DRP 2021
 Spin geometry and the positive mass theorem

Mentor: Julius Baldauf

1 Syllabus

Spin geometry

Topic	Reference $[\mathrm{LM}]$	Reference $[\mathrm{B}]$	Date
Clifford algebras	I.1	1.1 .1	Dec 23
Pin and Spin groups	I.2	1.2 .1	Jan 3
The algebras C ℓ_{n} and C $\ell_{r, s}$	I.3	1.1 .1	Jan 4
Classification of Clifford algebras	I.4	1.1 .2	Jan 6
Representations, part 1	I.5	1.2 .2	Jan 8
Representations, part 2	I.5	1.2 .2	Jan 11
Lie algebra structures	I.6	1.2 .1	Jan 13
Clifford and spin bundles	II.1-II.3	2.1 .1	Jan 15
Connections on spin bundles	II.4	2.1 .2	Jan 18
Dirac operators	II.5	2.3 .4	Jan 20
Lichnerowicz formula	II.8	2.5	Jan 22

Positive mass theorem

Topic	Reference $[\mathrm{LP}]$	Reference $[\mathrm{PT}]$	Date
Dominant energy condition, asymptotically flat manifolds, ADM mass	$\S 8, \S 9$	$\S 1, \S 4$	Jan 25
Weighted function spaces and well-definedness of ADM mass	Def. 8.2, Thm. 9.6	$\S 4$	Jan 27
Green's function for the Dirac operator	Thm. 9.2(d)	$\S 5$	Jan 29
Witten's formula for the mass	Appendix	$\S 3, \S 4$	Feb 1

References

[B] Bourguignon, J. P., Hijazi, O., Milhorat, J. L., Moroianu, A., \& Moroianu, S. (2015). A spinorial approach to Riemannian and conformal geometry. European Mathematical Society.
[LM] Lawson, H. B., \& Michelsohn, M. L. (1989). Spin geometry. Princeton University Press.
[LP] Lee, J. M., \& Parker, T. H. (1987). The Yamabe problem. Bulletin (New Series) of the American Mathematical Society, 17(1), 37-91.
[PT] Parker, T., \& Taubes, C. H. (1982). On Witten's proof of the positive energy theorem. Communications in Mathematical Physics, 84(2), 223-238.

2 Exercises

Exercises labeled with a \star are used in the proof of the positive mass theorem.

Algebraic aspects

1 (Clifford vs. exterior algebra). Let V be a vector space over the field $K=\mathbb{R}$ or $K=\mathbb{C}$, and let q be a quadratic form on V. Show that if e_{1}, \ldots, e_{n} is a q-orthogonal basis of V, then the following map is an isomorphism of vector spaces

$$
\mathrm{C} \ell(V, q) \rightarrow \Lambda^{\bullet} V, \quad \quad e_{j_{1}} \cdots e_{j_{p}} \mapsto e_{j_{1}} \wedge \cdots \wedge e_{j_{p}} .
$$

2 (Connected components of SO). Show that for all $n \geq 1, \mathrm{SO}(n)$ is connected, and that $\mathrm{SO}(n-1,1)$ has exactly two connected components, where $\mathrm{SO}(r, s)$ is the Lie group

$$
\mathrm{SO}(r, s)=\left\{\lambda \in \mathrm{GL}\left(\mathbb{R}^{n}\right) \mid \lambda^{*} q=q, \operatorname{det}(\lambda)=1\right\}
$$

and q is the quadratic form on \mathbb{R}^{n} given by

$$
q(x)=x_{1}^{2}+\cdots+x_{r}^{2}-x_{r+1}^{2}-\cdots-x_{r+s}^{2} .
$$

Hint: Use the Cartan-Dieudonné theorem to find paths connecting elements in $\mathrm{SO}(r, s)$ to either plus or minus the identity.
$3(\star \operatorname{SU}(2)$ is double cover of $\mathrm{SO}(3))$. Prove that there exists a homomorphism $\xi: S U(2) \rightarrow S O(3)$ which is surjective and has kernel $\{1,-1\} \subset \mathrm{SU}(2)$.

Hint: Show first that the Lie algebra $\mathfrak{s u}(2)$ of $\mathrm{SU}(2)$ is isomorphic to the 3dimensional real vector space of traceless, skew-hermitian 2×2 complex matrices, which has a basis given by

$$
\sigma_{1}=\left[\begin{array}{cc}
& i \tag{2.1}\\
i &
\end{array}\right], \quad \sigma_{2}=\left[\begin{array}{ll}
& 1 \\
-1 &
\end{array}\right], \quad \sigma_{3}=\left[\begin{array}{ll}
i & \\
& -i
\end{array}\right] .
$$

Then show that for all $U \in \mathrm{SU}(2)$, the adjoint action $\operatorname{Ad}_{U}: \mathfrak{s u}(2) \rightarrow \mathfrak{s u}(2)$ by U, defined for $X=X_{i} \sigma_{i}$ by

$$
\begin{equation*}
\operatorname{Ad}_{U}(X)=U X U^{-1} \tag{2.2}
\end{equation*}
$$

is an element of $\mathrm{SO}(3)$, is a homomorphism $\mathrm{SU}(2) \rightarrow \mathrm{SO}(3)$, is surjective, and has kernel $\{1,-1\}$.

