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Abstract

This expository paper provides a self-contained proof of the Heron-Rota-Welsh
conjecture concerning the characteristic polynomial of a matroid. The conjecture, resolved
affirmatively by Adiprasito-Huh-Katz, asserts that the absolute values of its coefficients
are log-concave. A key component of the proof is a version of Hodge theory for matroids,
which refers to a collection of results about the Chow ring of a matroid that are analogous
to results about the cohomology of compact Kéahler manifolds obtained by Hodge theory.
The results are Poincaré duality, the hard Lefschetz theorem, and the Hodge-Riemann
relations, the three of which are collectively referred to as the Kéhler package and are
proved for matroids directly, independent of their complex-geometric analogues.

After preliminaries on matroids and the characteristic polynomial, we explain how the
Kéhler package implies the Heron-Rota-Welsh conjecture. The degree map of the Chow
ring is then constructed using a Grobner basis computation, and the Kahler package is
proved using semi-small decompositions. This paper is the author’s minor thesis, written
in partial fulfillment of the mathematics PhD requirements at Harvard University.
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1 Introduction

A sequence of real numbers ay, .. ., a, is unimodal if there is an index i for which
Ay < < a;p = = ay.

The sequence is log-concave if

aiz >a; 1411 O<i<n.
A log-concave sequence of positive numbers is necessarily unimodal.!

Many long-standing conjectures about the unimodality of naturally occurring sequences
of positive numbers in combinatorics have recently been resolved by proving the stronger
conjecture that they are log-concave. Remarkably, the major breakthrough in the recent
proofs of log-concavity has been a connection to Hodge theory, which is an analytic theory
of compact Kdhler manifolds. Initially, Hodge theory was directly used to solve problems
in combinatorics [Huh12, HK12]. Later, a combinatorial theory was developed [AHK18],
inspired by but logically independent from the main results of Hodge theory. This new
theory, referred to as Hodge theory for matroids, has been applied with much success toward
many combinatorial problems regarding log-concavity. The purpose of this paper is to
provide a self-contained development of Hodge theory for matroids culminating in a proof
of the Heron-Rota-Welsh conjecture, whose resolution [AHK18] was one of the first major
successes of this new field.

Associated to a finite graph G is a polynomial with integral coefficients called its chromatic
polynomial x¢. By definition, the value of x¢ at a nonnegative integer g is the number of
proper g-colorings of the graph. If G has no loops, then the polynomial x(g) is divisible by g°
where ¢ is the number of connected components of G, and the coefficients of the quotient

X(;—Eq) =ay(G)q" — 111(G)q”_1 + -+ (=1)"a2,(G) a; >0 i=0,1,...,n
alternate in sign and are all nonzero. Read conjectured in 1968 that the sequence of positive
numbers

a0(G),a1(G), ..., a,(G)

is unimodal for any finite loopless graph G [Rea68]. Hoggar conjectured in 1974 that the
sequence is log-concave [Hog74]. These conjectures were proven by Huh in [Huh12].

Both conjectures have generalizations to matroids, which are combinatorial objects that
formalize the notion of linear independence for a collection of vectors in a vector space. A
finite graph has an associated graphic matroid that is specified by the data of which subsets
of edges are cycleless. A matroid M has a characteristic polynomial xu, which coincides
with x¢(g)/9° when M is the graphic matroid associated to a finite graph G. If M is loopless,
the characteristic polynomial is an integer polynomial whose coefficients are nonzero and
alternate in sign. In the 1970s, Heron and Rota conjectured that the absolute values of the
coefficients of the characteristic polynomial of a matroid are unimodal [Rot71, Her72], and
Welsh later conjectured that they are log-concave [Wel76]. The Heron-Rota-Welsh conjecture
was proven by Adiprasito, Huh, and Katz in [AHK18].

!In fact, the sequence will be trapezoidal: there are indices j < k for whichag < -+ <aj = - =g > -+ > ay.



The Chow ring CH(M) of a matroid M is a graded algebra CH(M) = @®;_, CH*(M) over
the real numbers. The integer r is (one less than) the rank of the matroid M, and it turns out
there is a linear isomorphism deg,,: CH"(M) — R called the degree map. Hodge theory for
matroids refers to a collection of results about the Chow ring, which we now summarize.

e Poincaré duality: for every nonzero element u € CH*(M), there exists v € CH (M) for
which deg,,(uv) # 0.

e The hard Lefschetz theorem: if £ € CH' (M) is ample, the map CH*(M) — CH'~*(M) given
by multiplication by £~ is an isomorphism for k < r/2.

e The Hodge-Riemann relations: if £ € CH' (M) is ample, then the symmetric bilinear form
CHA(M) x CHY (M) (1,v) = (=1 deg, (%)

is positive-definite on the kernel of the map ¢~2+1: CHN(M) — CH"~*1(M).

The set of ample classes in CH! (M) is nonempty as long as 7 > 1. These three theorems are
collectively referred to as the Kihler package and were established in [AHK18] to prove the
Heron-Rota-Welsh conjecture. We note that the coefficients of the characteristic polynomial
are not the dimensions of the graded pieces CH'(M); instead, they arise as values of the
Poincaré pairing. The basic inequality of log-concavity ac — b* < 0 is equivalent to the
assertion that a certain symmetric 2 x 2 matrix has nonpositive determinant, and the
Hodge-Riemann relations are what ultimately guarantee such a condition.

In section 2, we define and verify the basic properties of matroids, and show that the
characteristic polynomial of a graphic matroid recovers the chromatic polynomial of the
graph. In section 3, we define the Chow ring of a matroid and explain how the Kéhler
package implies log-concavity of the coefficients of the characteristic polynomial. In section 4,
we prove the Kéhler package using semi-small decompositions.

The author used [Ox103, Ox111] for matroid basics and [Katl6, AHK17, Bak18, Huh18]
for surveys and introductions to Hodge theory for matroids. Much of this paper is drawn
directly from [AHK18]. The proof of the Kihler package follows [BHM*20]. Two detours
were required to make the proof self-contained. The first is the construction of the degree
map, where we use the Grobner basis computation in [FY04] instead of Minkowski weights
which seem to ultimately rely on the intersection theory of [FMSS95]. The author thanks
Christopher Eur for suggesting this route in constructing the degree map. The second is the
proof of the Hodge-Riemann relations for Boolean matroids, which is proved in [BHM*20]
by citing the usual Hodge theory of compact Kédhler manifolds. We instead use an argument
appearing in Section 5 of [ADH?20] to prove this result using the coloop case of the semi-small
decomposition. The author thanks June Huh for suggesting this argument for this purpose.

Acknowledgments. I would like to thank Christopher Eur and June Huh for the help which
was essential for the completion of this project. I also thank Lauren Williams for advising
my minor thesis, I thank Peter Kronheimer for initially sparking my interest in this subject,
and I thank Siddhi Krishna for suggesting that it could be a potential minor thesis topic.
This material is based upon work supported by the NSF GRFP through grant DGE-1745303.



2 Matroid preliminaries

Matroids are combinatorial objects that generalize both the notion of linear independence
for a collection of vectors in a vector space and the notion of being cycleless for a collection of
edges of a graph. We first define matroids and their basic properties. In section 2.1, we define
the chromatic polynomial of graphs and the characteristic polynomial of matroids, and we show
that the chromatic polynomial of a graph is recovered from the characteristic polynomial
of its associated graphic matroid. In section 2.2, we give an alternative expression for
the characteristic polynomial using the Mobius function and prove that its coefficients are
nonzero and alternate in sign. The material from this section draws from [Zas87, Kat16].

Matroids can be axiomatized in a number of different ways. The three axiomatizations
we consider are through independent sets, the rank function, and flats. We first explain each of
these three notions for a finite set of vectors in a vector space.

