DRP 2022: THE HEAT EQUATION

Mentor: Julius Baldauf*
MIT Department of Mathematics Cambridge, MA

Syllabus

Meetings take place virtually at 9am Boston time via Zoom (link).

Topics	References	Date
Introduction, heuristics, uniqueness	$[\mathrm{C}, \S 1]$	Jan 3
Gradient flow formulation, parabolic maximum principle	$[\mathrm{C}, \S 2-3]$	Jan 5
Heat kernel	$[\mathrm{C}, \S 5.1-5.2]$	Jan 7
Green's function, parabolic mean value inequality	$[\mathrm{C}, \S 5.3-5.4]$	Jan 10
Central limit theorem, Hölder inequality	$[\mathrm{C}, \S 6.1]$	Jan 12
Shannon entropy, Fisher information, Perelman's \mathcal{W}-functional	$[\mathrm{C}, \S 9.1]$	Jan 14
Logarithmic Sobolev inequality, Renyi entropy	[C, §9.2]	Jan 17
Differential Harnack inequality	$[\mathrm{C}, \S 10.1]$	Jan 19
Matrix maximum principle, discuss presentation topics	$[\mathrm{H}, \S 40.3],[\mathrm{H}, \S 4]$	Jan 21
Vector maximum principle I, choose presentation topic	$[\mathrm{H}, \S 4]$	Jan 24
Vector maximum principle II, presentation outline due	$[\mathrm{C}, \S 10.2]$	Jan 26
Hamilton's matrix Harnack inequality, practice presentation	Jan 28	
DRP Symposium	Feb 1	

[^0]
References

[C] Colding, T., \& Lee, T-K. (2021). Topics in the heat equation. 18.966 Lecture notes. (Link)
[H] Hamilton, R. S. (1986). Four-manifolds with positive curvature operator. Journal of Differential Geometry, 24 (2), 153-179. (Link)
[W] Weinberger, H. F. (1975). Invariant sets for weakly coupled parabolic and elliptic systems. Rend. Mat, 8(6), 295-310. (Link)

ExERCISES

Exercises labeled with a \star are highly recommended.
Exercise $1(\star$ Separable solutions). Find all solutions $u: \mathbb{R} \times[0, \infty) \rightarrow \mathbb{R}$ of the 1-dimensional heat equation $\partial_{t} u=\partial_{x} \partial_{x} u$ of the form $u(x, t)=f(t) g(x)$.

Exercise $2(\star$ Solutions with zero boundary condition). Find all solutions $u:[0,1] \times[0, \infty) \rightarrow \mathbb{R}$ of the 1 -dimensional heat equation $\partial_{t} u=\partial_{x} \partial_{x} u$ satisfying $0=u(0, t)=u(1, t)$ for all $t \geq 0$.
(Hint: use Fourier series.)
Exercise $3\left(\star\right.$ Green's identity). Let $\Omega \subset \mathbb{R}^{n}$ be a domain with smooth boundary $\partial \Omega$. Let $u, v \in C^{2}(\bar{\Omega})$, where $\bar{\Omega}$ denotes the closure of Ω. Show that

$$
\int_{\Omega}(u \Delta v-(\Delta u) v) d x=\int_{\partial \Omega}\left(u \nabla_{\nu} v-\left(\nabla_{\nu} u\right) v\right) d \sigma
$$

where ν is the outward unit normal to $\partial \Omega$ and $d \sigma$ is the integration form of $\partial \Omega$.
(Hint: apply the divergence theorem to the vector field $X=u \nabla v-v \nabla u$, and use the fact that $\Delta=\operatorname{div} \circ \nabla$.

Exercise $4\left(\star\right.$ Hölder's inequality). Prove that if $u, v: \mathbb{R}^{n} \rightarrow \mathbb{R}$, then whenever the integrals make sense,

$$
\int_{\mathbb{R}^{n}}|u v| d x \leq\left(\int_{\mathbb{R}^{n}}|u|^{2} d x\right)^{\frac{1}{2}}\left(\int_{\mathbb{R}^{n}}|v|^{2} d x\right)^{\frac{1}{2}}
$$

Exercise 5 (\star 1D Poincaré inequality). Let $u:[a, b] \rightarrow \mathbb{R}$ be C^{1} and let $\bar{u}=\frac{1}{b-a} \int_{a}^{b} u d x$ be the average of u on $[a, b]$. Prove that

$$
\int_{a}^{b}|u-\bar{u}|^{2} d x \leq|b-a|^{2} \int_{a}^{b}|\nabla u|^{2} d x .
$$

