18.782 PROBLEM SET 2

DUE THURSDAY, OCTOBER 3, 2019

Please report any typos/mistakes in the problems to the instructor for bonus marks!

1. Hensel’s lemma.
 (a) Let \(f \in \mathbb{Z}_p[x] \) and suppose \(|f(a)|_p < |f'(a)|_p^2 \) for some \(a \in \mathbb{Z}_p \). Let \(a_1 = a \), and for \(n \geq 1 \) let
 \[a_{n+1} = a_n - f(a_n)/f'(a_n). \]
 Prove that this defines a Cauchy sequence \((a_n)\) in \(\mathbb{Z}_p \) whose limit \(b \) uniquely satisfies \(f(b) = 0 \) and \(|a - b|_p < |f'(a)|_p \), and moreover \(|f'(a)|_p = |f'(b)|_p \). (It may be helpful to work in terms of \(v_p \) and congruences modulo powers of \(p \).)

(b) Let
 \[f(x, y, z) = ax^2 + by^2 + cz^2 \]
 with \(a, b, c \in \mathbb{Z} \) and \(abc \neq 0 \) squarefree. (i) Using the stronger form of Hensel’s lemma obtained in part (a), show that \(f \) represents 0 in \(\mathbb{Q}_2 \) if and only if the congruence
 \[f(x, y, z) \equiv 0 \mod 8 \]
 is solvable in integers with \(x, y, z \) with not all even. (ii) For an odd prime \(p \) dividing \(a \), give a necessary and sufficient congruence condition involving \(-bc\) (modulo \(p \)) for \(f(x, y, z) \) to represent 0 in \(\mathbb{Q}_p \).

(c) Recall the subgroups \(U_n = 1+p^n\mathbb{Z}_p \) of \(\mathbb{Z}_p^\times \). Modifying the argument we used to prove \(U_1 \simeq \mathbb{Z}_p \) if \(p \) is an odd prime, show that for \(p = 2 \) we have \(U_1 \simeq \{-1\} \times U_2 \) and \(U_2 \simeq \mathbb{Z}_2 \). This structural result can be used to show that an element \(u \in \mathbb{Z}_2^\times \) is a square if and only if \(u \equiv 1 \mod 8 \). Give a direct proof of this latter fact using the stronger form of Hensel’s lemma above.

2. Quadratic forms and local-global principle.
 (a) Show that the Hasse-Minkowski theorem implies the following (apparently stronger) statement: given any \(a \in \mathbb{Q} \), a quadratic form \(q(x_1, \ldots, x_n) \) represents \(a \) over \(\mathbb{Q} \) if and only if it represents \(a \) over \(\mathbb{Q}_p \) for all \(p \leq \infty \).

 (b) Two quadratic forms \(q, q' \) over \(\mathbb{Q} \) are equivalent over \(\mathbb{Q} \) if and only if they are equivalent over \(\mathbb{Q}_p \) for all \(p \leq \infty \). Give a proof of this when \(q \) and \(q' \) are nondegenerate, using the Hasse-Minkowski theorem and Witt’s theorem.\(^1\) (Hint: First show that,

\(^1\)Witt’s theorem states the following. Suppose that \(f(x_1, \cdots, x_n), \ g(x_1, \cdots, x_m) \), and \(h(x_1, \cdots, x_m) \) are nondegenerate quadratic forms over a field \(K \) of characteristic different from 2. Define \(f \oplus g \) to be the quadratic form \(f \oplus g(x_1, \cdots, x_{n+m}) := f(x_1, \cdots, x_n) + g(x_{n+1}, \cdots, x_{n+m}) \) in \(n + m \) variables, and similarly define \(f \oplus h \). If \(f \oplus g \) and \(f \oplus h \) are equivalent, then \(g \) and \(h \) are equivalent.
if a quadratic form $q(x_1, \ldots, x_n)$ over a field K of characteristic $\neq 2$ represents some nonzero $a \in K$, then q is equivalent to a quadratic form of the shape
$$ax_1^2 + q'(x_2, \ldots, x_n)$$
where q' is some quadratic form in variables x_2, \ldots, x_n.)

3. **Affine varieties.** Let k be a field.
(a) For any ideals $I, J \subseteq k[x_1, \ldots, x_n]$, prove or disprove:
 (i) $V_{I \cap J} = V_{IJ}$.
 (ii) $V_{I \cup J} = V_{I+J}$.
(b) Suppose $f_1, \ldots, f_m \in k[x_1, \ldots, x_n]$ is a collection of polynomials such that
$$\langle f_1, \ldots, f_m \rangle = (1) = k[x_1, \ldots, x_n].$$
Then, for any choice of nonnegative integers a_1, \ldots, a_m, we have
$$\langle f_1^{a_1}, \ldots, f_m^{a_m} \rangle = (1).$$
Prove this in two ways: (i) algebraically, and (ii) using the Zariski topology on \mathbb{A}^n_k.
Conclude that if an ideal $I \subseteq k[x_1, \ldots, x_n]$ satisfies $\sqrt{I} = (1)$ then $I = (1)$.
(c) If $V \subseteq \mathbb{A}^n_k$ is an affine variety equipped with the Zariski topology, show that V is **quasicompact**, i.e. every open cover of V has a finite subcover.
(d) If $f \in k[x_1, \ldots, x_n]$ is nonzero, then show that the open subvariety $D_f = \mathbb{A}^n_k \setminus V_f$ has the structure of a closed affine subvariety of \mathbb{A}^{n+1}. Use this to define the affine variety GL_n over \mathbb{Q} such that, for every field extension K/\mathbb{Q},
$$\text{GL}_n(K) = \{\text{set of invertible } n \times n \text{ matrices with coefficients in } K\}.$$
(e) Give an example of an affine variety over a field K of characteristic zero such that $V(L)$ is finite for every finite field extension L/K but $V(K)$ is infinite.
(f) If $I \subseteq k[x_1, \ldots, x_n]$ is an ideal generated by r elements, then show that $V_I \subseteq \mathbb{A}^n_k$ has dimension $\geq n - r$.