Example. Let E be a finite set of vectors in a vector space over an arbitrary field. A subset
I < Eis an independent set if the vectors in I are linearly independent. The rank function of E
is the integer-valued function on the power set of E which associates to each subset S < E
the dimension of the span of the vectors in S. A subset F < E is a flat if every vector in E that
lies in the span of the vectors in F is already contained in F.

Each of the three pieces of data determines the other two. Suppose that the rank function
of E is known. Then a set I is independent if and only if its size is equal to its rank, and a
set F is a flat if and only if all sets strictly containing F are of strictly greater rank. If the
independent sets are known, then the rank of a set S is the size of a maximal independent
subset of S. If the flats are known, then the rank of a flat F is greatest integer r for which
there are flats F; satisfying Fo & F1 < F» < --- & F, = F, and the rank of an arbitrary subset
is the rank of the smallest flat containing it.

Definition (Matroid). Let E be a finite set. A matroid on E is defined by any of the following;:
o A collection of subsets of E called independent sets for which

1. The empty set is an independent set.

2. If Iis an independent set and I’ < I, then I is an independent set.

3. If I and I, are independent sets and |I1| < ||, then there is an element e € [,\I;
such that I; U e is an independent set.

o A function rkys: P(E) — Z for which

1. If S is a subset of E, then 0 < rkp(S) < |S|.
2. If 5, T are subsets of E for which S < T, then rk(S) < rkp(T).
3. If 5, T are subsets of E, then /(S T) < #(S) + r(T) —r(Su T).

e A collection of subsets of E called flats for which

1. The set E is a flat.

2. If F; and F; are flats, then F; n F; is a flat.

3. If Fis a flat, then any element of E\F is contained in exactly one flat that is minimal
among flats properly containing F.

The set E is called the ground set of M. The rank of M, denoted rk(M), is defined to be rky(E).



It is straightforward to verify that these three axiomatizations are equivalent. If E is a
finite set of vectors in a vector space, then it is clear that the independent sets, the rank
function, and the flats of E satisfy these axioms, and thereby determine a matroid. This
matroid is called the linear matroid on E. Two matroids are isomorphic if there is a one-to-one
correspondence between their ground sets which preserves the additional structure in the
obvious way. A matroid is realizable if there exists a field k for which it is isomorphic to the
linear matroid on a set of vectors in a vector space over k, in which case it is realizable over k.

Example. Let G be a finite graph, potentially having loops and multiple edges, and let E be
its set of edges. The graphic matroid on E associated to G is defined by declaring a set of
edges I to be an independent set if I contains no cycles of G. A set of edges F is a flat if no
edge in E\F has its two endpoints joined by a path in F. The rank of the matroid is the size of
a maximal forest, which is just the difference of the number of vertices of G and the number
of components of G.

Remark. It turns out that every graphic matroid is realizable over every field. The argument
involves writing down a matrix whose entries lie in {—1,0, 1} and verifying that its columns
provide the desired collection of vectors when interpreted over a field.

Example. We list the flats of the following graphic matroid by rank.

{0123}
« —— {01} {02} {03} {12} {13} {23}
3 1
b o moo@ e

1)

Example. We list the flats of the following graphic matroid by rank.

1 {0123}
vCe e {012} (03}
i 0}

Example. Consider the following diagram with 9 points labeled E = {0, 1,...,8} and 8 lines
where each line contains 3 points.

0 1 2
\\< >// rank 2 flats:
3 4 5 012,037,048,136, 158,246,257, 678,
% N 05,06,14,17,23,28,34, 35, 38,45, 47,56
6 7 8

Let M be the matroid on E with the following flats: the only rank O flat is the empty set, the
rank 1 flats are the 9 singletons, the rank 2 flats are the 8 triples that are contained in a line
and the 12 pairs that are not contained in a line, and the only rank 3 flat is the entire set. The



rank 2 flats are listed explicitly above. It is easy to verify that M is indeed a matroid. It turns
out that this matroid is not realizable over any field.

We now define loops and coloops of matroids. If M is the graphic matroid associated to
a graph G, then a loop of M is just a loop of the graph, and a coloop is a bridge of G. Recall
that a loop of a graph is an edge whose two endpoints are the same vertex of G, and a bridge
of a graph is an edge whose deletion strictly increases the number of components of the

graph.

Definition (Loop). An element i in the ground set E of a matroid M is a loop if any of the
following equivalent conditions hold:

e The singleton {i} is not independent.
e The rank of {i} is zero.
e Every flat contains i.

A matroid M is loopless if every element of E is not a loop. Equivalently, M is loopless if any
of the following equivalent conditions hold:

e Every singleton subset of E is independent.
e The only subset of E with zero rank is the empty set.
e The empty set is a flat.

Definition (Coloop). An element 7 in the ground set E of a matroid M is a coloop if any of
the following equivalent conditions hold:

e If ] is an independent set, then I U i is an independent set.
o rky(E\i) = rk(M) — 1.
e E\iis a flat.

2.1 The chromatic and characteristic polynomials

Let G be a finite graph, and g a nonnegative integer. A proper g-coloring of G is a coloring of
the vertices of G using g colors so that the two endpoints of each edge are colored differently.
Let x;(q) denote the number of proper g-colorings of G.

Lemma 2.1. The function q — xg(q) is a polynomial with integer coefficients.

The polynomial x¢(q) is called the chromatic polynomial of G. The proof of Lemma 2.1 is a
simple consequence of the deletion-contraction relation that x;(q) satisfies. Recall that if e is an
edge of G, then the deletion of e is the graph G\e with the same vertices obtained by simply
deleting ¢, while the contraction of e is the graph G/e obtained by identifying the endpoints
of e and then deleting e. In particular, deleting and contracting a loop are identical. Note
that xc(q) satisfies the deletion-contraction relation

x6(q) = xce(q) — Xcre(q)-

Indeed, suppose that the endpoints of ¢ are vy, v;. We can partition the proper g-colorings of
G\e into those for which vy and v; have the same color and those for which vy and v; have
different colors. The former are in one-to-one correspondence with the proper g-colorings of
G/e while the latter are in one-to-one correspondence with the proper g-colorings of G.



Proof of Lemma 2.1. We prove the result by induction on the number of edges of G. If G
has no edges, then G just consists of vertices. If G has k vertices, then x;(q) = g*. For the
inductive step, we choose an edge e and observe that both G\e and G/e have fewer edges
than G so the deletion-contraction relation proves the result. ]

We note that if G has a loop, then x¢(g) = 0. If G is loopless, then the deletion-contraction
relation implies much more about x¢(g) than it simply being an integer polynomial.

Proposition 2.2. Let G be a loopless finite graph. Then x(q) is a monic polynomial whose degree
is the number of vertices of G. Furthermore, the coefficients of xc(q) alternate in sign

X6(@) =q" =@ (G + -+ (-1)'a(G)  ai(G) =0
with a,_i(G) = 0if and only if i is less than the number of components of G.

Proof. We prove the result by induction on the number of edges of G. When G has no edges,
the result is trivial. For the inductive step, we may assume that G has no multiple edges,
since deleting a multiple edge does not change the chromatic polynomial. Fix an edge ¢
of G, which we know is neither a loop nor a multiple edge. The two graphs G\e and G/e
have fewer edges and are also loopless so their chromatic polynomials satisfy the stated
properties. We show that
xc(q) = Xc\e(7) — Xc/e(9)

therefore also satisfies the stated properties. First, x¢\.(9) is monic and of degree v because
G and G\e have the same number of vertices. Because ¢ is not a loop, the graph G/e has one
fewer vertex so x¢/.(q) is monic of degree v — 1. Thus x¢(g) is monic of degree v. It also
follows from these observations that the coefficients of x¢(q) must alternate. Since G/e has
the same number of components as G while G\¢ has at least the number of components as G,
we see that the coefficient a,_;(G) is zero when i is less than the number of components of
G. The nonvanishing the other coefficients follows from the same property for x¢\.(q) and
XG/e (q)- o

Example. Let G be the cycle with four edges. We can easily compute its chromatic polynomial
using the deletion-contraction relation and quick computation that the chromatic polynomial

of the path with k edges is (g — 1)¥g.
12D-02D (1)
—(q—1)3v/—<T )+<-C°>

=(q-1°9— -1+ (q—1)q
=q" — 44 + 64° — 3q.