(Hint: use Hölder's inequality and the fundamental theorem of calculus.)
Exercise 6 (\star Convergence of solutions).
(a) Let $u: \Omega \times[0, \infty) \rightarrow \mathbb{R}$ solve the heat equation with Dirichlet boundary condition, i.e. $u=0$ on $\partial \Omega \times[0, \infty)$. Prove the following exponential decay estimate: there exists a constant $C>0$ such that for all $t>0$, there holds

$$
\int_{\Omega}|u(x, t)|^{2} d x \leq e^{-C t} \int_{\Omega}|u(x, 0)|^{2} d x .
$$

(Hint: use the Poincaré inequality.)
(b) Let $u: \Omega \times[0, \infty) \rightarrow \mathbb{R}$ solve the heat equation with Neumann boundary condition, i.e. $\frac{\partial u}{\partial \nu}=0$ on $\partial \Omega \times[0, \infty)$. Let \bar{u}_{0} denote the average of $u(\cdot, 0)$ over Ω. Prove the following exponential decay estimate: there exists a constant $C>0$ such that for all $t>0$, there holds

$$
\int_{\Omega}\left|u(x, t)-\bar{u}_{0}\right|^{2} d x \leq e^{-C t} \int_{\Omega}\left|u(x, 0)-\bar{u}_{0}\right|^{2} d x .
$$

(Hint: show that the average of u over Ω is constant in time and use the Poincaré inequality.)
In what follows, let $H(x, y, t)=(4 \pi t)^{-\frac{n}{2}} e^{-\frac{|x-y|^{2}}{4 t}}$ be the heat kernel on \mathbb{R}^{n}.
Exercise 7 (\star Heat kernel). Show that H satisfies the heat equation in both the x and y variables:

$$
\partial_{t} H(x, y, t)=\Delta_{x} H(x, y, t)=\Delta_{y} H(x, y, t) .
$$

Exercise 8 (\star Fundamental solution). Let $u_{0} \in C_{b}\left(\mathbb{R}^{n}\right)$ be a continuous and bounded function, and define for $x \in \mathbb{R}^{n}$ and $t>0$,

$$
u(x, t)=\int_{\mathbb{R}^{n}} H(x, y, t) u_{0}(y) d y
$$

Show that:
(a) $u(\cdot, t) \in C^{\infty}\left(\mathbb{R}^{n}\right)$ for all $t>0$, i.e. that all partial derivatives of u exist as long as $t>0$.
(Hint: differentiate under the integral sign and use properties of H.)
(b) $\partial_{t} u=\Delta u$.
(Hint: differentiate under the integral sign and use Exercise 7.)
(c) For each $x \in \mathbb{R}^{n}, \lim _{t \searrow 0} u(x, t)=u_{0}(x)$.
(Hint: Let $\varepsilon>0$ and choose $\delta>0$ such that $|x-y|<\delta$ implies $\left|u_{0}(x)-u_{0}(y)\right|<\varepsilon$. Show that $\left|u_{0}(x)-u(x, t)\right| \rightarrow 0$ as ε and t go to zero, by splitting up the integral $\left|u_{0}(x)-u(x, t)\right|$ into two pieces, one over $B_{\delta}(x)$ and the other over $\mathbb{R}^{n} \backslash B_{\delta}(x)$.)

In what follows, define the Green's function for the Laplacian for $x \neq y \in \mathbb{R}^{n}$ by

$$
G(x, y)=\int_{0}^{\infty} H(x, y, t) d t
$$

Exercise 9 (\star Green's function).
(a) Show that for $n \geq 3$, there exists a constant $c_{n}>0$ such that for all $x \neq y \in \mathbb{R}^{n}$, there holds

$$
G(x, y)=\frac{c_{n}}{|x-y|^{n-2}} .
$$

In particular, the integral defining $G(x, y)$ is well-defined when $n \geq 3$.
(Hint: rewrite the integral defining the Green's function in terms of the Gamma function.)
(c) Show by directly differentiating the equation from part (a) that for $x \neq y \in \mathbb{R}^{n}, G$ solves the Laplace equations in the x and y variables:

$$
\Delta_{x} G(x, y)=\Delta_{y} G(x, y)=0
$$

For $t<0$ and $x, y \in \mathbb{R}^{n}$, define the backwards heat kernel by $H_{b}(x, y, t)=(-4 \pi t)^{-\frac{n}{2}} e^{\frac{|x-y|^{2}}{4 t}}$.
Exercise $10\left(\star\right.$ Parabolic mean value inequality). Let $u: \mathbb{R}^{n} \times[-T, 0] \rightarrow \mathbb{R}$ be a subsolution of the heat equation, i.e. $\partial_{t} u \leq \Delta u$.
(a) Show that for each fixed $y \in \mathbb{R}^{n}$, the function

