DRP 2022: THE HEAT EQUATION

Mentor: Julius $Baldauf^*$

MIT Department of Mathematics Cambridge, MA

Syllabus

Meetings take place virtually at 9am Boston time via Zoom (link).

Topics	References	Date
Introduction, heuristics, uniqueness	[C, §1]	Jan 3
Gradient flow formulation,	[C, §2-3]	Jan 5
parabolic maximum principle		
Heat kernel	[C, §5.1-5.2]	Jan 7
Green's function,	[C, §5.3-5.4]	Jan 10
parabolic mean value inequality		
Central limit theorem,	[C, §6.1]	Jan 12
Hölder inequality		
Shannon entropy,	[C, §9.1]	Jan 14
Fisher information,		
Perelman's \mathcal{W} -functional		
Logarithmic Sobolev inequality,	[C, §9.2]	Jan 17
Renyi entropy		
Differential Harnack inequality	[C, §10.1]	Jan 19
Matrix maximum principle,	[C, §10.3], [H, §4]	Jan 21
discuss presentation topics		
Vector maximum principle I,	[H, §4]	Jan 24
choose presentation topic		
Vector maximum principle II,	[H, §4]	Jan 26
presentation outline due		
Hamilton's matrix Harnack inequality,	[C, §10.2]	Jan 28
practice presentation		
DRP Symposium	-	Feb 1

^{*}Supported in part by the National Science Foundation. E-mail: juliusbl@mit.edu

References

- [C] Colding, T., & Lee, T-K. (2021). Topics in the heat equation. 18.966 Lecture notes. (Link)
- [H] Hamilton, R. S. (1986). Four-manifolds with positive curvature operator. Journal of Differential Geometry, 24 (2), 153-179. (Link)
- [W] Weinberger, H. F. (1975). Invariant sets for weakly coupled parabolic and elliptic systems. *Rend. Mat*, 8(6), 295-310. (Link)

EXERCISES

Exercises labeled with a \bigstar are highly recommended.

Exercise 1 (\bigstar Separable solutions). Find all solutions $u : \mathbb{R} \times [0, \infty) \to \mathbb{R}$ of the 1-dimensional heat equation $\partial_t u = \partial_x \partial_x u$ of the form u(x,t) = f(t)g(x).

Exercise 2 (\bigstar Solutions with zero boundary condition). Find all solutions $u : [0, 1] \times [0, \infty) \to \mathbb{R}$ of the 1-dimensional heat equation $\partial_t u = \partial_x \partial_x u$ satisfying 0 = u(0, t) = u(1, t) for all $t \ge 0$.

(Hint: use Fourier series.)

Exercise 3 (\bigstar Green's identity). Let $\Omega \subset \mathbb{R}^n$ be a domain with smooth boundary $\partial \Omega$. Let $u, v \in C^2(\overline{\Omega})$, where $\overline{\Omega}$ denotes the closure of Ω . Show that

$$\int_{\Omega} \left(u\Delta v - (\Delta u)v \right) \, dx = \int_{\partial \Omega} \left(u\nabla_{\nu}v - (\nabla_{\nu}u)v \right) \, d\sigma,$$

where ν is the outward unit normal to $\partial\Omega$ and $d\sigma$ is the integration form of $\partial\Omega$.

(Hint: apply the divergence theorem to the vector field $X = u\nabla v - v\nabla u$, and use the fact that $\Delta = \operatorname{div} \circ \nabla$.)

Exercise 4 (\bigstar Hölder's inequality). Prove that if $u, v : \mathbb{R}^n \to \mathbb{R}$, then whenever the integrals make sense,

$$\int_{\mathbb{R}^n} |uv| \, dx \le \left(\int_{\mathbb{R}^n} |u|^2 \, dx \right)^{\frac{1}{2}} \left(\int_{\mathbb{R}^n} |v|^2 \, dx \right)^{\frac{1}{2}}.$$

Exercise 5 (\bigstar 1D Poincaré inequality). Let $u : [a, b] \to \mathbb{R}$ be C^1 and let $\bar{u} = \frac{1}{b-a} \int_a^b u \, dx$ be the average of u on [a, b]. Prove that

$$\int_{a}^{b} |u - \bar{u}|^{2} dx \le |b - a|^{2} \int_{a}^{b} |\nabla u|^{2} dx.$$

(Hint: use Hölder's inequality and the fundamental theorem of calculus.)