As we see, the polynomial is monic of degree the number of vertices, and its coefficients
alternate in sign and are nonzero except for its constant term. The cycle with five edges
therefore has chromatic polynomial

(9—1)% — (4" — 44° + 64> — 3q) = q° — 54" + 104° — 104° + 4.



We now define the characteristic polynomial of a matroid and verify its basic properties.

Definition (Characteristic polynomial). Let M be a matroid on a set E. The characteristic
polynomial of M is the polynomial

() = 3 (=1 Slgre@n—rk(s)
ScE

It is clear that xa(g) has integer coefficients and that if M is loopless, then xa(g) is monic
of degree rk(M). Before proving various other properties of xa(g) analogous to those of the
chromatic polynomial of a graph, we consider an example.
Example. Let G be the cycle with four edges, and let M be the associated graphic matroid.
The rank of a set S < E equals the rank of the smallest flat containing S, so we may explicitly
compute from its list of flats that

@ =Y =2+ Y-+ Y P =g 4 +67-3

Is|=0 IS|=1 Is|l=2  |s|=3 IS|=4
which we observe coincides with x¢(7)/9.

If G is a finite graph with multiple components, let G’ be obtained by identifying two
vertices of G lying in distinct components. The graphic matroids associated to G and G’ are
the same, but x¢(9) = 9 - x¢'(9)- The chromatic polynomial of G therefore cannot be purely
a function of the characteristic polynomial of the associated graphic matroid.

Proposition 2.3. Let G be a finite graph, and let M be the associated graphic matroid. If c is the
number of components of G, then

xc(q) = q° xm(9)-
Proof. Given S C E, let Gg be the graph obtained from G by deleting the edges in E\S and
contracting the edges in S. Observe that Gs has no edges, and let |Gs| denote its number of
vertices. The deletion-contraction relation of the chromatic polynomial implies that

Xa(q) = D (=1)Flglosl,
ScE

It suffices to show that |Gs| = ¢ + rk(M) — rky(S) for each S < E. Recall that the rank of M
is the size of a maximal forest. A maximal forest has size v — ¢ where v is the number of
vertices of G, so we must show that |Gg| = v — rky(S) for each S < E.

Fix S < E, and choose a maximal forest I of S. Then I is an independent set of M contained
in S for which rky(I) = rky(S). The graph obtained by deleting the edges in E\S has v
vertices, and successively contracting each edge of I lowers the number of vertices by 1. All
edges of the result graph are loops by maximality of I, so their deletion does not change the
number of vertices. Thus |Gs| = v — |I| = v — rky(I) = v — rkp(S) as required. m]

Example. Let M be the loopless rank 3 matroid associated to the diagram

0 1 2
\\< >// rank 2 flats:
3 4 5 012,037,048, 136, 158,246,257, 678,
% N 05,06,14,17,23,28,34, 35, 38,45,47, 56
6 7 8




whose rank 1 flats are the 9 singletons, and whose rank 2 flats are listed explicitly. Recall that
this matroid turns out not to be realizable over any field, and is in particular not a graphic
matroid. By direct computation xm(q) = g° — 94 + 284 — 20.

Remark. Both deletion and contraction can be generalized to matroids, and the characteristic
polynomial of matroids satisfies a deletion-contraction relation. Because deletion of an edge
in a graph may increase the number of components of the graph, Proposition 2.3 indicates
that the deletion-contraction relation for x»i(g) must be slightly more complicated than that
of xc(q) and should depend on whether the element i € E is a coloop.

2.2 Mobius inversion

We show that xa(g) = 0 whenever M has a loop, and we obtain an alternate expression
for xm(q) in terms of the Mobius function of the lattice of flats of M when M is loopless. We
use the latter to show that the coefficients of x1(g) are nonzero and alternate in sign.

Definition (Mobius function). Let P be a finite partially ordered set. The Mobius function of
P is the unique function y: P x P — Z for which

o u(x,x)=1forallxeP.
e Ifx<zthen}, ., u(x y) = 0 where the sum is over y € P satisfying x < y < z.
o If x & z, then pu(x,z) = 0.

Existence and uniqueness of the Mobius function are straightforward. Although it seems
that u is essentially a collection of independent functions p(x, —): P — Z, one for each x € P,
there are valid formulas for y where the second argument is fixed but the first argument
varies. The following lemma is an example, from which we derive Mobius inversion.

Lemma 2.4. Let P be a finite partially ordered set, and let u be its Mobius function. If x < z, then

>, ulyz) =0

XSY<z

Proof. Let A: P x P — Z be the unique function for which

e A(x,x)=1forallxeP
o Ifx <zthen}, . A(y,z) = 0 where the sum is over y € P satisfying x < y < z.
o If x € z, then A(x,z) = 0.

We show that A = u. Consider the function y: P x P — Z given by

Yz = > pxyA(w,z)

ISYKw<z

where the sum is over all pairs y, w satisfying x < y < w < z. It follows that

uez) = Y py) Y Mwz)=yxz= Y Mwz) Y ply) =Axz). o

XSY<z YsSw<z XSw<z x<y<sw



Proposition 2.5 (M&bius inversion). Let P be a finite partially ordered set. Let f and g be functions
on P taking values in Z (or any abelian group). Then

gx) =X, fy) ifandonlyif  f(x) = ] p(x, y)g(y)

y>x y>x

and

g) =D, fx) ifandonlyif  f(y) = Y, g(x)u(xy)

x<y xSy

where u is the Mobius function of P.

Proof. Suppose g(x) = 2,,>, f(y). Then

Dlunygy) =D uy) D f@) =D f) D) uxy) = f.

y=x y=x zzy z=x zZy=x

The other direction is similar and uses the identity >, ., . t(y,z) = 0 of Lemma 2.4. The
other if and only if statement is proved in the same way. m]

In our setting, the finite partially ordered set will be the collection of flats of M ordered
by inclusion, and we will only consider the Mobius function where the first argument is the
empty set. Let £y denote the partially ordered set consisting of the flats of M ordered by
inclusion. The partially ordered set 2y is called the lattice of flats of M. If S is a subset of
E, then the closure of S, denoted cl(S), is the smallest flat of M containing S. The following
lemma implies that () = 0 when M is not loopless.

Lemma 2.6. Let F be a flat of M. Then

U — Z (71)\5\ _ {#(Q,F) if M is loopless

SCE 0 if M is not loopless.

c(S)=F

Proof. The set H of loops of M is the smallest flat of M. We show that for every flat G that
strictly contains H
> Ur=o.

HCFcCG
Indeed
|Gl G|
ST o= e = St - a-pe-o
HCFcSG ScCE ScG k=0 k
cl(S)=F

If Mis loopless, then Uy = Uy = 1 = p(F, &). It follows that U satisfies the same defining
relation as u(, F) so they must agree. If M has loops, then Uy = Y scy(—1)1¥l = 0, so by
induction on the rank of F, every Ur = 0. m]

Corollary 2.7. If M is not loopless, then xp(q) = 0.

10



Proof. From the definition of the characteristic polynomial and Lemma 2.6, we have

xm(q) = Z(_l)ls\qu(M)—rkM(S) - Z ( Z (_1)S|>qu(M)—rkM(F) =0

SCE Fesy \ SCE
A(S)=F

using the fact that rky(S) = rkp(cl(S)). O
Corollary 2.8. If M is loopless, then

XM(Q) _ Z H(@,F)qu(M)_rkM(F).

