi), then S*S(v) = 0

(since S*S is a diagonalizable operator commuting with g ). Note the following:
(5.11) Ai and Uy = 0 or 1;

li and M 0 (resp. - 1) as i~ +o (resp. -x) ,

v
&

(5.12) Ve BV g

By (3.11) and (3.16) we have:

(5.13) S5*S = ’ (aij - rF(Eij)) ® rF(EJ.i)

Hence, if S*S(v) = 0, then J J (1 - A )u, = 0 and we have
AU J L
(5.14) if Rj = 0, then pj =0 .

. _ _ (k) .
But (5.11, 12 and 14) imply that X = W M= Wy and v € Lhigh’ a contradic-

tion. This proves (a).
. x) -
To prove (b) note that: ¢ € Lhigh iff <¢,L10w> = 0 and that
(k)

L(k) = C[x] ® Hir(k). It follows that f® g € Lhigh iff (cf. formula (3.9)):

low
qu'g f(x - Ygx+ )| _,=0
3% By YIBLX * ¥llxa0 ©

y=0

for any P ¢ €[x] and any Q e Hir. Thus, the equation f ® g ¢ Lé?;h is
equivalent to

Qgg—y]f(x - Mg+ Mg = 0

for any Q € Hir(k], proving (b).

To prove (c) note that (cf. (5.8)):

(5.15) Ll ) ® L) = Loy, + w) @ (€0x1® nir (K)y
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Taking q-dimensions of both sides, and using (2.8) and (2.9), we get:
-2 -2 k+1 -1 .. :
e(q) " =o(q) (1 -9 )+ o) dlmq HiptX)

This proves formula (5.10). Since the polynomials Pl-k with X ¢ Par(s) span

the space Hiréfi+1 and their number is p(s), (a), (b) and formula (5.10)

imply (e¢). O
The following theorem sums up the above discussion.

THEOREM 5.1. Let I be a non-empty finite subset of 2 and Let

f= o £ e & B™ be such that atl £ 2 0. Then the following are equiva-
me I mel
Zent (m,ne I,m = n):

(a) ) 9.f @V =0.
ieZ

. =J
Jrgr _ wn _ u 9 _ _39 ' 1y, -
(b) %(exp jgl u (xj xj)](exp 5£1 3 [Bxé axEj,]fm(x E (xMu” Tdu = 0 .

o«

sglsysxs
Sj(-2y)Sj+1+m_n(x)e fm(x)-fn(x) =0.

() 7}
j=0

m) o 5
(d) fm® fn e (B ® B )high .
(eWEDE +£ = 0 fon all Pe Hir -7
£ 7 ®y; - (B, ), ® (. )E = 0.
i,jez . .
@ feRPGL)-(® 1), ie., £ Lies in the GL -onbit of the sum of
jel
highest weight vectons.
PROOF. The equivalence of (a), (b) and (c) was proved at the beginning of this
section. The equivalence of (d), (e) and (a) follows from Proposition 5.1 (a).
Furthermore, (a) implies (f) as in the proof of Proposition 5.1 (a). (f) implies

(a) since S*S(fm1® fn) = 0 implies <S*S(fm ® fn),fm ® fn> = 0, which implies
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<S(fm ® fn],S(fm ® fn)> = 0, hence S(fm ® fn) = 0. The proof of the implica-
tion (f) => (g) is along the same lines as that of [11, Theorem 1(b)]. (Actual-
ly, the proof simplifies if one uses (a) instead of (f).) Finally, the implica-
tion (g) => (a) holds, since, by Lemma 3.1, RB(GLb) commutes with the opera-
tor S on B(m) ® B(n) and since fm = wm’ fn e wn satisfy (a) (for m =z n). [0

REMARK 5.2. The calculation establishing (7.3) shows that on

B(m+k) ® B(m) the operators S and S* look as follows:

3
s = ) S.(-2y)s, ['—J ;

je7 j j+1+klay
(5.15) =
3

s*= ] S.(2y)S..,._ [— —]

jez j j+1-k oy

Thus,
hir™® - {7 s, (208 _3),0), where o(y) e €I 1}
= J Y j+1'k ay (P y ] ﬂP y € yl’yZ!"' 3

jeZ
and its orthocomplement in &[y] is:

