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Topics References Date
Introduction, heuristics, uniqueness [C, §1] Jan 3
Gradient flow formulation,
parabolic maximum principle

[C, §2-3] Jan 5

Heat kernel [C, §5.1-5.2] Jan 7
Green’s function,
parabolic mean value inequality

[C, §5.3-5.4] Jan 10

Central limit theorem,
Hölder inequality

[C, §6.1] Jan 12

Shannon entropy,
Fisher information,
Perelman’s W-functional

[C, §9.1] Jan 14

Logarithmic Sobolev inequality,
Renyi entropy

[C, §9.2] Jan 17

Differential Harnack inequality [C, §10.1] Jan 19
Matrix maximum principle,
discuss presentation topics

[C, §10.3], [H, §4] Jan 21

Vector maximum principle I,
choose presentation topic

[H, §4] Jan 24

Vector maximum principle II,
presentation outline due

[H, §4] Jan 26

Hamilton’s matrix Harnack inequality,
practice presentation

[C, §10.2] Jan 28
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Exercises

Exercises labeled with a ⋆ are highly recommended.

Exercise 1 (⋆ Separable solutions). Find all solutions u : R × [0,∞) → R of the 1-dimensional
heat equation ∂tu = ∂x∂xu of the form u(x, t) = f(t)g(x).

Exercise 2 (⋆ Solutions with zero boundary condition). Find all solutions u : [0, 1]× [0,∞) → R
of the 1-dimensional heat equation ∂tu = ∂x∂xu satisfying 0 = u(0, t) = u(1, t) for all t ≥ 0.

(Hint: use Fourier series.)

Exercise 3 (⋆ Green’s identity). Let Ω ⊂ Rn be a domain with smooth boundary ∂Ω. Let
u, v ∈ C2(Ω), where Ω denotes the closure of Ω. Show that

ˆ
Ω
(u∆v − (∆u)v) dx =

ˆ
∂Ω

(u∇νv − (∇νu)v) dσ,

where ν is the outward unit normal to ∂Ω and dσ is the integration form of ∂Ω.
(Hint: apply the divergence theorem to the vector field X = u∇v − v∇u, and use the fact that

∆ = div ◦ ∇.)

Exercise 4 (⋆ Hölder’s inequality). Prove that if u, v : Rn → R, then whenever the integrals make
sense, ˆ

Rn

|uv| dx ≤
(ˆ

Rn

|u|2 dx
) 1

2
(ˆ

Rn

|v|2 dx
) 1

2

.

Exercise 5 (⋆ 1D Poincaré inequality). Let u : [a, b] → R be C1 and let ū = 1
b−a

´ b
a u dx be the

average of u on [a, b]. Prove that

ˆ b

a
|u− ū|2 dx ≤ |b− a|2

ˆ b

a
|∇u|2 dx.

(Hint: use Hölder’s inequality and the fundamental theorem of calculus.)

Exercise 6 (⋆ Convergence of solutions).
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(a) Let u : Ω × [0,∞) → R solve the heat equation with Dirichlet boundary condition, i.e. u = 0
on ∂Ω× [0,∞). Prove the following exponential decay estimate: there exists a constant C > 0
such that for all t > 0, there holds

ˆ
Ω
|u(x, t)|2 dx ≤ e−Ct

ˆ
Ω
|u(x, 0)|2 dx.

(Hint: use the Poincaré inequality.)

(b) Let u : Ω× [0,∞) → R solve the heat equation with Neumann boundary condition, i.e. ∂u
∂ν = 0

on ∂Ω× [0,∞). Let ū0 denote the average of u(·, 0) over Ω. Prove the following exponential
decay estimate: there exists a constant C > 0 such that for all t > 0, there holds

ˆ
Ω
|u(x, t)− ū0|2 dx ≤ e−Ct

ˆ
Ω
|u(x, 0)− ū0|2 dx.

(Hint: show that the average of u over Ω is constant in time and use the Poincaré inequality.)

In what follows, let H(x, y, t) = (4πt)−
n
2 e−

|x−y|2
4t be the heat kernel on Rn.

Exercise 7 (⋆ Heat kernel). Show that H satisfies the heat equation in both the x and y variables:

∂tH(x, y, t) = ∆xH(x, y, t) = ∆yH(x, y, t).

Exercise 8 (⋆ Fundamental solution). Let u0 ∈ Cb(Rn) be a continuous and bounded function,
and define for x ∈ Rn and t > 0,

u(x, t) =

ˆ
Rn

H(x, y, t)u0(y) dy.

Show that:

(a) u(·, t) ∈ C∞(Rn) for all t > 0, i.e. that all partial derivatives of u exist as long as t > 0.

(Hint: differentiate under the integral sign and use properties of H.)

(b) ∂tu = ∆u.

