1 Syllabus

Spin geometry

<table>
<thead>
<tr>
<th>Topic</th>
<th>Reference [LM]</th>
<th>Reference [B]</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clifford algebras</td>
<td>I.1</td>
<td>1.1.1</td>
<td>Dec 23</td>
</tr>
<tr>
<td>Pin and Spin groups</td>
<td>I.2</td>
<td>1.2.1</td>
<td>Jan 3</td>
</tr>
<tr>
<td>The algebras $\mathbb{C}\ell_n$ and $\mathbb{C}\ell_{r,s}$</td>
<td>I.3</td>
<td>1.1.1</td>
<td>Jan 4</td>
</tr>
<tr>
<td>Classification of Clifford algebras</td>
<td>I.4</td>
<td>1.1.2</td>
<td>Jan 6</td>
</tr>
<tr>
<td>Representations, part 1</td>
<td>I.5</td>
<td>1.2.2</td>
<td>Jan 8</td>
</tr>
<tr>
<td>Representations, part 2</td>
<td>I.5</td>
<td>1.2.2</td>
<td>Jan 11</td>
</tr>
<tr>
<td>Lie algebra structures</td>
<td>I.6</td>
<td>1.2.1</td>
<td>Jan 13</td>
</tr>
<tr>
<td>Clifford and spin bundles</td>
<td>II.1-II.3</td>
<td>2.1.1</td>
<td>Jan 15</td>
</tr>
<tr>
<td>Connections on spin bundles</td>
<td>II.4</td>
<td>2.1.2</td>
<td>Jan 18</td>
</tr>
<tr>
<td>Dirac operators</td>
<td>II.5</td>
<td>2.3.4</td>
<td>Jan 20</td>
</tr>
<tr>
<td>Lichnerowicz formula</td>
<td>II.8</td>
<td>2.5</td>
<td>Jan 22</td>
</tr>
</tbody>
</table>

Positive mass theorem

<table>
<thead>
<tr>
<th>Topic</th>
<th>Reference [LP]</th>
<th>Reference [PT]</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weighted function spaces and asymptotically flat manifolds</td>
<td>§9</td>
<td>§4</td>
<td>Jan 25</td>
</tr>
<tr>
<td>ADM mass</td>
<td>Def. 8.2, Thm. 9.6</td>
<td>§1</td>
<td>Jan 27</td>
</tr>
<tr>
<td>Green’s function for the Dirac operator</td>
<td>Thm. 9.2(d)</td>
<td>§5</td>
<td>Jan 29</td>
</tr>
<tr>
<td>Witten’s formula for the mass</td>
<td>Appendix</td>
<td>§3, §4</td>
<td>Feb 1</td>
</tr>
</tbody>
</table>
References

[PT] Parker, T., & Taubes, C. H. (1982). On Witten’s proof of the positive energy theorem. *Communications in Mathematical Physics, 84*(2), 223-238.

Summary of topics covered

Clifford algebras (Dec 23). Definition of Clifford algebras, universal property, isomorphism with exterior algebra.

Pin and Spin groups (Jan 3). Definition of adjoint representation, definition of spin group, spin group as double cover of special orthogonal group, example: Spin(3) \(\cong\) SU(2) and explicit computation of the map SU(2) → SO(3).

The algebras \(C\ell_n\), \(C\ell_{r,s}\), and \(C\ell_n\) (Jan 4). Definition of volume element, the complexification isomorphism \(C\ell_{r,s} \otimes \mathbb{R} \cong C\ell_{r+s}\).

Classification of Clifford algebras (Jan 6). Classification of real and complex Clifford algebras, examples in low dimensions: \(C\ell_3 \cong \mathbb{H} \oplus \mathbb{H}\) and \(C\ell_{3,1} \cong \mathbb{H}(2)\), \(C\ell_{2n} \cong \mathbb{C}(2^n)\).

Representations, part 1 (Jan 8). Basic representation theory definitions, real and complex spin representation.

Representations, part 2 (Jan 11). Existence of the canonical inner product on Clifford modules.

Lie algebra structures (Jan 13). The isomorphism \(\text{spin}(n) \cong \mathfrak{so}(n)\).

Clifford and spin bundles (Jan 15). Construction of the spin bundle by lifting SO\(n\)-cocycles.
2 Exercises

Exercises labeled with a ⋆ are used in the proof of the positive mass theorem.