(3
{CD(Y) € mtyla}’z:--}ljgz SJ ('ZY)Sj+1+kL§;]¢(Y) = 0}-

REMARK 5.3. The equations of the modified KP hierarchy (given by Theo-
rem 5.1 in one of the equivalent forms (a) - (f)) generate the ideal of the GL_ -
orbit of the sum of highest weight vectors of B in the symmetric algebra over

B*

ok, The proof of this fact is the same as that of [8, Theorem 2], by

making use of the following ''regularized" Casimir operator:

. .
1
QCVA*G) = Z EjiEij(v ) - 2<A + p - 20,V (a)>VA—a

i< A-c

Here A, o and p are linear functions on the diagonal subalgebra h of gL >

all weights are assumed to be of the form A - o, where A is fixed and a 1is



169

a finite sum of positive roots, p 1is defined by (p,Ejj> = -j and v: h > h*
is defined by the trace form. Note that the above fact together with the fact
that the projectivized GLN-orbit of the highest weight vector is closed give a

simple proof of the implication (g) = (a - f) of Theorem 5.1.

6. Polynomial solutions of the modified KP hierarchy

Let I_ denote the group of permutations of Z leaving all but a
finite number of elements fixed. We identify I with a subgroup of GL_ via
o(vi) = Vopay® Let M denote the set of all_maps p: 2 - Z+ such that
p(m) = 0 for all but a finite number of n. Then we have the following bijec-

tion I+ M: given T € I_, the corresponding map . is

¢ (n) = T(n) - n+ 1, where r = #{s|s<n and T'(s)>T(n)} .

Note that Z p_(n) = Z T
n ' n

Given ¢ e M, construct a sequence of partitions {@‘l‘:}kEZ as follows.

Lp_ . = - . Lp_ :
Put @n =P if ¢(j) = 0 for all j <n. If @k = {aU 23, 2.2 ar} e Par,
let
¢t+1 = reordering of {p(k + 1),b0,...,br} € Par ,
where bi =a; - 1 if a; > ¢o(k + 1) and bi = a; otherwise. Define a

sequence {e:}kez of 1 as follows. Put sﬁ =1 if ¢(j) = 0 for all

j £n, and ei+1 = (—l)sei, where s = #{i]ai >ep(k + 1)}. It is easy to see

)
inductively that if ke Z and @kT = {ao 2a; 2 ...2 ar}, then
6.1 RF(r)w = EwTV AV A
(6.1) k= "k k+a k-1+a, toe

It is a famous result of Sato [12] that all Schur functions SX are

solutions of the KP hierarchy. This, of course, follows immediately from
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Theorems 4.1 and 5.1: the orbit of 1 ¢ B(O) under Z = consists of all Schur
functions (with suitable signs, which may be changed by sign changes of the vi).
The following proposition describes the orbit of a sum of highest weight
vectors under I_. According to Theorem 5.1, this provides solutions of the
modified KP hierarchy. The proof of the proposition follows from (6.1) and the
boson-fermion correspondence.
PROPOSITION 6.1. Let T e I_ be such that t(n) =n {for |n| > N.

P jo_ wT 2
ut A _<1>j e Par (j € 2). Then

REMARK. We have for every j € Z (in notation of Proposition 6.1):

! j
o (t(d) - 1) = |AI]

i=-oo

7. Soliton solutions of the KP and the MKP hierarchies

Recall that by the vertex construction of the representation rB of

gi on B (given by (3.17)), the operator M(u,v) defined by

(o]

(7.1) M(u,v) % szm) - g (zu/v)mF(u,v)fm

is contained in the completion of rB(ng). Here T (u,v) 1is the vertex operator

defined by (3.18).

Note that by the Taylor formula we have:

. " =] ..~
Tu,V)E(x) = (exp J () - v)x)E(..,x, - ——— . )
551 j j j
.
Using log(l - ¢) = - ) T for |c| < 1, we deduce

jz1
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(! - w)(y" - ¥) j j j j
7.2 FTfu',v)T'(u,v)f = - ooy .
(7.2) T WOTWER = g —v) expjg1 ( - v +u vIT)x,
=] =3 § 4] -3
u -V + 1 -V
s oo yX. = - P
( ; : )
provided that |ul|,|v| < min|u'|,|v'|. By induction on N we deduce from (7.2):
(7.3) I'(u ,vN) - F(ul,vlj-l =
(u, - u.)(v. - v.) N
j i’ M5 i k k
= i - - exp )} ) (u; - v.)x, ,
jeietan By - Yllv, — W) ks el 4 29 K

provided that |u.|,[v,] < min|uj|,|vjf for i < j.