FeZym

We now prove a result about the Mdbius function of the lattice of flats of a matroid that
has the immediate corollary that the coefficients of y(q) alternate in sign. This lemma is
also used in the proof of the Heron-Rota-Welsh conjecture.

Lemma 2.9. Let F be a flat of a loopless matroid M, and let p1 be the Mobius function of £a. Then
foranyieF
W@ F)+ Y, (@ F)=0
i¢F <F
where F' < F means that F' is a flat contained in F and rky(F') = rkp(F) — 1.

Proof. Fix i€ E, and let £;, denote the set of flats of M that contain i, ordered by inclusion.
We use Mdbius inversion (Proposition 2.5) for £;, to prove the result. Define f: &£i — Z by

fF) = w(@,F)+ Y, u(@F)
i¢F’' <F

where u is the Mobius function of &j. Our goal is to show that f is identically zero. By
Mébius inversion, it suffices to show that the function g: #; — Z defined by

gF) = >, f(F)= ), f(F)

F'cF ieF'cF
Fezy,

is identically zero. But note that

g(F) = ), (y(Q,F’H > u(@f”)) = > u(@,G)

ieF’'cF i¢F" <F’ GCF
GePym

because every flat G of M that is contained in F appears exactly once in the expression for
g(F). Indeed, either i € G in which case G appears as F’ in the sum, or i ¢ G in which case
the unique minimal flat containing G and i appears as an F’. But now o u(&,G) = 0so
g and f are identically zero. ]

Proposition 2.10. Let M be a loopless matroid of rank r + 1. Then the characteristic polynomial of
M may be written as

xm(q) = woM)g ™ —wy(M)g + -+ + (1) w, (M) with  w;(M) > 0.

11



Proof. By Corollary 2.8, we know that
Z [J Q/ rk(M) rkM )

Fe%y

It suffices to show that (—1)™ (") (5, F) > 0 for each flat F. We prove the result by induction
on rky(F). If rtky(F) = 0, then F = & and u(&, &) = 1 > 0. For the inductive step, choose
an element i € F so that
w(@,F) =~ ), waF)
igF' <F
by Lemma 2.9. The result immediately follows from the observation that there indeed does
exist a flat F’ satisfying i ¢ F' < F because i is not a loop. o

3 The Chow ring

After defining the Chow ring of a matroid, we state the main results of Hodge theory
for matroids, collectively referred to as the Kéhler package. In section 3.1, we prove the
Heron-Rota-Welsh conjecture assuming the Kihler package. In section 3.2, we take the
first step in proving the Kdhler package by constructing the degree map of the Chow ring.
Poincaré duality, the hard Lefschetz theorem, and the Hodge-Riemann relations are proved
in section 4. The material of this section is drawn from [FY04, AHK18, BES20].

Definition (Chow ring of a matroid). Let M be a loopless matroid on the ground set E.
Define the Chow ring of M to be the graded R-algebra
R[ xr | F is a nonempty proper flat of M |

CH(M) =
(M) = {xrxc | F, G incomparable) + { Yicp Xr — X icp Xr | i,j € E)

The relations of the form xrx¢ are called the incomparability relations while the relations of
the form >} xr — > Xr are called the linear relations. Note that the sums appearing in the
linear relations are over nonempty proper flats F that contain a fixed element i or j. The
grading CH(M) = @, CH"(M) is inherited from the usual grading on a polynomial ring.

In the following four statements and in the rest of this paper, M is a loopless matroid
of rank 7 + 1 > 1. There is an open convex subset of CH' (M) that is closed under positive
rescaling called the ample cone of M. Elements of the ample cone are called ample classes. The
ample cone is nonempty if r > 1

The degree map. There is a linear isomorphism
deg,,: CH'(M) — R

characterized by the property that deg,,(xr, - - - x,) = 1 for every collection of nonempty proper flats
Fi,..., Fysatisfying F1 < --- € Fp. Ifk > 1, then CHk(M) =0.

Poincaré duality. For every nonzero element u € CH(M), there exists an element v € CH(M) for
which deg,,(uv) # 0. Equivalently, the map

CH*(M) — Homg(CH *(M),R)  u > (v deg,,(uv))

is an isomorphism for every integer k.
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The hard Lefschetz theorem. Let £ be an ample class of M. Then the multiplication map
=% CHN(M) — CH' % (M)
is an isomorphism for k < r/2.

The Hodge-Riemann relations. Lef € be an ample class of M. Then the symmetric bilinear form
CHY(M) x CH*(M) - R (u,v) — (—1)"deg,, (£ *uv)

is positive-definite on the kernel of £'~2+1: CH*(M) — CH'™*(M) for k < r/2.

To amplify the definition of the Chow ring and to define the ample cone, we introduce
some terminology. Just as before, M is a loopless matroid with ground set E.

Definition (Linear and piecewise linear functions). We call any real-valued function £ on
the set of nonempty proper flats of M a piecewise linear function on M.

If f is a real-valued function on the ground set E satisfying > ;. f(i) = 0, then we define
a piecewise linear function on M by the rule F — » ., f(i). Any piecewise linear function
arising in this way is called a linear function on M. We note that two different functions on E
may define the same linear function on M.

Two piecewise linear functions on M are equivalent if their difference is a linear function
on M. The following lemma shows that the linear relations > .y xr — >Jjcr xr in the Chow
ring capture the notion of equivalence of piecewise linear functions on M.

Lemma 3.1. The vector space of piecewise linear functions on M modulo linear functions on M may
be naturally identified with CH' (M) by the map € — >y £(F)xg.

Proof. Note that CH' (M) is the quotient

_ R{xf | Fis anonempty proper flat )
Qlier Xk — 25 jeF XF ) .

Under the rule ¢ — > €(F)xp, the space of piecewise linear functions on M is naturally
identified with the vector space R{xr | F is a nonempty proper flat). Given distinct elements
i,j € E,let f;j: E — Rbe the function which sends i — 1, j = —1, and all other elements to 0.
The associated linear function on M corresponds to > ;cr X — > jcp X under the identification.
It therefore suffices to prove that linear functions on M are spanned by those arising from
the f;;. This is true because any real-valued function f on E satisfying > .. f(i) = 0is a real
linear combination of the f;;. o

CH'(M)

A collection & = {Fy,...,Fi} of flats for which F; < - - - < Fy is called a k-flag. The flags
we consider will always consist of nonempty proper flats of M. A maximal flag of nonempty
proper flats is just a flag which cannot be extended to a longer flag of nonempty proper flats.
If the rank of M is r + 1, a k-flag of nonempty proper flats is maximal if and only if k = .
The following lemma shows that piecewise linear functions are “linear on flags.”

Lemma 3.2. Let F1 & --- & Fy be a k-flag of nonempty proper flats of M, and let £ be a piecewise
linear function on M. Then there is a linear function on M which agrees with € on the flats F1, ..., Fy.
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Proof. We construct a suitable function f: E — R whose associated linear function agrees
with €on Fy, ..., Fi. For each j € Fy, let f(j) = £(F1)/|F1]. Assume that f has been defined on
F,’. For each ] € Fj+1\Fj, let f(]) = (K(F,‘_H) — 5(P,))/|F,+1\P,| Once f is defined on Pk, define
f on E\Fy in such a way to satisfy the condition > ;. f(i) = 0. o

If F is a k-flag of nonempty proper flats, we say that a nonempty proper flat F extends %
toa (k+1)-flagif F U {F} is a (k + 1)-flag. More explicitly, F extends & = {Fy,..., Fi} with
F1 ¢ --- ¢ Frif and only if there is an index i € {0, ..., k} for which F; & F < F;;; with the
convention Fy = ¢ and Fx,1 = E.

