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1 Syllabus

Spin geometry

Topic Reference Reference Date
[LM] [B]

Clifford algebras I.1 1.1.1 Dec 23
Pin and Spin groups I.2 1.2.1 Jan 3
The algebras Cℓn and Cℓr,s I.3 1.1.1 Jan 4
Classification of Clifford algebras I.4 1.1.2 Jan 6
Representations, part 1 I.5 1.2.2 Jan 8
Representations, part 2 I.5 1.2.2 Jan 11
Lie algebra structures I.6 1.2.1 Jan 13
Clifford and spin bundles II.1-II.3 2.1.1 Jan 15
Connections on spin bundles II.4 2.1.2 Jan 18
Dirac operators II.5 2.3.4 Jan 20
Lichnerowicz formula II.8 2.5 Jan 22

Positive mass theorem

Topic Reference Reference Date
[LP] [PT]

Dominant energy condition, §8, §9 §1, §4 Jan 25
asymptotically flat manifolds, ADM mass
Weighted function spaces and Def. 8.2, §4 Jan 27
well-definedness of ADM mass Thm. 9.6
Green’s function for the Dirac operator Thm. 9.2(d) §5 Jan 29
Witten’s formula for the mass Appendix §3, §4 Feb 1
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2 Exercises

Exercises labeled with a ⋆ are used in the proof of the positive mass theorem.

Algebraic aspects

1 (Clifford vs. exterior algebra). Let V be a vector space over the field K = R or
K = C, and let q be a quadratic form on V . Show that if e1, . . . , en is a q-orthogonal
basis of V , then the following map is an isomorphism of vector spaces

Cℓ(V, q) → Λ•V, ej1 · · · ejp 7→ ej1 ∧ · · · ∧ ejp .

2 (Connected components of SO). Show that for all n ≥ 1, SO(n) is connected, and
that SO(n− 1, 1) has exactly two connected components, where SO(r, s) is the Lie
group

SO(r, s) = {λ ∈ GL(Rn) | λ∗q = q, det(λ) = 1},

and q is the quadratic form on Rn given by

q(x) = x21 + · · ·+ x2r − x2r+1 − · · · − x2r+s.

Hint: Use the Cartan-Dieudonné theorem to find paths connecting elements in
SO(r, s) to either plus or minus the identity.

3 (⋆ SU(2) is double cover of SO(3)). Prove that there exists a homomorphism
ξ : SU(2) → SO(3) which is surjective and has kernel {1,−1} ⊂ SU(2).

Hint: Show first that the Lie algebra su(2) of SU(2) is isomorphic to the 3-
dimensional real vector space of traceless, skew-hermitian 2 × 2 complex matrices,
which has a basis given by

(2.1) σ1 =

[
i

i

]
, σ2 =

[
1

−1

]
, σ3 =

[
i

−i

]
.
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Then show that for all U ∈ SU(2), the adjoint action AdU : su(2) → su(2) by U ,
defined for X = Xiσi by

(2.2) AdU(X) = UXU−1,

is an element of SO(3), is a homomorphism SU(2) → SO(3), is surjective, and has
kernel {1,−1}.

4 (Real vs. complex Clifford algebras). Let q and qC be the non-degenerate quadratic
forms on Rn and Cn, respectively, defined by

q(x) =
r∑

i=1

x2i −
s∑

i=r+1

x2i , qC(z) =
n∑

i=1

z2i .

Consider the Clifford algebras

Cℓr,s = Cℓ(Rn, q), Cℓn = Cℓ(Cn, qC).

Show that there exists an isomorphism

Cℓr,s ⊗R C ∼= Cℓn.

In particular,

Cℓn ∼= Cℓn,0 ⊗R C ∼= Cℓn−1,1 ⊗R C ∼= . . . ∼= Cℓ0,n ⊗R C.

Hint: Use the universal property of Clifford algebras.

5 (Canonical representation of Cℓn). Prove that the complex Clifford algebra Cℓ2n
is isomorphic to the matrix algebra C(2n), and that Cℓ2n+1 is isomorphic to C(2n)⊕
C(2n).

6 (Canonical representation of Cℓ3 and Cℓ3,1). Prove that Cℓ3 is isomorphic to H⊕H
and that Cℓ3,1 is isomorphic to the matrix algebra H(2).

7 (⋆ Exceptional isomorphisms). Prove that there exists an isomorphism Spin(3) ∼=
SU(2).

8 (⋆ Exceptional isomorphisms). Prove that there exists a diffeomorphism SU(2) →
S3, where S3 ⊂ R4 is the set of unit vectors.