We can prove now the following lemma.

LEMMA 7.1. If £ =@ f {8 a s0fution of the MKP hierarchy then 50 44
m

the function

m
@ (1 + a[%—] P(u,v)f, (hete 2 eC, uve 9

m

PROOF. We use the definition of the MKP hierarchy given by Theorem 5.1 (d). Let

f be a solution of the MKP. We have to show that the function

m n
a+ a(%] T(u,v))E, ® (1 + a[%] T (u,v))E

(m-n)

is in the completion of Lhigh . Since M(u,v) 1is contained in the completion
of rB(g&m), we have
7.4 2ml‘ f)YRFf + f ®(5nl‘( )£ ) e L)
(7.4) ( \' (%, %) m) n’ tn v YaVlLpd € Lhigh '
It remains to show that
7.5) T'(u,v)f ®T'(u,Vf_«¢ (m-n)
(7 R | 77 n Lhigh
For that take |u| = |v] and choose u',v' such that |u| = |v| < |u'| = [v'],

apply M(u',v') to botb sides of (7.4) and take a limit as u' -+ u, v' > v.
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Formula (7.2) implies then (7.5). 0
Let now B sl UGV, VY be some complex numbers such

that max{|u,|,|v,[} < min{|uj|,|vj|} for i<j and u; =0, v, = 0. We let

m m
(7.6) f x) = (1 + a EE- I'(u,,v.)) 1+ a El I'(u,,v,))e1
) m;a;u,v N vy N’'n T 1 vy 171 )
Then, by Lemma 7.1, o f (x) 1is a solution of the MKP hierarchy (here

g Masu,v

I c2 is a finite set). This function is called an N-sofiton sofution of the

MKP hierarchy. Using (7.3), we obtain an explicit formula:

m
u.
- dog
(7.7) f i (X) = Z H ——] a. =
m,a,U,V OSI‘SN \)=1 Vjv J\)
1=Jl<...<JrgN
(u. -u, Jv, -v,)
3\) Jl.l J\) A T K "
) H (u' - V. )(V. - U. ) exp kz Z (u' - Vj )xk .
l<v<us<r Iy Ju 1y Ju >1 v=1 v Vv

The N-soliton solutions of the KP hierarchy were constructed along
these lines by Date-Jimbo-Kashiwara-Miwa [1].

For example, the 1l-soliton solution of the classical KP equation is

2(log(l + a exp((u - v)x + (u2 - vz)y + (u3 - vs)t + const)))xx

ulx,y.t)

= 3(u - v)z(cosh i(u - vIx + (u2 - vz)y + (u3 - vs)t + v:onst))_2 i

which describes a solitary wave (soliton) during time t in coordinates x,y.

The N-soliton solution of the classical KP equation describes the interaction of

N solitons.

8. More on the infinite wedge representation

We return to the full infinite wedge space F = AV over the topologi-

cal space V. Recall that with respect to the representation R of GL, on F
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the space F decomposes into a direct sum of fundamental representations of

LR o= (m) - . ; ;
GL_: F = mg& F , the element ¢h B AV g A being the highest weight
vector of F(m) (see section 1).

Recall subspaces v of TV and denote by Grass V the set of all
subspaces U of V such that U > V™ for some n and dim UV < =,
called the Grassmannian of V. Put GrassﬁV = {U ¢ Grass V|dim U/V{n) =m-n

for n < 0}. The group GL_ acts on Grass V, the decomposition

Grass V = I Grassﬁv being the orbit decomposition. The bigger group A_

meZ
acts on Grass V as well, and this action is transitive since the shifts

v_ € A_ permute the components Grass(m)v.

s
(n)

Let Ue Grassﬁv, so that U>V for some n; let wu,,...,u  bea

basis of U mod VO™ and put oy =u; A ... Au_ AP . It is clear that

oy € F(m) and up to a constant factor is independent of the choice of basis of
U mod Vh and n. Thus, we obtain a map U Grass(m)F »CPF(m) defined by

um(U) = Gau. We have:

um(GrassmF) = P(GLm-wm)

According to Theorem 5.1, the set of non-zero solutions of the KP hier-

F(m) viewed up to a constant factor, coincides with iP(GLm-wm) and

archy on 5

hence is parametrized by Grass(m)F. This is the basic observation of the Sato

philosophy.