Definition (Convex and strictly convex). Let ¥ be ak-flag F1 < - - - & Fj of nonempty proper
flats. A piecewise linear function ¢ is convex at & if it is equivalent to a piecewise linear
function ¢’ which is zero on each F; € ¥ and nonnegative on each nonempty proper flat F
that extends F to a (k + 1)-flag. The piecewise linear function ¢ is convex if it is convex at
every flag of nonempty proper flats.

A piecewise linear function ¢ is strictly convex at F if it is equivalent to a piecewise linear
function ¢’ which is zero on each F; € % and positive on each nonempty proper flat F that
extends F to a (k + 1)-flag, and ¢ is strictly convex if it is strictly convex at every flag of
nonempty proper flats.

Definition (Ample and nef). The elements in CH' (M) corresponding to the equivalence
classes of convex piecewise linear functions are called nef classes. The collection of nef classes
is called the nef cone.

The elements of CH' (M) corresponding to the equivalence classes of strictly convex
piecewise linear functions are called ample classes. The collection of ample classes is called
the ample cone.

Lemma 3.3. The nef cone is closed, convex, and invariant under nonnegative rescaling. The ample
cone is open, convex, and invariant under positive rescaling.

Proof. 1t is straightforward to verify that both cones are convex and invariant under suitable
rescaling. To see that the ample cone is open, fix a k-flag F of proper nonempty flats, and
fix a piecewise linear function ¢ that is strictly convex at %. Up to equivalence, we may
assume that £ vanishes on each flat of % and is positive on each nonempty proper flat F
that extends #F to a (k + 1)-flag. Let ¢’ be an arbitrary piecewise linear function, which we
may assume vanishes on %. Then there is a sufficiently small 6 > 0 for which ¢ + 6¢' is also
strictly convex at %. By choosing a basis for the piecewise linear functions modulo linear
functions, the argument extends to show that the space of piecewise linear functions that
are strictly convex at % is open. There are finitely many flags so the ample cone, being the
intersection of finitely many open sets, is open.

We show that the nef cone is closed by showing that its complement is open. Suppose ¢
is a piecewise linear function that is not convex. Then there is some k-flag % of nonempty
proper flats with the property that for every linear function A for which A(F;) = ¢(F;) for
each F; € 7, there exists a nonempty proper flat F extending F to a (k + 1)-flag for which
A(F) > €(F). Up to equivalence, we may assume that ¢ vanishes on each flat of %. For each
linear function A that vanishes on %, set

gy = mFax()\(F) —{(F))
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where the maximum is taken over all nonempty proper flats F extending %. Note that ¢, is
a positive continuous function on the space of linear functions A that vanish on %. Next,
note that for any real number ¢ > 1, we have

Ecr = mgx(c)\(F) —{(F)) > mgx(/\(F) —{(F)) = &,.

It follows that the ¢, attains a global positive minimum on the space of linear functions A
vanishing on %. Let ¢ be a positive number smaller than this global minimum.

Let £’ be an arbitrary piecewise linear function, which up to equivalence we may assume
vanishes on &. Choose 6 > 0 small enough that for all nonempty proper flats F extending F,
we have

|0¢'(F)| < €/2.

Then for any linear function A vanishing on %, there is a nonempty proper flat F extending
F for which A(F) — €(F) > ¢. It follows that A(F) — (£(F) + 6¢'(F)) > €/2so £ + 6¢' is not nef.
Again by choosing a basis for the piecewise linear functions modulo linear functions, we
extend the argument to see that the complement of the nef cone is open. m]

If rk(M) < 1, then there are no nonempty proper flats so the ample cone is empty. The
next lemma shows that as long as rk(M) > 2, there exist ample classes.

Lemma 3.4. If the rank of M is at least 2, then the ample cone is nonempty.

Proof. Let ¢ be the piecewise linear function defined by
((F) = [E| - |EF].

Fix a k-flag & of nonempty proper flats F; < - - - & F,. We now define a function f: E — R
satisfying > f(i) = 0 with the property that > i.p f(i) = ¢(F)) for each F; € F and for
which }},.; f(i) < ¢(F) for each nonempty proper flat F which extends & to a (k + 1)-flag.

For i € Fy, set f(i) = |E\Fi| so that > ,.r f(i) = {(F1). Note that if F is a nonempty flat
properly contained in F;, then

> f(i) = |F||E\F1| < |F||E\F| = €(F).
ieF

Assume that f has been defined in F; and satisfies the desired properties on all flats contained
in F;. Forie Fj;1\F; set
£ = ((Fj1) — U(F))

I3 j+1\F j|

so that ZieFH] f(i) = €(Fj41). Fixaflat F forwhich F; < F < Fj,1. Thenby direct computation
C(F) = Y, f(i) = |F\Fj||Fjs1\F| > 0
ieF

The argument is valid when j = k when we set Fx;1 = E. Thus ¢ is strictly convex and
therefore defines an ample class. m]
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Remark. A real-valued function c on the set of subsets of E satisfying c(&f) = ¢(E) = 0is
called strictly submodular if

c(S)+c¢(T)>c(SnT)+c(SuT)

for every pair of incomparable subsets S, T of E. It turns out that every strictly submodular
function defines an ample class of CH' (M). The function ¢(S) = |S||E\S| is easily seen to be
strictly submodular.

The Boolean matroid B on E is the matroid for which every subset of E is a flat. A
piecewise linear function on B can be thought of as a function c on subsets of E satisfying
c(J) = c(E) = 0. It turns out that a piecewise linear function on B is strictly convex if and
only if it is strictly submodular.

Proposition 3.5. If the rank of M is at least 2, then the closure of the ample cone is the nef cone.

Proof. Since the nef cone contains the ample cone and is closed by Lemma 3.3, the closure of
the ample cone is contained in the nef cone. By Lemma 3.4, the ample cone is nonempty,
so we may choose an ample class £ € CH'(M). Fix a nef class n € CH'(M) as well. Tt is
straightforward to verify that the classes t€ + (1 — t)n are ample for ¢ € (0, 1], which proves
the result. o

3.1 The Kihler package and log-concavity

The key observation which allows the Kéhler package to establish an equality of the form
b > ac is the following. Suppose £ € CH'(M) is ample, and let n € CH' (M) be arbitrary. By
the Hodge-Riemann relations in degree 1, the Hodge-Riemann form

CH'(M) x CH'(M) — R (1, v) — —deg,, (£ uv)

is positive-definite on the kernel of £/~': CH'(M) — CH’(M). Since £"~! - £ is nonzero by
the hard Lefschetz theorem in degree 0, we have a direct sum splitting

CH'(M) = Ry @ ker(£71)

which is easily seen to be orthogonal with respect to the Hodge-Riemann form. Furthermore,
the form is negative-definite on R(¢) and positive-definite on ker(¢'~!). Now consider the
symmetric 2 x 2 matrix

(degM(f”(ff)) degM(f”(fn))> _ (ﬂ b)
—deg), (¢""*(nf)) —degy, (¢"*(nn)) b c

If £ and 1 are linearly independent, then this 2 x 2 matrix represents the restriction of the
Hodge-Riemann form to the subspace R(¢) @ R{n) with respect to the given basis. This
matrix must have exactly one negative eigenvalue so its determinant is negative. If £ and n
are not linearly independent, then the determinant of the matrix is 0. In any case, we find

that
det(a b>=ac—b2<0
b ¢
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which is an inequality of the described form. A continuity argument extends this result to
case when £ is only nef.