9 (⋆ Exceptional isomorphisms). Prove that there exists an isomorphism Spin(3, 1) ∼=
SL(2,C).
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10 (Complex volume element). Let e1, . . . , en be a positively oriented orthonormal
basis of Rn (with respect to the standard inner product) and let

ωC := i⌊
n+1
2

⌋e1 · · · en ∈ Cℓn

be the complex volume element, where “·” denotes the product in the Clifford algebra
Cℓn. Show that

(ωC)2 = 1,

and, for all x ∈ Rn, there holds

x · ωC = (−1)n−1ωC · x.

Hint: Use the Clifford algebra relation ei · ej + ej · ei = −2δij1.

11 (⋆ 3D Spin representation). Prove that the spin representation of Spin(3) is the
standard representation of SU(2) on C2.

12 (Spinorial inner product). For n even, let ρ : Cℓn → End(Σn) be the unique
irreducible representation for the complex Clifford algebra, and for n odd, let ρ± :
Cℓn → End(Σn) be the two inequivalent irreducible representations, where Σn is a
complex vector space with

(2.3) dimC Σn = 2⌊
n
2
⌋.

Construct a Hermitian inner product ⟨·, ·⟩ on Σn with respect to which Clifford
multiplication is orthogonal, i.e. such that for all x ∈ Rn and all φ, ψ ∈ Σn, there
holds

(2.4) ⟨ρ(x)φ, ρ(x)ψ⟩ = ∥x∥2⟨φ, ψ⟩.

Show that this inner product is unique, up to scaling by a constant factor.
Hint: See Proposition I.5.16 of [LM] or Proposition 1.35 of [B] for help.

13 (⋆ 3D Clifford multiplication). Prove that the Clifford multiplication map c :
R3 → End(C2) is given by

c(x, y, z) =

(
ix iy + z

iy − z −ix

)
∈ su(2).

14 (⋆ Lie algebra representation of Spin(n)). Prove formula (A.1) of Lee-Parker
[LP]; that is, prove that the Lie algebra representation

spin(n) → End(V )

can be written in terms of Clifford multplication as follows:

A 7→ −1

4
Aijc(e

i)c(ej) = −1

8
Aij[c(e

i), c(ej)],

where {ei} is the standard basis of Rn.
Hint: For help, see Proposition I.6.2 of Lawson-Michelsohn [LM] or Theorem

1.25 of Bourguignon et al. [B].
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Geometric aspects

Let (M, g) be a Riemannian spin n-manifold and let {ei} be a local orthonormal
frame of TM around p ∈M , with dual coframe {ei}.

15 (⋆ Spin connection is metric compatible). Prove that the spin connection is
metric compatible (in either the real or complex case), i.e. prove that for all vector
fields X and all spinors φ, ψ on M ,

X⟨φ, ψ⟩ = ⟨∇Xφ, ψ⟩+ ⟨φ,∇Xψ⟩,

where ⟨·, ·⟩ is the canonical inner product on the spin bundle.
Hint: Use the fact that Clifford multiplication is skew-Hermitian.

16 (⋆ Clifford multiplication is covariantly constant). Prove that Clifford multipli-
cation ρ : Γ(Cℓ(M)) → End(ΣM) is covariantly constant with respect to the spin
connection, i.e. prove that for all α ∈ Γ(Cℓ(M)) and all spinors ψ on M ,

∇X(ρ(α)ψ) = ρ(∇LC
X α)ψ + ρ(α)∇Xψ.

Hint: For help, see Proposition II.4.11 of Lawson-Michelsohn [LM].

17 (⋆ Spin connection in local coordinates). Prove that the spin connection ∇ can
locally be written as

∇iψ = ∂iψ +
1

4

n∑
j,k=1

Γk
ijc(ej)c(ek)ψ,

where Γk
ij := g(∇iej, ek) are the Christoffel symbols and c denotes Clifford multipli-

cation.
Hint: See Theorem 2.7 of Bourguignon et al. [B] for help.

18 (⋆ Spin curvature in terms of Riemannian curvature). Prove that if

RX,Y := [∇X ,∇Y ]−∇[X,Y ]

is the curvature of the spin connection, then for any spinor ψ,

RX,Y ψ =
1

4

n∑
i,j=1

g(RX,Y ei, ej)c(ei)c(ej)ψ,

where R is the curvature of the Levi-Civita connection on TM .
Hint: Use Exercise 14. See Theorem 2.7 of Bourguignon et al. [B] for help.

19 (⋆ Lichnerowicz’ vanishing theorem). Prove that if M is closed (i.e. compact
with empty boundary) and has positive scalar curvature, then the Dirac operator
of (M, g) has trivial kernel.

Hint: Use the Schrödinger-Lichnerowicz formula for the Dirac operator.
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