We claim that the k-th modified KP hierarchy has a very simple geo-
metrical interpretation as well. Given o =u Au , A ...c¢€ F(m), put
u, = {i—l Aiui’Ai e €} ¢ Grassmv.

PROPOSITION 8.1. The non-zero elements o ¢ ™ and g e F™  satis-
fy the (m-n)-th modified KP hierarchy

] V.a®@Vig=0
iez * 1
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if and only 4if Ua > UB'
PROOF. Using Lemma 3.1, we can assume that o = wm; then we have for

& AU A i
B Yn n-1

iZm' (Vi AVp AV A )@V Al S A .) =0,
It follows that v;(uj) =0 forall i>m and j < n, hence all uj lie in
v®) ang v c7® oy .
B Vn
COROLLARY 8.1. (a) The MKP hieranchy 4is equivalent to the union of the

KP hieranchy and the 1'st modified KP hierarchy.

(b) Let Flag V denote the set of all {Lags of the form ... > U, >0 ;2 ...,
where U e Grassmv. Then the map Flag V+ T pr ™ defined by
meZ
{“'DUmem13'”}»(””%}ﬂU R o)

m m-1

i85 a bijection between the set Flag V and the set of solutions of the MKP hier-
archy whose components are non-zero and are viewed up to constant factors. [
As was pointed out in section 1, the representation RF of GL_ on F
extends to the bigger group Efw. However, as in the Lie algebra case (see sec-
tion 3) it extends only to a projective (non-linearizable) representation of the
group K;, which we denote again by RF. The representation RF(g), g e K;, is

uniquely determined by the following three properties: -

F
(8.1) RO(g)y, =a s
0 g-V(OJ
(8.2) RF(g)vRF(g)-1 = (g°v)" for v eV,
(8.3) REERF (g)° = (gof)” for £e V* .

The uniqueness (as long as the choice of a constant in (8.1) is made) is clear by

irreducibility of Cf on F. Formulas (8.1-3) allow us to construct RF(g)
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effectively by induction, proving the existence. It is easy to see that the rep-

. P F =
resentations * of a_  and R of A_ correspond to each other in the

following sense:

(8.4) R @rfe) ™t = tfgag), ge¢h, aca

(=]

Note that (in contrast with GL_ and Ef;) the subspaces F(m) are not invari-

ant under A_. In fact, we have:

F
(8.5) R (vs)wm = wm+s X

from which one easily concludes that F is irreducible under RF{K;).
Let AC = {g e E;]dim ng/V£ = -n for n < 0}. Then

o

K; = K: x <us[s e Z > and the subspaces F(m) are invariant and irreducible

under A,
[=-]
Further on, instead of talking about the projective representation RF

~F

of the groups Kz = E;, we shall often talk about the linear representation R
of the corresponding central extentions Ag c A, by c*.

We can 1ift elements v_e A to v_ e A_ such that & v W. = v . .

s o s o s’'m m+S

0
Then we have: A_ = A_ % <v_[s e Z>.

9. Reduced KP and MKP hierarchies

Let L = E[t,t-lj be the algebra of Laurent polynomials in the inde-
terminate t. Fix a positive integer n. Denoting by {ui} the standard basis

of €", we identify the vector space L"™ over € with the space V by

»

-k

(9.1) Vnk+j =t uj

The matrix algebra Matn(L) acts in a usual way on L". The identification

(9.1) gives us an embedding of associative algebras o: Matn(L) -+ E;. Explicitly:
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w(Z A.tJ) = (Aj-i)i,jez . In particular, we have:

j J
k
(9.2) i) = ] B ie . §
ij seZ n(s-k)+i,ns+j
01. 0 ]
01
(9.3) o .:.- ) = Aj, jel
1
t 0

The embedding ¢ of associative algebras gives rise to the embedding of the cor-
responding Lie algebras o: gEn(L) > E; and the groups of invertible elements
o: GL (L) ~ A, |