$$
I_{y}(t)=\int_{\mathbb{R}^{n}} u(x, t) H_{b}(x, y, t) d x
$$

is monotone decreasing in time.
(Hint: show that $I_{y}^{\prime} \leq 0$ by integrating by parts. Apply the Green's identity from Exercise 3 on balls of larger and larger radii, and show that the boundary term vanishes in the limit.)
(b) Show that for each fixed $y \in \mathbb{R}^{n}$,

$$
\lim _{t>0} I_{y}(t)=u(y, 0)
$$

(Hint: use Exercise 8, part (c).)
(c) Deduce, for each fixed $y \in \mathbb{R}^{n}$, the parabolic mean value inequality

$$
u(y, 0) \leq \int_{\mathbb{R}^{n}} u(x,-T) H_{b}(x, y,-T) d x
$$

(Hint: combine parts (a) and (b).)
Exercise 11 (\star Hölder inequality). Let $f, g: \mathbb{R}^{n} \times[0, \infty) \rightarrow \mathbb{R}_{>0}$ be positive supersolutions of the heat equation: $\partial_{t} f \geq \Delta f$ and $\partial_{t} g \geq \Delta g$. Let $1<p, q<\infty$ be Hölder conjugates, i.e. satisfying $\frac{1}{p}+\frac{1}{q}=1$. Show that $f^{\frac{1}{p}} g^{\frac{1}{q}}$ is a supersolution of the heat equation:

$$
\left(\partial_{t}-\Delta\right) f^{\frac{1}{p}} g^{\frac{1}{q}} \geq 0
$$

Further, show that $f^{\frac{1}{p}} g^{\frac{1}{q}}$ solves the heat equation only if $f=c g$ for some constant $c \in \mathbb{R}$.
(Hint: Let $u=\log \left(f^{\frac{1}{p}} g^{\frac{1}{q}}\right)$ and compute $e^{-u}\left(\partial_{t}-\Delta\right) e^{u}$.)

Given a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, the weighted Laplacian Δ_{f} is defined by

$$
\Delta_{f} u=\Delta u-\langle\nabla f, \nabla u\rangle \quad \text { for all } u \in C^{2}\left(\mathbb{R}^{n}\right)
$$

This operator also goes under the names of drift Laplacian, f-Laplacian, and Witten Laplacian.
Exercise 12 (\star Weighted Laplacian).
(a) Prove that Δ_{f} is self-adjoint with respect to the weighted $L^{2}\left(e^{-f} d x\right)$ inner product. That is, prove that for all functions u, v on \mathbb{R}^{n} decaying suitably rapidly at infinity,

$$
\int_{\mathbb{R}^{n}}\left(\Delta_{f} u\right) v e^{-f} d x=\int_{\mathbb{R}^{n}} u\left(\Delta_{f} v\right) e^{-f} d x .
$$

(b) Formulate and prove a "weighted divergence theorem" involving the weighted measure $e^{-f} d x$. What is your definition of the "weighted divergence" div_{f} ?
(c) Prove the following weighted Bochner formula holds for all $u \in C^{3}(M)$:

$$
\frac{1}{2} \Delta_{f}|\nabla u|^{2}=\left|\operatorname{Hess}_{u}\right|^{2}+\left\langle\nabla \Delta_{f} u, \nabla u\right\rangle+\operatorname{Hess}_{f}(\nabla u, \nabla u) .
$$

A subset $C \subset \mathbb{R}^{k}$ is a cone with vertex $v \in \mathbb{R}^{k}$ if for every $w \in C$ and every $t \geq 0$, the vector $v+t(w-v)$ lies in C. The tangent cone $C_{v} X$ of a closed, convex set $X \subset \mathbb{R}^{k}$ at a boundary point $v \in \partial X$ is defined to be the intersection of all closed half-spaces containing X and whose boundary contains v.

Exercise 13 (\star Tangent cone).
(a) Prove that the tangent cone $C_{v} X$ is the smallest closed, convex cone with vertex v containing X.
(b) Prove that if ∂X is C^{1} at v, then $C_{v} X$ is a half-space.
(c) Prove that every closed, convex set is the intersection of its tangent cones: $X=\bigcap_{v \in \partial X} C_{v} X$.
(d) Prove that the sum of two vectors in the tangent cone of a closed convex set lies in the tangent cone.

[^0]: *Supported in part by the National Science Foundation. E-mail: juliusbl@mit.edu