Algebraic aspects

1 (Clifford vs. exterior algebra). Let V be a vector space over the field $K = \mathbb{R}$ or $K = \mathbb{C}$, and let q be a quadratic form on V. Show that if e_1, \ldots, e_n is a q-orthogonal basis of V, then the following map is an isomorphism of vector spaces

$$\text{Cl}(V, q) \rightarrow \Lambda^\bullet V, \quad e_{j_1} \cdots e_{j_p} \mapsto e_{j_1} \wedge \cdots \wedge e_{j_p}.$$

2 (Connected components of SO). Show that for all $n \geq 1$, SO(n) is connected, and that SO($n-1, 1$) has exactly two connected components, where SO(r, s) is the Lie group

$$\text{SO}(r, s) = \{ \lambda \in \text{GL}(\mathbb{R}^n) \mid \lambda^* q = q, \det(\lambda) = 1 \},$$

and q is the quadratic form on \mathbb{R}^n given by

$$q(x) = x_1^2 + \cdots + x_r^2 - x_{r+1}^2 - \cdots - x_{r+s}^2.$$

Hint: Use the Cartan-Dieudonné theorem to find paths connecting elements in SO(r, s) to either plus or minus the identity.

3 (⋆ SU(2) is double cover of SO(3)). Prove that there exists a homomorphism $\xi : \text{SU}(2) \rightarrow \text{SO}(3)$ which is surjective and has kernel $\{1, -1\} \subset \text{SU}(2)$.

Hint: Show first that the Lie algebra $\mathfrak{su}(2)$ of $\text{SU}(2)$ is isomorphic to the 3-dimensional real vector space of traceless, skew-hermitian 2×2 complex matrices, which has a basis given by

$$(2.1) \quad \sigma_1 = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}, \quad \sigma_2 = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \sigma_3 = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}.$$

Then show that for all $U \in \text{SU}(2)$, the adjoint action $\text{Ad}_U : \mathfrak{su}(2) \rightarrow \mathfrak{su}(2)$ by U, defined for $X = X_i \sigma_i$, by

$$(2.2) \quad \text{Ad}_U(X) = UXU^{-1},$$

is an element of SO(3), is a homomorphism $\text{SU}(2) \rightarrow \text{SO}(3)$, is surjective, and has kernel $\{1, -1\}$.

4 (Real vs. complex Clifford algebras). Let q and $q^\mathbb{C}$ be the non-degenerate quadratic forms on \mathbb{R}^n and \mathbb{C}^n, respectively, defined by

$$q(x) = \sum_{i=1}^r x_i^2 - \sum_{i=r+1}^s x_i^2, \quad q^\mathbb{C}(z) = \sum_{i=1}^n z_i^2.$$
Consider the Clifford algebras
\[\mathbb{C}\ell_{r,s} = \mathbb{C}\ell(\mathbb{R}^n, q), \quad \mathbb{C}\ell_n = \mathbb{C}\ell(\mathbb{C}^n, q^\mathbb{C}). \]

Show that there exists an isomorphism
\[\mathbb{C}\ell_{r,s} \otimes_{\mathbb{R}} \mathbb{C} \cong \mathbb{C}\ell_n. \]

In particular,
\[\mathbb{C}\ell_n \cong \mathbb{C}\ell_{n,0} \otimes_{\mathbb{R}} \mathbb{C} \cong \mathbb{C}\ell_{n-1,1} \otimes_{\mathbb{R}} \mathbb{C} \cong \ldots \cong \mathbb{C}\ell_{0,n} \otimes_{\mathbb{R}} \mathbb{C}. \]

Hint: Use the universal property of Clifford algebras.

5 (Canonical representation of $\mathbb{C}\ell_n$). Prove that the complex Clifford algebra $\mathbb{C}\ell_{2n}$ is isomorphic to the matrix algebra $\mathbb{C}(2^n)$, and that $\mathbb{C}\ell_{2n+1}$ is isomorphic to $\mathbb{C}(2^n) \oplus \mathbb{C}(2^n)$.

6 (Canonical representation of $\mathbb{C}\ell_3$ and $\mathbb{C}\ell_{3,1}$). Prove that $\mathbb{C}\ell_3$ is isomorphic to $\mathbb{H} \oplus \mathbb{H}$ and that $\mathbb{C}\ell_{3,1}$ is isomorphic to the matrix algebra $\mathbb{H}(2)$.

7 (★ Exceptional isomorphisms). Prove that there exists an isomorphism $\text{Spin}(3) \cong \text{SU}(2)$.

8 (★ Exceptional isomorphisms). Prove that there exists a diffeomorphism $\text{SU}(2) \to S^3$, where $S^3 \subset \mathbb{R}^4$ is the set of unit vectors.

9 (★ Exceptional isomorphisms). Prove that there exists an isomorphism $\text{Spin}(3, 1) \cong \text{SL}(2, \mathbb{C})$.

