Yulia's Dream Fall 2022 - Spring 2023: Knot Theory

Mentor: Julius Baldauf*

MIT Department of Mathematics Cambridge, MA

Syllabus

Meetings take place via Zoom (link).

Topics	Sections	Chapter exercises	Date
Definition, composition, Reide-	1.1 - 1.3	$1.1, 1.2^*, 1.3, 1.4^*, 1.5^*, 1.9^*, 1.10^*$	Oct 1
meister moves			
Links	1.4	$1.13^*, 1.14^*, 1.15^*, 1.16^*, 1.17^*$	Oct 8
Tricolorability, knots & sticks	1.5 - 1.6	$1.21, 1.22^*, 1.23^*, 1.24, 1.25^*, 1.26^*,$	Oct 15
		$1.27^*, 1.29^*, 1.30, 1.31^*, 1.33, 1.34^*$	
Dowker notation for knots	2.1 - 2.2	$2.2^*, 2.3^*, 2.4^*, 2.5^*, 2.6^*, 2.7^*$	Oct 22
Conway's notation for knots,	2.3	$2.10^*, 2.11^*, 2.12^*, 2.13^*, 2.14^*,$	Oct 29
tangles		2.16*	
Tangles, mutations	2.3	$2.18^*, 2.19^*, 2.21^*, 2.22^*, 2.23^*,$	Nov 5
		2.24*	
Planar graphs	2.4	2.29*, 2.31*	Nov 12
Unknotting number, crossing	3.1, 3.3	$3.1^*, 3.2^*, 3.3^*, 3.7^*, 3.15^*$	Dec 3
number			
Surfaces without boundary	4.1	$4.1^*, 4.2^*, 4.3, 4.4^*, 4.5^*, 4.6^*$	Dec 10
Surfaces without boundary II	4.1	4.7*, 4.8*, 4.9*, 4.10*, 4.11*	Jan 18
Surfaces with boundary	4.2	4.13*, 4.14*	Jan 25
Surfaces with boundary II	4.2	4.15*, 4.16*, 4.17*	Feb 3
Genus and Seifert surfaces	4.3	4.20*, 4.22*, 4.23*, 4.27*	Feb 8
Torus knots	5.1	$5.1^*, 5.2^*, 5.3^*, 5.5^*, 5.6$	Feb 15
Satellite knots	5.2	5.13*, 5.14*	Feb 22
Hyperbolic knots	5.3	5.15*	Mar 1
Braids	5.4	$5.16^*, 5.17^*, 5.18^*, 5.19^*, 5.21^*,$	Mar 17
		5.26*	

^{*}Supported in part by the National Science Foundation. *E-mail*: juliusbl@mit.edu

Topics	Sections	Chapter exercises	Date
Bracket & Jones polynomial	6.1	$6.1^*, 6.2^*, 6.3^*, 6.5^*, 6.7^*, 6.8^*$	Mar 22
Polynomials of alternating	6.2	$6.9^*, 6.10^*, 6.11^*, 6.12^*$	Apr 12
knots			
Alexander polynomial	6.3	$6.14^*, 6.15^*, 6.16^*$	Apr 19
HOMFLY polynomial	6.3	$6.17^*, 6.18^*, 6.19^*, 6.20^*, 6.21^*$	Apr 26
Amphicheirality	6.4		May 3

Exercises. Solutions are due the week after the corresponding chapter is covered in lecture; solutions marked with an asterisk * should be sent to juliusbl@mit.edu, in the format of a single PDF file. The solutions can be typed up in IAT_EX or handwritten/drawn, but should be clearly legible. Start the homeworks early; if you are unfamiliar with IAT_EX , it can take longer than expected to write up a solution.

References

[A] Adams, C. C. (2004). The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. American Mathematical Society.