# 18.100Q RECITATION - ORDER OF QUANTIFIERS 

JULIUS BALDAUF

## 1. Part A

Instructions: Spend no more than 25 minutes on this section. Unless there are other instructions, do the following for each item:

For the Definitions:

- Write out the definition in formal logical notation.
- Write out the negation of the definition in formal logical notation.
- Give an example and a non-example for the definition.
- Follow any further instructions on a problem.

For the Theorems: (these will be labeled "Theorem")

- Write out the Theorem in formal logical notation.
- Show how the Theorem fails to hold if you relax one or more of the assumptions.
- Write the contrapositive of the Theorem (the contrapositive of $A \Rightarrow B$ is $\neg B \Rightarrow \neg A$.)

Below, unless otherwise specified, $X$ and $Y$ are metric spaces.
(1) The map $f: A \rightarrow B$ is surjective
(2) (Theorem) The real number line is the unique ordered field which contains the rationals and satisfies the least upper bound property.
(3) For $A \subset \mathbb{R}, a$ is the least upper bound of $A$.
(4) The set $A \subset X$ is open.
(5) The closure of $A \subset X$ is the smallest closed set containing $A$.
(6) (Theorem) Closed subsets of compact sets are compact.
(7) The point $a \in A \subset X$ is a limit point of $A$.
(8) A subset $A \subset X$ is connected.
(9) The sequence $\left(x_{n}\right)_{n \in \mathbf{N}} \subset X$ has limit $x$.
(10) The sequence $\left(x_{n}\right)_{n \in \mathbf{N}} \subset X$ is bounded.
(11) The sequence $\left(x_{n}\right)_{n \in \mathbf{N}} \subset X$ has a convergent subsequence.
(12) The sequence $\left(x_{n}\right)_{n \in \mathbf{N}} \subset X$ is Cauchy.
(13) The sequence $\left(x_{n}\right)_{n \in \mathbf{N}} \subset \mathbb{R}$ has upper limit $s^{*}$ (or $\lim \sup _{n} x_{n}=s^{*}$, if you prefer).
(14) The point $x$ is an accumulation point of $A \subset X$.
(15) The space $X$ is complete.
(16) (Theorem) The Monotone Convergence Theorem.
(17) The function $f: \mathbb{R} \rightarrow \mathbb{R}$ is monotone increasing.
(18) (Theorem) The set of discontinuities of a monotone function $f:(a, b) \rightarrow \mathbb{R}$ is at most countable.
(19) The function $f: X \rightarrow Y$ is continuous.
(20) The function $f: X \rightarrow Y$ is uniformly continuous.
(21) (Theorem) If $X$ is compact and $f: X \rightarrow Y$ is continuous, then $f(X) \subset Y$ is compact.
(22) (Theorem) If $f:(a, b) \rightarrow \mathbb{R}$ is uniformly continuous, then $f$ is bounded.
(23) The real number $f^{\prime}(x)$ is the derivative of $f:(a, b) \rightarrow \mathbb{R}$ at $x \in(a, b)$.
(24) (Theorem) If $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $|f(x)-f(y)| \leq|x-y|^{\alpha}$ for all $x, y \in \mathbb{R}$, where $\alpha>1$ is a constant, then $f$ is constant.

## 2. Part B

Instructions: Spend no more than 15 minutes on the following section.
A sequence of real numbers is a function $a: \mathbf{N} \rightarrow \mathbf{R}$; by convention, the value $a(n)$ is denoted $a_{n}$ and the sequence itself is often denoted $\left(a_{n}\right)_{n \in \mathbf{N}}$.

Following is a list of six formal statements, (a)-(f), about a sequence of real numbers $\left(a_{n}\right)_{n \in \mathbf{N}}$, along with six example sequences (1)-(6). For each of (a) through (f), determine which if any of the sequences (1) through (6) satisfy the given property. Then describe in informal (English) language what each property means.

## Properties of a sequence $a_{n}$

(a) $\forall \epsilon>0 \exists N \in \mathbb{N} \forall n \geq N\left|a_{n}\right|<\epsilon$
(b) $\forall \epsilon>0 \forall N \in \mathbb{N} \forall n \geq N\left|a_{n}\right|<\epsilon$
(c) $\exists N \in \mathbb{N} \forall n \geq N \forall \epsilon>0\left|a_{n}\right|<\epsilon$
(d) $\forall N \in \mathbb{N} \exists n \geq N \forall \epsilon>0\left|a_{n}\right|<\epsilon$
(e) $\forall N \in \mathbb{N} \exists n \geq N \exists \epsilon>0\left|a_{n}\right|<\epsilon$
(f) $\exists \epsilon>0 \forall N \in \mathbb{N} \exists n \geq N\left|a_{n}\right|<\epsilon$

## Sequences $a_{n}$

(1) $a_{n}=0$ if $n$ is prime, $a_{n}=n$ otherwise.
(2) $a_{n}=0$
(3) $a_{n}=1 /(n+1)$
(4) $a_{0}=a_{1}=a_{2}=a_{3}=3, a_{n}=0$ for $n \geq 4$
(5) $a_{n}=\frac{\sqrt{2}}{2}+\sin (\pi n / 100)$
(6) $a_{n}=10^{10^{n}}$