4 (Real vs. complex Clifford algebras). Let q and $q^{\mathbb{C}}$ be the non-degenerate quadratic forms on \mathbb{R}^{n} and \mathbb{C}^{n}, respectively, defined by

$$
q(x)=\sum_{i=1}^{r} x_{i}^{2}-\sum_{i=r+1}^{s} x_{i}^{2}, \quad q^{\mathbb{C}}(z)=\sum_{i=1}^{n} z_{i}^{2} .
$$

Consider the Clifford algebras

$$
\mathrm{C} \ell_{r, s}=\mathrm{C} \ell\left(\mathbb{R}^{n}, q\right), \quad \mathbb{C} \ell_{n}=\mathrm{C} \ell\left(\mathbb{C}^{n}, q^{\mathbb{C}}\right)
$$

Show that there exists an isomorphism

$$
\mathrm{C} \ell_{r, s} \otimes_{\mathbb{R}} \mathbb{C} \cong \mathbb{C} \ell_{n} .
$$

In particular,

$$
\mathbb{C} \ell_{n} \cong \mathrm{C} \ell_{n, 0} \otimes_{\mathbb{R}} \mathbb{C} \cong \mathrm{C} \ell_{n-1,1} \otimes_{\mathbb{R}} \mathbb{C} \cong \ldots \cong \mathrm{C} \ell_{0, n} \otimes_{\mathbb{R}} \mathbb{C}
$$

Hint: Use the universal property of Clifford algebras.
5 (Canonical representation of $\mathbb{C} \ell_{n}$). Prove that the complex Clifford algebra $\mathbb{C} \ell_{2 n}$ is isomorphic to the matrix algebra $\mathbb{C}\left(2^{n}\right)$, and that $\mathbb{C} \ell_{2 n+1}$ is isomorphic to $\mathbb{C}\left(2^{n}\right) \oplus$ $\mathbb{C}\left(2^{n}\right)$.

6 (Canonical representation of $\mathrm{C} \ell_{3}$ and $\mathrm{C} \ell_{3,1}$). Prove that $\mathrm{C} \ell_{3}$ is isomorphic to $\mathbb{H} \oplus \boldsymbol{H}$ and that $\mathrm{C} \ell_{3,1}$ is isomorphic to the matrix algebra $\mathbb{H}(2)$.

7 (\star Exceptional isomorphisms). Prove that there exists an isomorphism $\operatorname{Spin}(3) \cong$ SU(2).

8 (\star Exceptional isomorphisms). Prove that there exists a diffeomorphism $\mathrm{SU}(2) \rightarrow$ S^{3}, where $S^{3} \subset \mathbb{R}^{4}$ is the set of unit vectors.

9 (\star Exceptional isomorphisms). Prove that there exists an isomorphism $\operatorname{Spin}(3,1) \cong$ SL(2, $\mathbb{C})$.

10 (Complex volume element). Let e_{1}, \ldots, e_{n} be a positively oriented orthonormal basis of \mathbb{R}^{n} (with respect to the standard inner product) and let

$$
\omega^{\mathbb{C}}:=i^{\left\lfloor\frac{n+1}{2}\right\rfloor} e_{1} \cdots e_{n} \in \mathbb{C} \ell_{n}
$$

be the complex volume element, where "." denotes the product in the Clifford algebra $\mathbb{C} \ell_{n}$. Show that

$$
\left(\omega^{\mathbb{C}}\right)^{2}=1
$$

and, for all $x \in \mathbb{R}^{n}$, there holds

$$
x \cdot \omega^{\mathbb{C}}=(-1)^{n-1} \omega^{\mathbb{C}} \cdot x
$$

Hint: Use the Clifford algebra relation $e_{i} \cdot e_{j}+e_{j} \cdot e_{i}=-2 \delta_{i j} 1$.
$11(\star$ 3D Spin representation). Prove that the spin representation of $\operatorname{Spin}(3)$ is the standard representation of $\mathrm{SU}(2)$ on \mathbb{C}^{2}.
12 (Spinorial inner product). For n even, let $\rho: \mathbb{C} \ell_{n} \rightarrow \operatorname{End}\left(\Sigma_{n}\right)$ be the unique irreducible representation for the complex Clifford algebra, and for n odd, let $\rho_{ \pm}$: $\mathbb{C} \ell_{n} \rightarrow \operatorname{End}\left(\Sigma_{n}\right)$ be the two inequivalent irreducible representations, where Σ_{n} is a complex vector space with

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{C}} \Sigma_{n}=2^{\left\lfloor\frac{n}{2}\right\rfloor} \tag{2.3}
\end{equation*}
$$