(Hint: differentiate under the integral sign and use Exercise 7.)

(c) For each x ∈ Rn, limt↘0 u(x, t) = u0(x).

(Hint: Let ε > 0 and choose δ > 0 such that |x− y|< δ implies |u0(x)− u0(y)|< ε. Show that
|u0(x) − u(x, t)|→ 0 as ε and t go to zero, by splitting up the integral |u0(x) − u(x, t)| into
two pieces, one over Bδ(x) and the other over Rn \Bδ(x).)

In what follows, define the Green’s function for the Laplacian for x ̸= y ∈ Rn by

G(x, y) =

ˆ ∞

0
H(x, y, t) dt.

3



Exercise 9 (⋆ Green’s function).

(a) Show that for n ≥ 3, there exists a constant cn > 0 such that for all x ̸= y ∈ Rn, there holds

G(x, y) =
cn

|x− y|n−2
.

In particular, the integral defining G(x, y) is well-defined when n ≥ 3.

(Hint: rewrite the integral defining the Green’s function in terms of the Gamma function.)

(c) Show by directly differentiating the equation from part (a) that for x ̸= y ∈ Rn, G solves the
Laplace equations in the x and y variables:

∆xG(x, y) = ∆yG(x, y) = 0.

For t < 0 and x, y ∈ Rn, define the backwards heat kernel by Hb(x, y, t) = (−4πt)−
n
2 e

|x−y|2
4t .

Exercise 10 (⋆ Parabolic mean value inequality). Let u : Rn × [−T, 0] → R be a subsolution of
the heat equation, i.e. ∂tu ≤ ∆u.

(a) Show that for each fixed y ∈ Rn, the function

Iy(t) =

ˆ
Rn

u(x, t)Hb(x, y, t) dx

is monotone decreasing in time.

(Hint: show that I ′y ≤ 0 by integrating by parts. Apply the Green’s identity from Exercise 3
on balls of larger and larger radii, and show that the boundary term vanishes in the limit.)

(b) Show that for each fixed y ∈ Rn,
lim
t↗0

Iy(t) = u(y, 0).

(Hint: use Exercise 8, part (c).)

(c) Deduce, for each fixed y ∈ Rn, the parabolic mean value inequality

u(y, 0) ≤
ˆ
Rn

u(x,−T )Hb(x, y,−T ) dx.

(Hint: combine parts (a) and (b).)

Exercise 11 (⋆ Hölder inequality). Let f, g : Rn × [0,∞) → R>0 be positive supersolutions of the
heat equation: ∂tf ≥ ∆f and ∂tg ≥ ∆g. Let 1 < p, q < ∞ be Hölder conjugates, i.e. satisfying
1
p + 1

q = 1. Show that f
1
p g

1
q is a supersolution of the heat equation:

(∂t −∆)f
1
p g

1
q ≥ 0.

Further, show that f
1
p g

1
q solves the heat equation only if f = cg for some constant c ∈ R.

(Hint: Let u = log(f
1
p g

1
q ) and compute e−u(∂t −∆)eu.)
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Given a function f : Rn → R, the weighted Laplacian ∆f is defined by

∆fu = ∆u− ⟨∇f,∇u⟩ for all u ∈ C2(Rn).

This operator also goes under the names of drift Laplacian, f -Laplacian, and Witten Laplacian.

Exercise 12 (⋆ Weighted Laplacian).

(a) Prove that ∆f is self-adjoint with respect to the weighted L2(e−fdx) inner product. That is,
prove that for all functions u, v on Rn decaying suitably rapidly at infinity,

ˆ
Rn

(∆fu)v e
−fdx =

ˆ
Rn

u(∆fv) e
−fdx.

(b) Formulate and prove a “weighted divergence theorem” involving the weighted measure e−fdx.
What is your definition of the “weighted divergence” divf?

(c) Prove the following weighted Bochner formula holds for all u ∈ C3(M):

1

2
∆f |∇u|2= |Hessu|2+⟨∇∆fu,∇u⟩+Hessf (∇u,∇u).

A subset C ⊂ Rk is a cone with vertex v ∈ Rk if for every w ∈ C and every t ≥ 0, the vector
v + t(w − v) lies in C. The tangent cone CvX of a closed, convex set X ⊂ Rk at a boundary point
v ∈ ∂X is defined to be the intersection of all closed half-spaces containing X and whose boundary
contains v.

Exercise 13 (⋆ Tangent cone).

(a) Prove that the tangent cone CvX is the smallest closed, convex cone with vertex v containing
X.

(b) Prove that if ∂X is C1 at v, then CvX is a half-space.

(c) Prove that every closed, convex set is the intersection of its tangent cones: X =
⋂

v∈∂X CvX.

(d) Prove that the sum of two vectors in the tangent cone of a closed convex set lies in the tangent
cone.
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