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1 Syllabus
Spin geometry
Topic Reference | Reference | Date
L] B]
Clifford algebras I.1 1.1.1 Dec 23
Pin and Spin groups [.2 1.2.1 Jan 3
The algebras C/,, and C¥, 1.3 1.1.1 Jan 4
Classification of Clifford algebras [4 1.1.2 Jan 6
Representations, part 1 L5 1.2.2 Jan 8
Representations, part 2 L5 1.2.2 Jan 11
Lie algebra structures L.6 1.2.1 Jan 13
Clifford and spin bundles I1.1-11.3 2.1.1 Jan 15
Connections on spin bundles 1.4 2.1.2 Jan 18
Dirac operators I1.5 2.3.4 Jan 20
Lichnerowicz formula I1.8 2.5 Jan 22
Positive mass theorem
Topic Reference | Reference | Date
[LP] [PT]
Dominant energy condition, 88, §9 §1, §4 Jan 25
asymptotically flat manifolds, ADM mass
Weighted function spaces and Def. 8.2, §4 Jan 27
well-definedness of ADM mass Thm. 9.6
Green’s function for the Dirac operator Thm. 9.2(d) §5 Jan 29
Witten’s formula for the mass Appendix 83, §4 Feb 1
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2 Exercises

Exercises labeled with a % are used in the proof of the positive mass theorem.

Algebraic aspects

1 (Clifford vs. exterior algebra). Let V be a vector space over the field K = R or
K = C, and let ¢ be a quadratic form on V. Show that if e1, ..., e, is a g-orthogonal
basis of V', then the following map is an isomorphism of vector spaces

ClV,q) — A*V, ej ey, ey Ao A

2 (Connected components of SO). Show that for all n > 1, SO(n) is connected, and
that SO(n — 1, 1) has exactly two connected components, where SO(r, s) is the Lie

group
SO(r,s) = {\ € GL(R") | A*q = q, det(\) = 1},
and ¢ is the quadratic form on R™ given by

o) =0+ ety -l
Hint: Use the Cartan-Dieudonné theorem to find paths connecting elements in
SO(r, s) to either plus or minus the identity.

3 (% SU(2) is double cover of SO(3)). Prove that there exists a homomorphism
¢ : SU(2) — SO(3) which is surjective and has kernel {1,—1} C SU(2).

Hint: Show first that the Lie algebra su(2) of SU(2) is isomorphic to the 3-
dimensional real vector space of traceless, skew-hermitian 2 x 2 complex matrices,
which has a basis given by

(2.1) S L 1} R {_1 11 R {Z _Z.] |



Then show that for all U € SU(2), the adjoint action Ady : su(2) — su(2) by U,
defined for X = X,o; by

(2.2) Ady(X)=UXU",

is an element of SO(3), is a homomorphism SU(2) — SO(3), is surjective, and has
kernel {1, —1}.

4 (Real vs. complex Clifford algebras). Let ¢ and ¢© be the non-degenerate quadratic
forms on R™ and C", respectively, defined by

W)_ix?— Z 73, qc(z>—i23-
i=1 i=r+1 i=1
Consider the Clifford algebras
Cl,, = CLR™, q), Ct, = CL(C™, ¢%).
Show that there exists an isomorphism
Cl, s ®r C = CY,.

In particular,

Cl,=Cl,y@rC=Cl, 11 ®rC=...=Cl,, @R C.

Hint: Use the universal property of Clifford algebras.

5 (Canonical representation of C/,). Prove that the complex Clifford algebra Cty,
is isomorphic to the matrix algebra C(2"), and that Cfy,.; is isomorphic to C(2") &

c(2").

6 (Canonical representation of Cl3 and C/l3 ;). Prove that C/3 is isomorphic to HG&H
and that Cl3; is isomorphic to the matrix algebra H(2).

7 (%% Exceptional isomorphisms). Prove that there exists an isomorphism Spin(3) &
SU(2).

8 (% Exceptional isomorphisms). Prove that there exists a diffeomorphism SU(2) —
53, where S? C R?* is the set of unit vectors.