Exercise 6 (\bigstar Convergence of solutions).

(a) Let $u: \Omega \times [0, \infty) \to \mathbb{R}$ solve the heat equation with Dirichlet boundary condition, i.e. u = 0on $\partial \Omega \times [0, \infty)$. Prove the following exponential decay estimate: there exists a constant C > 0such that for all t > 0, there holds

$$\int_{\Omega} |u(x,t)|^2 \, dx \le e^{-Ct} \int_{\Omega} |u(x,0)|^2 \, dx$$

(Hint: use the Poincaré inequality.)

(b) Let $u: \Omega \times [0, \infty) \to \mathbb{R}$ solve the heat equation with Neumann boundary condition, i.e. $\frac{\partial u}{\partial \nu} = 0$ on $\partial \Omega \times [0, \infty)$. Let \bar{u}_0 denote the average of $u(\cdot, 0)$ over Ω . Prove the following exponential decay estimate: there exists a constant C > 0 such that for all t > 0, there holds

$$\int_{\Omega} |u(x,t) - \bar{u}_0|^2 \, dx \le e^{-Ct} \int_{\Omega} |u(x,0) - \bar{u}_0|^2 \, dx.$$

(Hint: show that the average of u over Ω is constant in time and use the Poincaré inequality.)

In what follows, let $H(x, y, t) = (4\pi t)^{-\frac{n}{2}} e^{-\frac{|x-y|^2}{4t}}$ be the heat kernel on \mathbb{R}^n .

Exercise 7 (\bigstar Heat kernel). Show that H satisfies the heat equation in both the x and y variables:

$$\partial_t H(x, y, t) = \Delta_x H(x, y, t) = \Delta_y H(x, y, t).$$

Exercise 8 (\bigstar Fundamental solution). Let $u_0 \in C_b(\mathbb{R}^n)$ be a continuous and bounded function, and define for $x \in \mathbb{R}^n$ and t > 0,

$$u(x,t) = \int_{\mathbb{R}^n} H(x,y,t)u_0(y)\,dy.$$

Show that:

- (a) $u(\cdot, t) \in C^{\infty}(\mathbb{R}^n)$ for all t > 0, i.e. that all partial derivatives of u exist as long as t > 0. (Hint: differentiate under the integral sign and use properties of H.)
- (b) $\partial_t u = \Delta u$.

(Hint: differentiate under the integral sign and use Exercise 7.)

(c) For each $x \in \mathbb{R}^n$, $\lim_{t \searrow 0} u(x,t) = u_0(x)$.

(Hint: Let $\varepsilon > 0$ and choose $\delta > 0$ such that $|x - y| < \delta$ implies $|u_0(x) - u_0(y)| < \varepsilon$. Show that $|u_0(x) - u(x,t)| \to 0$ as ε and t go to zero, by splitting up the integral $|u_0(x) - u(x,t)|$ into two pieces, one over $B_{\delta}(x)$ and the other over $\mathbb{R}^n \setminus B_{\delta}(x)$.)

In what follows, define the Green's function for the Laplacian for $x \neq y \in \mathbb{R}^n$ by

$$G(x,y) = \int_0^\infty H(x,y,t) \, dt$$

Exercise 9 (\bigstar Green's function).

(a) Show that for $n \ge 3$, there exists a constant $c_n > 0$ such that for all $x \ne y \in \mathbb{R}^n$, there holds

$$G(x,y) = \frac{c_n}{|x-y|^{n-2}}$$

In particular, the integral defining G(x, y) is well-defined when $n \ge 3$.

(Hint: rewrite the integral defining the Green's function in terms of the Gamma function.)

(c) Show by directly differentiating the equation from part (a) that for $x \neq y \in \mathbb{R}^n$, G solves the Laplace equations in the x and y variables:

$$\Delta_x G(x, y) = \Delta_y G(x, y) = 0.$$

For t < 0 and $x, y \in \mathbb{R}^n$, define the backwards heat kernel by $H_b(x, y, t) = (-4\pi t)^{-\frac{n}{2}} e^{\frac{|x-y|^2}{4t}}$.