Let M be a loopless matroid of rank r + 1, and write its characteristic polynomial as
xu(q) = wo(M)g™! —wi(M)g" + -+ + (=1) w1 (M)

By Proposition 2.10, we have wy(M) > 0 for eachk = 0, ...,7 + 1. Expressing ypm(g) in terms
of the Mdbius function of the lattice of flats of M (Corollary 2.8), we find that the evaluation
of xm(q) at g = 1yields

xm(1) = 3 p(, F) 10— = 3 (5, ) = 0

FeZym Fe%y

so g — 1 divides xum(q). The reduced characteristic polynomial of M, denoted xpm(q), is defined
tobe xm(q)/(q — 1). Write

X_M(q) = HO(M)qr — ul(M)qr—l + -4 (_1)7‘ur(M)

and observe that wy(M) = u°(M) and wy(M) = p*(M) + p*=1(M) for eachk = 1,...,r and
w,41(M) = u'(M). We will see that the coefficients u¥(M) are all positive integers. It is easy
to verify that log-concavity of the u*(M) implies that of log-concavity of the wy(M).

To establish the Heron-Rota-Welsh conjecture from the Kdhler package, we define nef
classes a, u € CH' (M) and prove that

HE(M) = degy (Bl ).

In particular, the matrix

(M”(M) #”(M)> _ (degm( L (aman))  degy( Lz(ﬁMaM)))
pti M) (M) deg,, (B}, 2 (Bmanm))  degy, (By, > (BuPum))

has negative determinant so u'~!(M)y" =1 (M) > p"~2(M)u’(M). The inequalities for the
other u¥(M) follow from this one applied to the truncation tr(M) of M, which is a matroid
with the property that p*(tr(M)) = pk(M) fork = 0,...,r — 1 but rk(tr(M)) = rk(M) — 1.

We now define the elements aps and Sy, and show that degM(ﬁ’I‘wa;\;k ) is a count of certain
k-flags of nonempty proper flats of M. We then show that p* also equals this count using the
truncation argument. For each i in the ground set E, let

amMm,i = EXF and ﬁM,i = EXF

ieF i¢F

The linear relations in the Chow ring assert that the class of ay;; in CH' (M) is independent
of i. Let ay be this class. It is clear that the sum a; + Sum;, is independent of 7 so the class of
B in CH' (M) is also independent of i. We let S denote this class.

Remark. Matroids with different characteristic polynomials may have isomorphic Chow
rings. In this case, the classes ap; and By will differ between the matroids. We compute two
simple examples to illustrate this.
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Example. Let M be the graphic matroid associated to the path with two edges. Then the flats
of M are &, {0}, {1}, and E = {0, 1}. It follows that the Chow ring of M is

CH(M) = Q[xo, x1]/(x0 — x1,Xox1) = Q[x0]/(x3)

and deg,,: CH'(M) — R is just the map sending xo — 1. The ample cone is R~ - xo while
the nef cone is R - xo. In this example ay = Bam = xo. The reduced characteristic polynomial
of Mis xpm(q) = g — 1so u° = u* = 1. Note that deg,,(),a;,) = deg,,(;,a},) = 1 as well.
Example. Let M be the graphic matroid associated to the cycle with three edges. The flats of
M are &, {0}, {1}, {2}, E and the Chow ring is CH(M) = Q[xo]/(x0)? where xo = x1 = x5. The
degree map again sends xo — 1. Here a) = xo while By = 2x9. We see that deg,,(anm) = 1
and deg,,(fm) = 2 which agrees with the fact that xa(q) = g — 2.

Lemma 3.6. The classes ay and fy in CH' (M) are nef.

Proof. Let F be a k-flag of nonempty proper flats F; < --- & Fr. Choose i € Fy and j ¢ Fy.

Then
ﬁM,i = ZXF and amMmj = ZXF
igF jeF
correspond to nonnegative piecewise linear functions that are zero on each F;, € #. O

Let F be a k-flag of nonempty proper flats F1 < --- & Fi of M. We use the shorthand
notation xg = x, - - - xr, throughout. Fix an element i ¢ Fy and observe that

XFp = XgZXF = Xz Z Xp = ZX@/

ieF FyUiCF F

where the final sum is over (k + 1)-flags F' of the form & U F where F extends % on the
right and contains i. Hence heuristically, multiplication by a) extends flags on the right.
Similarly, if we fix an element i € Fy, then

ﬁMXg = Zxe'? = 2 XrXg = Zng

i¢F i¢FCFy F

where the final sum is over (k + 1)-flags &’ of the form F U & where F extends # on the left
and does not contain i. Heuristically, multiplication by s extends flags on the left.

Definition (Initial). Let # be a k-flag F1 & - - - & Fy of nonempty proper flats of M. Then
is initial if rkyg(F,,) = m foreachm e {1,...,k}.

Lemma 3.7. Let F be a k-flag of nonempty proper flats F1 < - -- < Fy.

o IfF is not initial, then xg a;/fk =0e CH'(M).

o IfF is initial, then xg a;\gk = o), € CH'(M).

Proof. 1f rkp(F,,) # m for some m, then rky(Fy) > k. Thus it is not possible to extend F to
an r-flag of nonempty proper flats by appending flats only to the right. Since multiplication
by aum extends flags to the right, we find that xgoz]’vfk = 0. This argument is easily formalized
by descending induction on k.
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Now assume that rky(F,,) = m for all m. The product xga, is a sum of elements of the
form xg: where #' is a (k + 1)-flag obtained by extending F on the right by a flat F that
contains a fixed element i ¢ Fx. Among such flats F, there is a unique flat F of rank k + 1. It
follows from the first assertion that xga;\;k = x¢ where G is an arbitrary r-flag containing F.
In particular, x¢ = x¢ for any two r-flags 6, ¢’ containing %. Choosing # to be the 0-flag,
we see that a}; = x¢ = x« for any two r-flags G, 6’ of nonempty proper flats. This argument
is again easily formalized by ascending induction on k. m]

Proposition 3.8. The vector space CH* (M) is spanned by elements of the form xg. for ¥ a k-flag of
nonempty proper flats. In particular, CH*(M) = 0 for k > r. Furthermore, ay, = xg for any r-flag
F of nonempty proper flats of M, so &}, spans CH'(M).

Proof. Let

kl “ e kf
Xp, o XE,

be an arbitrary degree k = k; + - - - + k, monomial, where the F; are distinct and the k; are
positive. If any two of the F; are incomparable, the monomial is zero. We may assume that
the flats are all comparable so that they form an ¢-flag %. If £ = k, then each k; = 1 and the
monomial is just xg. Otherwise, fix an index j for which k; > 1, and note that there is a linear
function A for which A(F;) = —1but A(F;) = 0 for i # j. It follows from the corresponding
linear relation that

Xp, = Z/\(xc)xc
C

where the sum ranges over nonempty proper flats G for which G ¢ %. Substituting this
expression in the monomial expresses the monomial as a linear combination of other
monomials, each of which is one step closer to having all exponents equal to 1. O

The main result of section 3.2 is that a}, is nonzero. The existence and uniqueness of the
degree map then follows from Proposition 3.8. The isomorphism deg,,: CH"(M) — R is
defined by sending a}, — 1 and has the property that deg,,(xz) = 1 whenever F is an r-flag.

Definition (Descending). Order the elements of the ground set E so that we may view E is
the set of numbers {0,1,...,n}. Let ¥ be a k-flag F1 < - - - & Fi of nonempty proper flats of
M. Then % is descending if

min(F;) > -+ > min(Fy) > 0

where min(F,,) is the smallest number in F,, thought of as a subset of {0,1,...,n}.

Whether a flag is descending depends on the ordering of E, but the following lemma
shows that the sum Y, x5 € CHF(M) over all descending k-flags F is independent of the
ordering.