An easy calculation using (9.2) shows that the restriction of the co-
cycle o on E; (defined by (3.1)) to ¢(g£n(L)) induces the following cocycle

on g%n(L}:

a(A(t),B(t)) = Res tr 9%%31 B(t) ,

where Res0 Z ajtJ =a_y- This gives us a central extension éln = gzn(L) @ Cc,

where the bracket is defined by (A,B € gln(C)):

k+m
(

[t%A,t™8] = t<"®(AB - BA) + ké _p(tT AB)C .

k,

The Lie algebra éin is called the affine (Kac-Moody) algebra associated to the
Lie algebra gzn(E). Thus, we have an embedding ¢: éhn + a . Of course, éﬁn
contains éln = sg (L) ® Cc, the affine algebra associated to sf (€).

Recall the subalgebra & of a_ defined by (3.3). Let
é(n) = kzo mAnk + Cc c 4. The following simple lemma is the key to the reduction
procedure developed in [2], [4].

LEMMA 9.1. The centralizer of 4.y 4n &, 48 o(sL ) + €I, where I

is the identity matnix in g
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) satis-

PROOF. The centralizer of A in a_ consists of matrices (a i,je2

It follows that the centralizer of An is in

ij
fying condition aij = ai+n,j+n'
¢(§hn). But ¢ (X(t)) 1is in the centralizer of A(n) iff [w(X(t)),Anj] =0

for all j € Z, which is equivalent to Resgyn tr tn'IX(t) = 0, which means that

tr X(t) ¢ C. O

Now we turn to the representation theory of the affine algebra éﬁn
(see [5] for details). Let h be the diagonal subalgebra of sﬂn(m); the (com-
mutative) subalgebra h = h + @c of éin is called a Cattan subalgebra. We

choose the following basis of h:

By =B~ Byy o+ Bygs By By = Bpgasvisby g = By o ™ Bt -

The linear functions mj on © defined by aj(hi) = Gij(i,j =0,...,n - 1) are
called fundamental weights; put P_ = {§ kiwilki e 2.},
Putting fA=n+ t sln(G[t]), where 5 1is the subalgebra of strictly

upper triangular matrices of szn(m), we have

(9.4) ¢(A) ¢ strictly upper triangular subalgebra of gq_ .

-~

Given X € §+, we define the highest weight representation Ty of sQn
as an irreducible representation admitting a non-zero vector vy (highest weight

vector) such that

(9.5) T, @V, = 05 T, (v, = A(h)v, for he h .

(Due to (9.4), the definition (9.5) is consistent with the definition of the
highest weight representation of gf ). One can show that (9.5) determines an
irreducible representation uniquely [5, 2nd edition, Proposition 10.4]. We pro-
ceed to give a vertex construction of the fundamental representations Ty.?
j= 0,00esn =1, Of éin (c£.[6]). ’

Note that the subspace ngg = G[xj|j f 0 mod n] of (™  is the
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intersection of kernels of all operators ?E(Ajn) with j > 0. Hence, thanks to
Lemma 9.1, the subspace BEE% is invariant under T:(éln).

PROPOSITION 9.1. (a) The representation Tg o4 éin on BE?% 48
equivalent to the fundamental rephesentation Toos where m' 48 an element of
{0,...,n - 1} congrwuent to m mod n.

(b) Let € = exp 2mi/n, and for ke 2, s € {0,...,n - 1} such that

k $0mod n when s =0, put

n .
i T ~8] ,
As = b TEETT
i,)=1
i-j=k+rn

these elements form a basis of s& (C[t,t”'1). Then the nepresentation of sh_
on BM™  is degined by the §ollowing fonmulas:

(n)
k s.-1, -ms 5jy..J
) A, U h (1-¢7) (e (exp 7o -eux,) .
kez j>0 ’
. B
* (exp - X L = u™’ Bi ) - 1) (s =0
j>0 7 j
3 )
Ak’owaxn’ Axo™ kg for k>0, k$ Omodn; cw» 1.