Exercise 10 (\bigstar Parabolic mean value inequality). Let $u: \mathbb{R}^n \times [-T, 0] \to \mathbb{R}$ be a subsolution of the heat equation, i.e. $\partial_t u \leq \Delta u$.

(a) Show that for each fixed $y \in \mathbb{R}^n$, the function

$$I_y(t) = \int_{\mathbb{R}^n} u(x,t) H_b(x,y,t) \, dx$$

is monotone decreasing in time.

(Hint: show that $I'_y \leq 0$ by integrating by parts. Apply the Green's identity from Exercise 3 on balls of larger and larger radii, and show that the boundary term vanishes in the limit.)

(b) Show that for each fixed $y \in \mathbb{R}^n$,

$$\lim_{t \nearrow 0} I_y(t) = u(y,0).$$

(Hint: use Exercise 8, part (c).)

(c) Deduce, for each fixed $y \in \mathbb{R}^n$, the parabolic mean value inequality

$$u(y,0) \le \int_{\mathbb{R}^n} u(x,-T)H_b(x,y,-T)\,dx$$

(Hint: combine parts (a) and (b).)

Exercise 11 (\bigstar Hölder inequality). Let $f, g: \mathbb{R}^n \times [0, \infty) \to \mathbb{R}_{>0}$ be positive supersolutions of the heat equation: $\partial_t f \geq \Delta f$ and $\partial_t g \geq \Delta g$. Let $1 < p, q < \infty$ be Hölder conjugates, i.e. satisfying $\frac{1}{p} + \frac{1}{q} = 1$. Show that $f^{\frac{1}{p}}g^{\frac{1}{q}}$ is a supersolution of the heat equation:

$$(\partial_t - \Delta) f^{\frac{1}{p}} g^{\frac{1}{q}} \ge 0.$$

Further, show that $f^{\frac{1}{p}}g^{\frac{1}{q}}$ solves the heat equation only if f = cg for some constant $c \in \mathbb{R}$. (Hint: Let $u = \log(f^{\frac{1}{p}}g^{\frac{1}{q}})$ and compute $e^{-u}(\partial_t - \Delta)e^u$.)

Given a function $f : \mathbb{R}^n \to \mathbb{R}$, the weighted Laplacian Δ_f is defined by

$$\Delta_f u = \Delta u - \langle \nabla f, \nabla u \rangle \qquad \text{for all } u \in C^2(\mathbb{R}^n).$$

This operator also goes under the names of drift Laplacian, f-Laplacian, and Witten Laplacian.

Exercise 12 (\bigstar Weighted Laplacian).

(a) Prove that Δ_f is self-adjoint with respect to the weighted $L^2(e^{-f}dx)$ inner product. That is, prove that for all functions u, v on \mathbb{R}^n decaying suitably rapidly at infinity,

$$\int_{\mathbb{R}^n} (\Delta_f u) v \, e^{-f} dx = \int_{\mathbb{R}^n} u(\Delta_f v) \, e^{-f} dx.$$

- (b) Formulate and prove a "weighted divergence theorem" involving the weighted measure $e^{-f}dx$. What is your definition of the "weighted divergence" div_f?
- (c) Prove the following weighted Bochner formula holds for all $u \in C^3(M)$:

$$\frac{1}{2}\Delta_f |\nabla u|^2 = |\operatorname{Hess}_u|^2 + \langle \nabla \Delta_f u, \nabla u \rangle + \operatorname{Hess}_f (\nabla u, \nabla u).$$

A subset $C \subset \mathbb{R}^k$ is a *cone* with vertex $v \in \mathbb{R}^k$ if for every $w \in C$ and every $t \ge 0$, the vector v + t(w - v) lies in C. The *tangent cone* $C_v X$ of a closed, convex set $X \subset \mathbb{R}^k$ at a boundary point $v \in \partial X$ is defined to be the intersection of all closed half-spaces containing X and whose boundary contains v.

Exercise 13 (\bigstar Tangent cone).

- (a) Prove that the tangent cone $C_v X$ is the smallest closed, convex cone with vertex v containing X.
- (b) Prove that if ∂X is C^1 at v, then $C_v X$ is a half-space.
- (c) Prove that every closed, convex set is the intersection of its tangent cones: $X = \bigcap_{v \in \partial X} C_v X$.
- (d) Prove that the sum of two vectors in the tangent cone of a closed convex set lies in the tangent cone.