Lemma 3.9. For each positive k, we have

where the sum is over all descending k-flags F of nonempty proper flats of M.
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Proof. We prove the result by induction on k. A descending 1-step flag of nonempty proper
flats is just a single nonempty proper flat F that does not contain 0 € E. Note that

Bm = Bmo = Z XF
0¢F
as required. Fix a particular descending k-step flag F = {F; < - - - < Fy} and let iz = min(Fy).
Note that iz is an element of each flag of this flat. Then Byxg = D Xpxg where the sum
ranges over all nonempty flats F contained in F; that do not contain ig. For any such flat F,
the flag F U & is a descending (k + 1)-flag. It follows that fyxg = > 4 x5 where the sum is
over all descending (k + 1)-flags whose last k terms are %. By induction, we know that

k+1
M= 2 Bus
F
k+1

where the sum is over all descending k-flags F. Thus f,;" = > g/ x5 where the sum is over
all descending (k + 1)-flags as required. o

Let Dx(M) be the set of k-flags of nonempty proper flats of M that are both initial and
descending. The following is immediate from Lemmas 3.7 and 3.9.

Corollary 3.10. Foreachk € {0,...,r}, we have ﬁ’;da;;k = |Dr(M)| a}, € CH'(M).

We now show that y*(M) = |D¢(M)| where

x(q) = u(M)g — ' (M)g" + - + (=1)" " (M).

It follows from this that each p*(M) is a positive integer. We first show that u"(M) = |D,(M)|
directly, and then use a truncation argument for the other coefficients.

Lemma 3.11. We have the equality u" (M) = |D,(M)|.

Proof. Note that (—1)"*1u" (M) = (—1)""'w,,1(M) is the constant term of xp(q) so it suffices
to show that xy(0) = (—1)"+1|D,(M)|. By Corollary 2.8, we have

xm(0) = > (@, FYORI® = (g5, E)
Fe%y
since the ground set E = {0,1,...,n} is the unique flat of M of rank r + 1.

Let F be a flat of rank k + 1 > 0. We show by induction on k that (—1)*! (&, F) is just
the number of initial descending k-flags of nonempty proper flats F; < - - - & Fi for which
Fy < F. The result follows from the case F = E. If k = 0, then the only flat contained in F is
& so —u(,F) = (g, J) = 1 as required since the unique 0-flag is vacuously initial and
descending. For the inductive step, we know that

(D@, p = Y, ()@, F)
i¢gF'<F
by Lemma 2.9. Here i is an arbitrarily chosen element of F and the sum is over flats ' < F
of rank k that do not contain i. We choose i to be min(F) so that each F’ appearing in the
sum satisfies min(F’) > min(F). By the induction hypothesis, we know that (—1)fu(, F')
is the number of initial descending (k — 1)-flags properly contained in F’, so it follows that
(=1)*1u(, F) is the number of initial descending k-flags properly contained in F. o
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Definition (Truncation). Let M be a matroid of rank 7 + 1 a the ground set E. The truncation
of M is the matroid denoted tr(M) on E with rank function

k(v (S) = min(rkp(S), 7).

The flats of tr(M) are precisely the flats F of M for which rky(F) # r. The ground set E which
is a flat of rank r + 1 in M becomes a flat of rank r in tr(M). If M is loopless then tr(M) is
loopless.

It is immediate from the definitions that Dy (tr(M)) = Dx(M) for 0 < k < r — 1. Together
with Lemma 3.11, the following result implies that y*(M) = |Dx(M)] for all k.

Lemma 3.12. There is an equality p*(tr(M)) = p¥(M) for each k € {0,...,r — 1}.
Proof. Recall that the two sequences of numbers wy(M) and p*(M) are defined by
xm(q) = wo(M)g™" —wi (M)q" + -+ + (1) s (M)
x(q) = p' (Mg — ' (M)g™! + -+ (=1)' ' (M)

with (9 — 1)xm(q) = xm(q). Hence

wo(M) = ’(M)  we(M) = g"(M) + uF= (M) forke {1,...,7} w1 (M) = @' (M).
It therefore suffices to show that wy(tr(M)) = wi(M) for all k < r. Note that

(—DfwM) = > w(@,F)
rk;e(glf)M:k

by Corollary 2.8. Since k < r, we know that (—1)*wy(tr(M)) is a sum over the same set, and
the result now follows from the observation that the M&bius function u(J, F) depends only
on the partially ordered set of flats contained in F. ]

Corollary 3.13. There is an equality u*(M) = |Dy(M)| for each k € {0,1,...,7}.

Assuming the Kahler package, we now prove the Heron-Rota-Welsh conjecture.

Theorem 3.14 (Heron-Rota-Welsh conjecture). Let M be a matroid. Then the absolute values of
the coefficients of xm(q) are log-concave.

Proof. If M is not loopless, then xa(q) = 0 by Corollary 2.7, so we assume M is loopless and
of rank r 4+ 1. We claim that it suffices to prove that

N M) THM) = W A (M) (M),

Indeed, the inequality p*(M)p*(M) > p*=1(M)u**+1(M) for k < r — 1 follows from the given
inequality for the iterated truncations of M by Lemma 3.12. Using the existence of the degree
map and Corollaries 3.10 and 3.13, we have

(If_z(M) M"l(M)> _ (Drz(M)l IDrl(M)I)
pHM) (M) D1 (M) [Dr(M)]
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_ <degM(ﬁIry{2(0¢M04M)) degM(ﬁJrf(ﬁMQM)))
degy (By”(Buam))  degy (B, (BuBu)

and it suffices to show that this matrix has nonpositive determinant.

Let £ € CH'(M) be an ample class, which exists as long as 7 > 1 by Lemma 3.4. If r < 1,
then the result is trivially true. By the Hodge-Riemann relations in grading 1, we know that
the Hodge-Riemann form

CH!(M) x CH'(M) =R (1,v) = — degy, (€ 2p)

is positive-definite on the kernel of £/~': CH'(M) — CH'(M). The map ¢": CH’(M) —
CH'(M) is an isomorphism by the hard Lefschetz theorem in grading 0 so we have a direct
sum splitting

CH'(M) = R(6) @ ker(£71).
If v € ker(¢~1), then deg,,(£"~2¢v) = 0 so this splitting is orthogonal with respect to the
Hodge-Riemann form. Furthermore, the Hodge-Riemann form is negative-definite on R(¢)
because deg,,(£") > 0 by the Hodge-Riemann relations in degree 0. It follows that the matrix

(degM(frZ(aM“M» degM<€”(faM>>>
deg (€=2(Can))  degy (€2(LL))

has nonpositive determinant. Finally ¢; := tfp + (1 — t)€ is ample for every t € [0,1) because
P is nef by Lemma 3.6. The given matrix with ¢; in place of £ has nonpositive determinant
for each t € [0, 1) so it also has nonpositive determinant for ¢ = 1 by continuity. ]

Corollary 3.15 (Read’s conjecture and Hoggar’s conjecture). Let G be a finite graph. Then the
absolute values of the coefficients of xc(q) are log-concave.

Proof. The result follows from the Heron-Rota-Welsh conjecture and Proposition 2.3. m|

3.2 The degree map

The purpose of this section is to prove that a} is nonzero. Since CH' (M) is spanned by o/,
by Proposition 3.8, it follows that CH' (M) is nonzero and the degree map deg,,: CH' (M) —
R is well-defined. This result is proved using Minkowski weights and toric geometry in
[AHK18, BHM20] and ultimately cites the main result of [FMSS95]. We instead prove this
result using the Grobner basis computation appearing in [FY04]. This route to showing that
oy, # 0 was suggested to the author by Christopher Eur. We explain the main argument
here, but prove that the given generating set is in fact a Grébner basis in the Appendix. Our
exposition concerning the Chow ring partially follows [BES20] and the basic material on
Grobner bases is from [DF04].