(c) ALL the nepresentations T, of éhn are unitary in the sense that thenre
exists a positive definite Hermitian form on the hepresentation space such that

(1, (A0 * = 7, (K(e™H)

PROOF. Thanks to (9.3), s& = contains all A, with j # Omod n, and therefore
Bgig is irreducible under éin (see (3.6)). Using (9.4), we see that
fﬁ(ﬁ)°1= 0. Using (9.2) one easily sees in the fermionic picture that

?3(h)-1 = &m,(h)-l. This proves (a). Furthermore, (b) follows immediately from

(3.19) by putting in there v = e’u and using (9.2), (9.3). Finally, the
P
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unitarity of the fundamental representations of éhn follows from the unitarity

of the fundamental representations of a_ , wusing

(9.6) G = o (At ,

where ) ajtJ = E}tj. The unitarity of all representations T, now follows by
taking highest components of tensor products of fundamental representations. [
Recall the group E;, its subgroup Kg and the corresponding central

extensions A_ and A: by € (see section 8). Note that
(9.7) o(SL (L) c Ky .

To show this, it suffices to check that ¢(SL_(C[t])) c K, (which is obvious)

and that w(diag(t,t-l,l,...,l)) € E:, which is straightforward. The inclusion

@ gives us a central extension of SLn(L) by ¢© which we denote by éhn.
Thanks to (9.7), the subspace F(m) is invariant under the representa-

< F i . ¢
tion R of SLn' Via the boson-fermion correspondence o0, we get a represen-

: 9 (m) _
tation of SLn on B = C[xl,xz,...].
Since the subspace B%ﬁg of B(m) is invariant and irreducible under

the Lie algebra §hn, one deduces without difficulty that the same holds for the

representation of SL_ on B(m). This irreducible representation of SL ~ on

(m) . ~B

B(n) is denoted by R -

Since v~ commutes with SL , it follows that ﬁgtlm) is the same

. =B . b " e
polynomial as Rmtn(lmin)' This justifies the following definition.
n-1
We let B = & B(m); this is a subspace of the space B = @& Bon).
m = 2, M m

The MKP (resp. KP) hierarchy of equations on B (resp. B(m)) restricted to

B(n) (resp. BEE%) is called the n-th neduced MKP (resp. KP) hierarchy [4].

One can show, along the lines of [11], that the SLn-orbit of a sum of highest

weight vectors 1, = & 1., where I c {0,...,n - 1}, coincides with the set
jel
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of solutions of the n-th reduced MKP hierarchy of the form & f., where all
& jel
f. are non-zero. Thus, the SLn—orbit of 1I coincides with the intersection

of the GL -orbit of 1I with B(n)'
In the reminder of the paper we shall discuss in more detail the 2-nd

reduced KP and MKP hierarchies. They are called the KdV and the modified KdV

hierarchies for the following reason. The simplest equation of the 2-nd reduced

KP is (cf. (5.5)):

4 <
(9.8) (x] - 12x;x )+ = 0 .

Furthermore the simplest equation of the 2-nd reduced 1-st MKP is (cf. (5.7)):

(9.9) xjgef = 0 .
3 3
Putting X; =X, Xg = t, u(x,t) = 2 —-3-(10g £), v(x,t) = % (log %ﬂ, we obtain
9X
from (9.8) and (9.9):
5u_ 3 du. 13
(9.10 at-z% Y7 3¢
ax
(9.11) u:-vz--g—:;—,
v 3 2 av st
(9.12) g{=-§-v 'a—)E 5—3.
X

The equation (9.10) is the classical KdV equation, (9.11) is the Miura
transformation and (9.12) is the classical modified KdV equation (see e.g., [4]).
As has been pointed out in the proof of Proposition 9.1, the vertex
operator for the fundamental representations of 512 is obtained from T (u,v)
by putting v = -u. Hence the N-soliton solution for the KdV (resp. MKdV) hier-

archy will be fO;a;u,-u(x) (resp. fO;a;u,-u(x) @ fl;a;u,-utx))’ where

fm'a'u V(X) is defined by (7.6) and given explicitly by (7.7). Note that
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fm;a;n,—n is a function of X139 Xgyees only.
In order to study polynomial solutions of the KdV and MKdV hierarchies,

recall the Bruhat decomposition (see e.g., [8]):

(9.13) SLZ(L) s kU (MtkM U MtkrM) 5
eZ

where

M = {A(t) € SL,(C[t])[A(0) = [E :)} ’

R (LN r=[01J
k 0 t-k -1 0

and the union is disjoint. Put sk(x) N Sk,k-l,...,lcx) for short.
We want to describe the SLZ(L)-orbit of the highest weight vector 1
(resp. of the sum of highest weight vectors 1 = 10 ® 11) in the projectivized

5(0) 50 o ppl)

fundamental representation P (2) (resp. in the sum PP (2) (2)). These will

be (up to arbitrary constant factors) the polynomial solutions of the KdV (resp.