~

9 (% Exceptional isomorphisms). Prove that there exists an isomorphism Spin(3, 1)
SL(2,C).



10 (Complex volume element). Let ey, ..., e, be a positively oriented orthonormal
basis of R™ (with respect to the standard inner product) and let

.| ntl
w® ::2L3J61-~en€C€n

be the complex volume element, where “-” denotes the product in the Clifford algebra
C/,,. Show that

and, for all z € R™, there holds
r-w®=(-1)""tw 2.
Hint: Use the Clifford algebra relation e; - e; + ¢; - ¢; = —26;;1.

11 (9 3D Spin representation). Prove that the spin representation of Spin(3) is the
standard representation of SU(2) on C2.

12 (Spinorial inner product). For n even, let p : Cf, — End(X,) be the unique
irreducible representation for the complex Clifford algebra, and for n odd, let pL :
Cl, — End(X,) be the two inequivalent irreducible representations, where ¥, is a
complex vector space with

(2.3) dime 2, = 2130,

Construct a Hermitian inner product (-,-) on ¥, with respect to which Clifford
multiplication is orthogonal, i.e. such that for all x € R™ and all ¢,y € ¥, there
holds

(2.4) (p(@)p, p(x)) = l|=[I* (¢, ).

Show that this inner product is unique, up to scaling by a constant factor.
Hint: See Proposition 1.5.16 of [LM] or Proposition 1.35 of [B] for help.

13 (% 3D Clifford multiplication). Prove that the Clifford multiplication map c :
R? — End(C?) is given by

Ytz

c(x,y,2) = (Zy L ir ) € su(2).

14 (% Lie algebra representation of Spin(n)). Prove formula (A.1) of Lee-Parker
[LP]; that is, prove that the Lie algebra representation

spin(n) — End(V)
can be written in terms of Clifford multplication as follows:

1 n
A= —pAye(ee(el) = =g Aile(e), o)),

where {e'} is the standard basis of R™.
Hint: For help, see Proposition 1.6.2 of Lawson-Michelsohn [LM] or Theorem
1.25 of Bourguignon et al. [B].



Geometric aspects

Let (M, g) be a Riemannian spin n-manifold and let {e;} be a local orthonormal
frame of TM around p € M, with dual coframe {e’}.

15 (% Spin connection is metric compatible). Prove that the spin connection is
metric compatible (in either the real or complex case), i.e. prove that for all vector
fields X and all spinors ¢, on M,

X{p, ) = (Vxe,¥) + (p, Vx1),

where (-, -) is the canonical inner product on the spin bundle.
Hint: Use the fact that Clifford multiplication is skew-Hermitian.

16 (% Clifford multiplication is covariantly constant). Prove that Clifford multipli-
cation p : I'(Cl(M)) — End(XM) is covariantly constant with respect to the spin
connection, i.e. prove that for all « € I'(C¢(M)) and all spinors ¢ on M,

Vx(pla)y) = p(Vi )y + p(a) Vxi.
Hint: For help, see Proposition 11.4.11 of Lawson-Michelsohn [LM].

17 (J% Spin connection in local coordinates). Prove that the spin connection V can
locally be written as

1 n
Vit = 0p+ 7 Y Thie(e;)elen)?
jk=1
where T, := g(Ve;, ex) are the Christoffel symbols and ¢ denotes Clifford multipli-

cation.
Hint: See Theorem 2.7 of Bourguignon et al. [B] for help.

18 (% Spin curvature in terms of Riemannian curvature). Prove that if
RX,Y = [VX, VY] - V[X,Y]

is the curvature of the spin connection, then for any spinor 1,

n

1
Rxyy = 1 Z g(Rx yei, e;j)c(e;)c(e),

ij=1
where R is the curvature of the Levi-Civita connection on 7M.
Hint: Use Exercise 14. See Theorem 2.7 of Bourguignon et al. [B] for help.

19 (% Lichnerowicz’ vanishing theorem). Prove that if M is closed (i.e. compact
with empty boundary) and has positive scalar curvature, then the Dirac operator
of (M, g) has trivial kernel.

Hint: Use the Schrodinger-Lichnerowicz formula for the Dirac operator.
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