DRP 2021

Spin geometry and the positive mass theorem

Mentor: Julius Baldauf

1 Syllabus

Spin geometry

Topic	Reference	Reference	Date
	[LM]	[B]	
Clifford algebras	I.1	1.1.1	Dec 23
Pin and Spin groups	I.2	1.2.1	Jan 3
The algebras $\mathcal{C}\ell_n$ and $\mathcal{C}\ell_{r,s}$	I.3	1.1.1	Jan 4
Classification of Clifford algebras	I.4	1.1.2	Jan 6
Representations, part 1	I.5	1.2.2	Jan 8
Representations, part 2	I.5	1.2.2	Jan 11
Lie algebra structures	I.6	1.2.1	Jan 13
Clifford and spin bundles	II.1-II.3	2.1.1	Jan 15
Connections on spin bundles	II.4	2.1.2	Jan 18
Dirac operators	II.5	2.3.4	Jan 20
Lichnerowicz formula	II.8	2.5	Jan 22

Positive mass theorem

Topic	Reference	Reference	Date
	[LP]	[PT]	
Dominant energy condition,	§8, §9	§1, §4	Jan 25
asymptotically flat manifolds, ADM mass			
Weighted function spaces and	Def. 8.2,	<u></u> §4	Jan 27
well-definedness of ADM mass	Thm. 9.6		
Green's function for the Dirac operator	Thm. 9.2(d)	§5	Jan 29
Witten's formula for the mass	Appendix	§3, §4	Feb 1

References

- [B] Bourguignon, J. P., Hijazi, O., Milhorat, J. L., Moroianu, A., & Moroianu, S. (2015). A spinorial approach to Riemannian and conformal geometry. European Mathematical Society.
- [LM] Lawson, H. B., & Michelsohn, M. L. (1989). Spin geometry. Princeton University Press.
- [LP] Lee, J. M., & Parker, T. H. (1987). The Yamabe problem. Bulletin (New Series) of the American Mathematical Society, 17(1), 37-91.
- [PT] Parker, T., & Taubes, C. H. (1982). On Witten's proof of the positive energy theorem. *Communications in Mathematical Physics*, 84(2), 223-238.

2 Exercises

Exercises labeled with a \bigstar are used in the proof of the positive mass theorem.

Algebraic aspects

1 (Clifford vs. exterior algebra). Let V be a vector space over the field $K = \mathbb{R}$ or $K = \mathbb{C}$, and let q be a quadratic form on V. Show that if e_1, \ldots, e_n is a q-orthogonal basis of V, then the following map is an isomorphism of vector spaces

$$C\ell(V,q) \to \Lambda^{\bullet}V, \qquad e_{j_1} \cdots e_{j_p} \mapsto e_{j_1} \wedge \cdots \wedge e_{j_p}.$$

2 (Connected components of SO). Show that for all $n \ge 1$, SO(n) is connected, and that SO(n-1,1) has exactly two connected components, where SO(r,s) is the Lie group

$$SO(r,s) = \{\lambda \in GL(\mathbb{R}^n) \mid \lambda^* q = q, \det(\lambda) = 1\},\$$

and q is the quadratic form on \mathbb{R}^n given by

$$q(x) = x_1^2 + \dots + x_r^2 - x_{r+1}^2 - \dots - x_{r+s}^2.$$

Hint: Use the Cartan-Dieudonné theorem to find paths connecting elements in SO(r, s) to either plus or minus the identity.

3 (\bigstar SU(2) is double cover of SO(3)). Prove that there exists a homomorphism $\xi : SU(2) \to SO(3)$ which is surjective and has kernel $\{1, -1\} \subset SU(2)$.

Hint: Show first that the Lie algebra $\mathfrak{su}(2)$ of SU(2) is isomorphic to the 3dimensional real vector space of traceless, skew-hermitian 2×2 complex matrices, which has a basis given by

(2.1)
$$\sigma_1 = \begin{bmatrix} i \\ i \end{bmatrix}, \quad \sigma_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \quad \sigma_3 = \begin{bmatrix} i \\ -i \end{bmatrix}.$$

Then show that for all $U \in SU(2)$, the adjoint action $Ad_U : \mathfrak{su}(2) \to \mathfrak{su}(2)$ by U, defined for $X = X_i \sigma_i$ by

(2.2)
$$\operatorname{Ad}_U(X) = UXU^{-1},$$

is an element of SO(3), is a homomorphism $SU(2) \rightarrow SO(3)$, is surjective, and has kernel $\{1, -1\}$.