MKdV) hierarchies. 1In view of (9.13), we shall need for that

LEMMA 9.2.
tk-1 = szk(x) @ SZk_I(x) if k=21;
t_k-1 = SZk-l(x) @ SZk(x) 44 k=213;
tkr-1 = SZk(x) ® 52k+1(x) i k=20 ;
t_kr-1 = 52k_1(x) ) 52k_2(x) if k2 1.

PROOF. Using (8.2) we obtain the following formula for the action of t, on C
t, ev,. = V - =V . .
k "2j 2(k+j) k 2j+1 2(-k+j)+1
The corresponding projective action of t, on A€ is:

tk(vil A viz A ...)=% reordering of ((tk-vil) A (tk-viz) A ees)
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For example,
tk(vO AV_1 A v_z A eed) = Vor N Voxo2 Avee AV p AV 5r 1 A -es

The boson-fermion correspondence (Theorem 4.1) completes the proof. O

We can prove now the main result of this section.

THEOREM 9.1. (a) The onbit SLZ(L)-I in.iPC{xl,xs,...] 48 a disjoint

union of cells {Sk,k_l,m’l(x1 + CuXg + Cgyun)|e; € €1 of dimensdon ke 7 .

(b) The onbit SL,(L)=(1 & 1) .n PCLx;,Xq,...] @PCIX;,Xyq,.0.] i8 a disfjoint

union of cells (S, 4 ) (¢ ¥ CpXgtepe) @S, L 1Bt ep

Xz + Cgi.00)|e; € €1 of dimension max{k,r}, where k,re 2 and |k - r|

3
on k=1=0.
PROOF. We sketch here a proof of (a); the proof of (b) is exactly the same.

Since Mel =1, and r°l =1, we have, using the Bruhat decomposition, the

following disjoint union:

(9.14) SL,(L)+l= U Mt l.
ke Z

. . ) -
acting on G[xl,xs,...] contains all e 32 12iiss

2j-1
can be approximated by elements from

Recall that 512

Hence the transformation exp A

3
. Xy
Since (exp A szaf(x) = f(x + 2), we deduce from Lemma 8.2 and (9.14):

(9.15) Mt o1 > {SZk,Zk-l,...,l(xl tCpaXg ¥ c3,...)},
k>0 .
Mt 013 S5 g 2k-2,...,0% * CroXg * C5oee )

Note that the inclusion in (9.15) is a rational regular map of affine spaces.

=1

An

easy algebro-geometric fact states that if these spaces have the same dimensions,

then the inclusion is a bijection. Thus, to complete the proof, we need to show

that the algebraic varieties on both sides of (9.15) have the same dimension.

But one knows that [8]:
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(9.16) dim Mtk°1 = 2k, dim Mt_k-l =2k - 1(k > 0) .

On the other hand, putting & = ) CAZj-l’ we have (see Proposition 9.1 (c)):
j>0

. j-2k
S jfo 1), ., ... 0 t? .
Bty H= ] e [t 0]tk L=t L [tj+1+2k } Ly

j>0 >0 0
Hence
(9.17) dim é+(tk-1) = 2k, dim é+(t_k°1) =2k -1k > 0)
Comparing (9.16) with (9.17) completes the proof. O

COROLLARY 9.1. (a) The rational functions

2
P
u(x,t) = 2 ax2 log Sk,k-l,...,I(x + cl,t + c3,c5,...)

are solutions of the classical KdV equation.
(b) The national functions

-+
v(x,t) = * X 1°g(sk,k—1,...,1(x+ cl’t+CS’CS"")/Sk+1,k,...,1(x+c1’t+°3’c5""))

arne solutions of the classical MKAV equation.

REMARK. Whereas Theorem 9.1 (a) was pointed out by several authors [4],

[5], [13], Theorem 9.1 (b) is probably new.
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