Construct a Hermitian inner product $\langle\cdot, \cdot\rangle$ on Σ_{n} with respect to which Clifford multiplication is orthogonal, i.e. such that for all $x \in \mathbb{R}^{n}$ and all $\varphi, \psi \in \Sigma_{n}$, there holds

$$
\begin{equation*}
\langle\rho(x) \varphi, \rho(x) \psi\rangle=\|x\|^{2}\langle\varphi, \psi\rangle \tag{2.4}
\end{equation*}
$$

Show that this inner product is unique, up to scaling by a constant factor.
Hint: See Proposition I.5.16 of [LM] or Proposition 1.35 of [B] for help.
$13(\star$ 3D Clifford multiplication). Prove that the Clifford multiplication map c : $\mathbb{R}^{3} \rightarrow \operatorname{End}\left(\mathbb{C}^{2}\right)$ is given by

$$
c(x, y, z)=\left(\begin{array}{cc}
i x & i y+z \\
i y-z & -i x
\end{array}\right) \in \mathfrak{s u}(2) .
$$

$14(\star$ Lie algebra representation of $\operatorname{Spin}(n))$. Prove formula (A.1) of Lee-Parker [LP]; that is, prove that the Lie algebra representation

$$
\mathfrak{s p i n}(n) \rightarrow \operatorname{End}(V)
$$

can be written in terms of Clifford multplication as follows:

$$
A \quad \mapsto \quad-\frac{1}{4} A_{i j} c\left(e^{i}\right) c\left(e^{j}\right)=-\frac{1}{8} A_{i j}\left[c\left(e^{i}\right), c\left(e^{j}\right)\right],
$$

where $\left\{e^{i}\right\}$ is the standard basis of \mathbb{R}^{n}.
Hint: For help, see Proposition I.6.2 of Lawson-Michelsohn [LM] or Theorem 1.25 of Bourguignon et al. [B].

Geometric aspects

Let (M, g) be a Riemannian spin n-manifold and let $\left\{e_{i}\right\}$ be a local orthonormal frame of $T M$ around $p \in M$, with dual coframe $\left\{e^{i}\right\}$.
15 (\star Spin connection is metric compatible). Prove that the spin connection is metric compatible (in either the real or complex case), i.e. prove that for all vector fields X and all spinors φ, ψ on M,

$$
X\langle\varphi, \psi\rangle=\left\langle\nabla_{X} \varphi, \psi\right\rangle+\left\langle\varphi, \nabla_{X} \psi\right\rangle,
$$

where $\langle\cdot, \cdot\rangle$ is the canonical inner product on the spin bundle.
Hint: Use the fact that Clifford multiplication is skew-Hermitian.
16 (\star Clifford multiplication is covariantly constant). Prove that Clifford multiplication $\rho: \Gamma(\mathbb{C} \ell(M)) \rightarrow \operatorname{End}(\Sigma M)$ is covariantly constant with respect to the spin connection, i.e. prove that for all $\alpha \in \Gamma(\mathbb{C} \ell(M))$ and all spinors ψ on M,

$$
\nabla_{X}(\rho(\alpha) \psi)=\rho\left(\nabla_{X}^{\mathrm{LC}} \alpha\right) \psi+\rho(\alpha) \nabla_{X} \psi .
$$

Hint: For help, see Proposition II.4.11 of Lawson-Michelsohn [LM].
17 (\star Spin connection in local coordinates). Prove that the spin connection ∇ can locally be written as

$$
\nabla_{i} \psi=\partial_{i} \psi+\frac{1}{4} \sum_{j, k=1}^{n} \Gamma_{i j}^{k} c\left(e_{j}\right) c\left(e_{k}\right) \psi,
$$

where $\Gamma_{i j}^{k}:=g\left(\nabla_{i} e_{j}, e_{k}\right)$ are the Christoffel symbols and c denotes Clifford multiplication.

Hint: See Theorem 2.7 of Bourguignon et al. [B] for help.
18 (\star Spin curvature in terms of Riemannian curvature). Prove that if

$$
\mathcal{R}_{X, Y}:=\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]}
$$

is the curvature of the spin connection, then for any spinor ψ,

$$
\mathcal{R}_{X, Y} \psi=\frac{1}{4} \sum_{i, j=1}^{n} g\left(R_{X, Y} e_{i}, e_{j}\right) c\left(e_{i}\right) c\left(e_{j}\right) \psi,
$$

where R is the curvature of the Levi-Civita connection on $T M$.
Hint: Use Exercise 14. See Theorem 2.7 of Bourguignon et al. [B] for help.
19 (\star Lichnerowicz' vanishing theorem). Prove that if M is closed (i.e. compact with empty boundary) and has positive scalar curvature, then the Dirac operator of (M, g) has trivial kernel.

Hint: Use the Schrödinger-Lichnerowicz formula for the Dirac operator.

