18.100Q Recitation - Continuity

Julius Baldauf

Let X and Y be metric spaces.

Definition 1 (Continuity; limit points). A function $f : X \to Y$ is continuous on X if for all $x \in X$ and all $\epsilon > 0$, there exists $\delta = \delta(x, \epsilon) > 0$ such that if $x' \in X$ satisfies $d_X(x, x') < \delta$, then $d_Y(f(x), f(x')) < \epsilon$.

Definition 2 (Continuity; open sets). A function $f : X \to Y$ is *continuous on* X if for all open subsets $U \subset Y$, the preimage $f^{-1}(U)$ is open in X.

Definition 3 (Uniform continuity). A function $f : X \to Y$ is uniformly continuous on X if for all $\epsilon > 0$, there exists $\delta = \delta(\epsilon) > 0$ such that if $x, x' \in X$ have $d_X(x, x') < \delta$, then $d_Y(f(x), f(x')) < \epsilon$.

Exercises

- 1. (Continuous functions on compact sets.) Let X and Y be metric spaces with X compact and let $f: X \to Y$ be a continuous function.
 - (a) Prove that $f(X) \subset Y$ is compact. (*Hint:* Use the definition of continuity in terms of open sets.)
 - (b) Let $Y = \mathbf{R}$. Show that f attains a maximum and a minimum on X, i.e. there exists points $x_*, x^* \in X$ such that

$$f(x_*) = \inf_{x \in X} f(x), \qquad f(x^*) = \sup_{x \in X} f(x).$$
 (1)

(*Hint:* Use the Heine-Borel theorem.)

- (c) Give an example of a continuous function $f: (-1, 1) \to \mathbf{R}$ which is bounded, but which does not attain a maximum on (-1, 1).
- 2. (Continuity vs. uniform continuity.) Give an example of a continuous function which is *not* uniformly continuous.
- 3. (Equivalent definition of uniform continuity.) Let X and Y be metric spaces. Prove that a function $f: X \to Y$ is uniformly continuous if and only if for every $\epsilon > 0$, there exists $\delta > 0$ such that if $A \subset X$ has diam $(A) < \delta$, then diam $f(A) < \epsilon$.
- 4. (Fixed point theorem.) Let $f : [a, b] \to [a, b]$ be a continuous function. Prove that there exists $x_0 \in [a, b]$ such that $f(x_0) = x_0$. (*Hint:* Use the intermediate value theorem.)