4 (Real vs. complex Clifford algebras). Let q and $q^{\mathbb{C}}$ be the non-degenerate quadratic forms on \mathbb{R}^n and \mathbb{C}^n , respectively, defined by

$$q(x) = \sum_{i=1}^{r} x_i^2 - \sum_{i=r+1}^{s} x_i^2, \qquad q^{\mathbb{C}}(z) = \sum_{i=1}^{n} z_i^2.$$

Consider the Clifford algebras

$$C\ell_{r,s} = C\ell(\mathbb{R}^n, q), \qquad \qquad \mathbb{C}\ell_n = C\ell(\mathbb{C}^n, q^{\mathbb{C}}).$$

Show that there exists an isomorphism

$$\mathrm{C}\ell_{r,s}\otimes_{\mathbb{R}}\mathbb{C}\cong\mathbb{C}\ell_n.$$

In particular,

$$\mathbb{C}\ell_n \cong \mathrm{C}\ell_{n,0} \otimes_{\mathbb{R}} \mathbb{C} \cong \mathrm{C}\ell_{n-1,1} \otimes_{\mathbb{R}} \mathbb{C} \cong \ldots \cong \mathrm{C}\ell_{0,n} \otimes_{\mathbb{R}} \mathbb{C}$$

Hint: Use the universal property of Clifford algebras.

5 (Canonical representation of $\mathbb{C}\ell_n$). Prove that the complex Clifford algebra $\mathbb{C}\ell_{2n}$ is isomorphic to the matrix algebra $\mathbb{C}(2^n)$, and that $\mathbb{C}\ell_{2n+1}$ is isomorphic to $\mathbb{C}(2^n) \oplus \mathbb{C}(2^n)$.

6 (Canonical representation of $C\ell_3$ and $C\ell_{3,1}$). Prove that $C\ell_3$ is isomorphic to $\mathbb{H} \oplus \mathbb{H}$ and that $C\ell_{3,1}$ is isomorphic to the matrix algebra $\mathbb{H}(2)$.

7 (\bigstar Exceptional isomorphisms). Prove that there exists an isomorphism Spin(3) \cong SU(2).

8 (\bigstar Exceptional isomorphisms). Prove that there exists a diffeomorphism SU(2) \rightarrow S^3 , where $S^3 \subset \mathbb{R}^4$ is the set of unit vectors.

9 (\bigstar Exceptional isomorphisms). Prove that there exists an isomorphism Spin(3, 1) \cong SL(2, \mathbb{C}).

10 (Complex volume element). Let e_1, \ldots, e_n be a positively oriented orthonormal basis of \mathbb{R}^n (with respect to the standard inner product) and let

$$\omega^{\mathbb{C}} := i^{\lfloor \frac{n+1}{2} \rfloor} e_1 \cdots e_n \in \mathbb{C}\ell_n$$

be the complex volume element, where " \cdot " denotes the product in the Clifford algebra $\mathbb{C}\ell_n$. Show that

$$(\omega^{\mathbb{C}})^2 = 1,$$

and, for all $x \in \mathbb{R}^n$, there holds

$$x \cdot \omega^{\mathbb{C}} = (-1)^{n-1} \omega^{\mathbb{C}} \cdot x.$$

Hint: Use the Clifford algebra relation $e_i \cdot e_j + e_j \cdot e_i = -2\delta_{ij}1$.

11 (\bigstar 3D Spin representation). Prove that the spin representation of Spin(3) is the standard representation of SU(2) on \mathbb{C}^2 .

12 (Spinorial inner product). For n even, let $\rho : \mathbb{C}\ell_n \to \operatorname{End}(\Sigma_n)$ be the unique irreducible representation for the complex Clifford algebra, and for n odd, let $\rho_{\pm} : \mathbb{C}\ell_n \to \operatorname{End}(\Sigma_n)$ be the two inequivalent irreducible representations, where Σ_n is a complex vector space with

(2.3)
$$\dim_{\mathbb{C}} \Sigma_n = 2^{\lfloor \frac{n}{2} \rfloor}.$$

Construct a Hermitian inner product $\langle \cdot, \cdot \rangle$ on Σ_n with respect to which Clifford multiplication is orthogonal, i.e. such that for all $x \in \mathbb{R}^n$ and all $\varphi, \psi \in \Sigma_n$, there holds

(2.4)
$$\langle \rho(x)\varphi, \rho(x)\psi \rangle = ||x||^2 \langle \varphi, \psi \rangle$$

Show that this inner product is unique, up to scaling by a constant factor.