10 (Complex volume element). Let e_1, \ldots, e_n be a positively oriented orthonormal basis of \mathbb{R}^n (with respect to the standard inner product) and let
\[\omega^\mathbb{C} := i^{n+1} e_1 \cdots e_n \in \mathbb{C}\ell_n \]
be the complex volume element, where "·" denotes the product in the Clifford algebra $\mathbb{C}\ell_n$. Show that
\[(\omega^\mathbb{C})^2 = 1, \]
and, for all $x \in \mathbb{R}^n$, there holds
\[x \cdot \omega^\mathbb{C} = (-1)^{n-1} \omega^\mathbb{C} \cdot x. \]

Hint: Use the Clifford algebra relation $e_i \cdot e_j + e_j \cdot e_i = -2\delta_{ij}1$.

11 (★ 3D Spin representation). Prove that the spin representation of $\text{Spin}(3)$ is the standard representation of $\text{SU}(2)$ on \mathbb{C}^2.

4
12 (Spinorial inner product). For n even, let $\rho : \mathbb{C}\ell_n \to \text{End}(\Sigma_n)$ be the unique irreducible representation for the complex Clifford algebra, and for n odd, let $\rho_{\pm} : \mathbb{C}\ell_n \to \text{End}(\Sigma_n)$ be the two inequivalent irreducible representations, where Σ_n is a complex vector space with

\begin{equation}
\dim_{\mathbb{C}} \Sigma_n = 2^{\lfloor \frac{n}{2} \rfloor}.
\end{equation}

Construct a Hermitian inner product $\langle \cdot , \cdot \rangle$ on Σ_n with respect to which Clifford multiplication is orthogonal, i.e. such that for all $x \in \mathbb{R}^n$ and all $\varphi, \psi \in \Sigma_n$, there holds

\begin{equation}
\langle \rho(x)\varphi, \rho(x)\psi \rangle = \|x\|^2\langle \varphi, \psi \rangle.
\end{equation}

Show that this inner product is unique, up to scaling by a constant factor.

Hint: See Proposition I.5.16 of [LM] or Proposition 1.35 of [B] for help.

13 (★ 3D Clifford multiplication). Prove that the Clifford multiplication map $c : \mathbb{R}^3 \to \text{End}(\mathbb{C}^2)$ is given by

$$c(x, y, z) = \begin{pmatrix} ix & iy + z \\ iy - z & -ix \end{pmatrix} \in \mathfrak{su}(2).$$

14 (★ Lie algebra representation of Spin(n)). Prove formula (A.1) of Lee-Parker [LP]; that is, prove that the Lie algebra representation $\text{spin}(n) \to \text{End}(V)$ can be written in terms of Clifford multiplication as follows:

$$A \mapsto -\frac{1}{4}A_{ij}c(e^i)c(e^j) = -\frac{1}{8}A_{ij}[c(e^i), c(e^j)],$$

where $\{e^i\}$ is the standard basis of \mathbb{R}^n.

Hint: For help, see Proposition 6.2 of Lawson-Michelsohn [LM] or Theorem 1.25 of Bourguignon et al. [B].

Geometric aspects

Let (M, g) be a Riemannian spin n-manifold and let $\{e_i\}$ be a local orthonormal frame of TM around $p \in M$, with dual coframe $\{e^i\}$.

15 (★ Spin connection in local coordinates). Prove that the spin connection ∇ can locally be written as

$$\nabla_i \psi = \partial_i \psi + \frac{1}{4} \sum_{j,k=1}^n \Gamma^k_{ij} c(e_j)c(e_k)\psi,$$

where $\Gamma^k_{ij} := g(\nabla_i e_j, e_k)$ are the Christoffel symbols and c denotes Clifford multiplication.

Hint: See Theorem 2.7 of Bourguignon et al. [B] for help.
16 (★ Spin curvature in terms of Riemannian curvature). Prove that if
\[\mathcal{R}_{X,Y} := [\nabla_X, \nabla_Y] - \nabla_{[X,Y]} \]
is the curvature of the spin connection, then for any spinor \(\psi \),
\[\mathcal{R}_{X,Y} \psi = \frac{1}{4} \sum_{i,j=1}^{n} g(R_{X,Y}e_i, e_j)c(e_i)c(e_j)\psi, \]
where \(R \) is the curvature of the Levi-Civita connection on \(TM \).

Hint: Use Exercise 14. See Theorem 2.7 of Bourguignon et al. [B] for help.

17 (★ Lichnerowicz’ vanishing theorem). Prove that if \(M \) is closed (i.e. compact with empty boundary) and has positive scalar curvature, then the Dirac operator of \((M, g)\) has trivial kernel.

Hint: Use the Schrödinger-Lichnerowicz formula for the Dirac operator.