Hint: See Proposition I.5.16 of [LM] or Proposition 1.35 of [B] for help.

13 (\bigstar 3D Clifford multiplication). Prove that the Clifford multiplication map $c : \mathbb{R}^3 \to \text{End}(\mathbb{C}^2)$ is given by

$$c(x,y,z) = \begin{pmatrix} ix & iy+z\\ iy-z & -ix \end{pmatrix} \in \mathfrak{su}(2)$$

14 (\bigstar Lie algebra representation of Spin(n)). Prove formula (A.1) of Lee-Parker [LP]; that is, prove that the Lie algebra representation

$$\mathfrak{spin}(n) \to \operatorname{End}(V)$$

can be written in terms of Clifford multiplication as follows:

$$A \quad \mapsto \quad -\frac{1}{4}A_{ij}c(e^{i})c(e^{j}) = -\frac{1}{8}A_{ij}[c(e^{i}), c(e^{j})],$$

where $\{e^i\}$ is the standard basis of \mathbb{R}^n .

Hint: For help, see Proposition I.6.2 of Lawson-Michelsohn [LM] or Theorem 1.25 of Bourguignon et al. [B].

Geometric aspects

Let (M, g) be a Riemannian spin *n*-manifold and let $\{e_i\}$ be a local orthonormal frame of TM around $p \in M$, with dual coframe $\{e^i\}$.

15 (\bigstar Spin connection is metric compatible). Prove that the spin connection is metric compatible (in either the real or complex case), i.e. prove that for all vector fields X and all spinors φ, ψ on M,

$$X\langle\varphi,\psi\rangle = \langle\nabla_X\varphi,\psi\rangle + \langle\varphi,\nabla_X\psi\rangle,$$

where $\langle \cdot, \cdot \rangle$ is the canonical inner product on the spin bundle.

Hint: Use the fact that Clifford multiplication is skew-Hermitian.

16 (\bigstar Clifford multiplication is covariantly constant). Prove that Clifford multiplication $\rho : \Gamma(\mathbb{C}\ell(M)) \to \operatorname{End}(\Sigma M)$ is covariantly constant with respect to the spin connection, i.e. prove that for all $\alpha \in \Gamma(\mathbb{C}\ell(M))$ and all spinors ψ on M,

$$\nabla_X(\rho(\alpha)\psi) = \rho(\nabla_X^{\mathrm{LC}}\alpha)\psi + \rho(\alpha)\nabla_X\psi.$$

Hint: For help, see Proposition II.4.11 of Lawson-Michelsohn [LM].

17 (\bigstar Spin connection in local coordinates). Prove that the spin connection ∇ can locally be written as

$$\nabla_i \psi = \partial_i \psi + \frac{1}{4} \sum_{j,k=1}^n \Gamma_{ij}^k c(e_j) c(e_k) \psi,$$

where $\Gamma_{ij}^k := g(\nabla_i e_j, e_k)$ are the Christoffel symbols and c denotes Clifford multiplication.

Hint: See Theorem 2.7 of Bourguignon et al. [B] for help.

18 (\bigstar Spin curvature in terms of Riemannian curvature). Prove that if

$$\mathcal{R}_{X,Y} := [
abla_X,
abla_Y] -
abla_{[X,Y]}$$

is the curvature of the spin connection, then for any spinor ψ ,

$$\mathcal{R}_{X,Y}\psi = \frac{1}{4}\sum_{i,j=1}^{n}g(R_{X,Y}e_i,e_j)c(e_i)c(e_j)\psi,$$

where R is the curvature of the Levi-Civita connection on TM.

Hint: Use Exercise 14. See Theorem 2.7 of Bourguignon et al. [B] for help.

19 (\bigstar Lichnerowicz' vanishing theorem). Prove that if M is closed (i.e. compact with empty boundary) and has positive scalar curvature, then the Dirac operator of (M, g) has trivial kernel.

Hint: Use the Schrödinger-Lichnerowicz formula for the Dirac operator.