Showing that &}, is nonzero in CH(M) is equivalent to showing that a certain polyno-
mial does not lie in the ideal of R[ xr | F is a nonempty proper flat of M | generated by the
incomparability and linear relations. A key feature of a Grobner basis of an ideal is that it
provides a practical method for checking whether a given element lies in the ideal. Rather
than defining a Grobner basis for the ideal directly, we use a slightly different presentation
of the Chow ring used in [FY04]. If M is a loopless matroid, then

CH(M) = R[zr | F is a nonempty flat of M]/.¥
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where .¥ is the ideal

J = {zrz¢ | F, G incomparable ) + <ZZP |ieE).
ieF
We again call the zrzg the incomparability relations and the ) zr the linear relations. Note
that zr is now a generator and we recover the original presentation by setting

{ﬁ FCE
Zr =
—aMm F=E.

A monomial ordering is a well ordering on the set of monomials of a polynomial ring over
a field for which ac > bc whenever a > b for monomials 4, b, c. Fix a total ordering on the set
of nonempty flats of M with the property that if rky(F) < rky(G) then F > G. In this total
ordering, the ground set E satisfies F > E for all proper flats F. The lexicographical ordering
on monomials in R[ zr | F is a nonempty flat of M | is a monomial ordering. Explicitly, we
may write any two monomials as

nl.-.
Fy

my
G

ne

and z G

Z ...Z

where the exponents are all positive and F; > --- > Fyand G; > -+ > Gg. It follows that
rkyr(Fq) < -+ - < tkp(Fy) and rkp(G1) < - - < rkm(Gy). To compare the two monomials, we
first compare F; and G;. If either is larger, then the corresponding monomial is declared
larger. If they agree and one n; and m; is larger, then the corresponding monomial is
declared larger. If F; = G; and n; = m;, then we move on to the next pair of flats and do the
same comparison procedure. In this monomial ordering which is fixed for the rest of the
section, the smallest monomials are 1 < zg < zé < -

Given a monomial ordering, any polynomial now has a leading term just like a single-
variable polynomial. The leading term LT(f) of anonzero polynomial f is the monomial term
cm where m is the largest monomial appearing in the polynomial with nonzero coefficient.
In particular, the leading term is cm, the monomial with its nonzero coefficient. The leading
term of the zero polynomial is defined to be zero. In our situation, note that if the leading
term of a polynomial f is cz¥ for some k > 0 and ¢ € R, then f is a single-variable polynomial
in R[zg].

Definition (Grobner basis). Let I be an ideal in a polynomial ring over a field with a fixed
monomial ordering. A Grobner basis for I is a finite set of elements gy, . .., gm € I that generate
I and whose leading terms generate the ideal of leading terms of I, which is the ideal generated
by the leading terms of all elements of 1.

Remark. There is no minimality condition on g1, ..., g as one might expect for a “basis”. If
S1,--.,8m is a Grobner basis for I and f € I, then gy, ..., gm, f is a Grobner basis for I.

Given any collection of elements g, ..., g» and an arbitrary polynomial f, we have a
procedure of polynomial division. Set polynomials g1, ..., g all equal to zero initially and
repeat the following procedure:

1. If there does not exist a monomial term of f that is divisible by LT(g;) for some g;, then
terminate the procedure and let r = f.
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2. If some monomial term p of f is divisible by LT(g;) for some g;, then u = aLT(g;) for
some monomial term a. Add a to g;, and replace f by f — ag;, and repeat.

After the procedure terminates, the original polynomial f then satisfies

f=qmg1+ -+ Gmgm+r.

Note that the polynomials g3, . .., g, may depend on the choices made during the procedure.
A variation of the following proposition shows that r is independent of these choices when
g1,--.,8m is a Grobner basis.

Proposition 3.16. Let g1,..., gm be a Grobner basis of an ideal 1. Let f be a polynomial, and let
g1, ..., qGm, 1 be obtained by polynomial division. Then f € I if and only if r = 0.

Proof. 1tis clear thatif r = O then f € I. If f € I, then we show that ¥ = 0 by induction on the
number of nonzero monomial terms in f. The base case f = 0 is trivial. In the inductive
step, we know that LT(f) lies in the ideal of leading terms of I, so by definition of a Grébner
basis we know that LT(f) can be written as a1LT(g1) + - - - LT (gm) for some polynomials 4;.
However, since LT(f) is just the product of a nonzero constant with a monomial, it follows
that there exists an i for which LT(f) = aLT(g;). The polynomial f — ag; still lies in I and has
strictly fewer nonzero monomial terms. o

Proposition 3.17. The following collection of elements is a Grobner basis of the ideal .F:

8EG = ZFZG F, G are incomparable nonempty flats

)rkM(G)_rkM(F)

8EG = ZF (ZGgH zZy F < Gand F, G are nonempty flats

826 = (Zocn ZH)rkM(G) G is a nonempty flat.

Corollary 3.18. The element a}, is nonzero in CH'(M).

Proof. Since zg = —ay, it suffices to show that z;. does not lie in .7. We apply polynomial
division to z. with respect to the Grobner basis of Proposition 3.17. The leading terms of the
elements of the Grobner basis are

LT(grc) = zrzg E, G are incomparable nonempty flats
LT(grc) = ZngM(G)_rkM ) F < G and F, G are nonempty flats
LT(8g.c) = ZerM(G) G is a nonempty flat.

Note that LT(gg ) = zg’l because rkyi(E) = rk(M) = r + 1. Thus z}, is not divisible by any
of these leading terms so polynomial division terminates with r = z}.. As z[. is nonzero in
the polynomial ring, it follows from Proposition 3.16 that z}, ¢ .¥. O

Proof of the existence and uniqueness of the degree map. The result follows from Proposition 3.8
and Corollary 3.18. O

To prove that the elements gr ¢ defined in Proposition 3.17 form a Grobner basis, we first
prove that they generate .7, and then apply Buchberger’s criterion.
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Lemma 3.19. The elements gr generate .J.

Proof. 1t is easy to see that .F is contained in the ideal generated by the gr¢. It is obvious for
the incomparability relations, and for any i € E, if we let G be the smallest flat containing
i, then gg;; is precisely the linear relation  ;.;; zy. It suffices to show that every gr¢ lies
in .¥ which is equivalent to saying that gr¢ = 0 in CH(M). The result is trivial when F, G
are incomparable. Let F, G be flats for which F ¢ G. We show that gz¢ = 0 in CH(M) by
induction on rky(G) — rkp(F). Throughout, we use the convention thatzr = 1if F = (.

If rkp(G) = rkp(F) + 1, then fix an element i € G\F and observe that

SEG = ZF (Z ZH) =zr (ZZH> =0
GCH ieH

where the first equivalence follows from incomparability and the second follows from the
linear relations. Now let rky(G) — rky(F) = d > 1 and again fix i € G\F. Then we know that

0=z (ZZK)<Z ZH>d1_gF,G+ZF Dz (Z ZH>d1

ieK G<SH ieK GcH
GEK

by the linear relations. We show that zrzx (Y gy zr)? ! = 0 for each K satisfying i € K and
G ¢ K. By the incomparability relation, we may assume that F & K. But then

d—1 =1
ZK ( Z ZH) = Zk Z ZH
GSH cd(GUK)cH

again by the incomparability relations where cl(G u K) is the smallest flat containing both G
and K. The expression on the right is divisible by ¢k «i(cuk) because

rky (G U K) — rky(K) < rky(G) — tkm (G n K) < tkp(G) — rk(F) = d
since G n K strictly contains F. By induction, we know that gk (cux) = 0. m|

The syzygy S(f, g) of two polynomials f, g is defined to be

M M

S(f,8) = T(f)f_ ()¢

where M is the monic least common multiple of LT(f) and LT(g). Note that the syzygy of
any two elements of an ideal [ is also in I. Suppose g, ..., gm generate the ideal I. If they
form a Grobner basis of I, then clearly long division of 5(gi, /) by §1,...,&m resultsin r = 0.
Buchberger’s criterion is the converse.

Buchberger’s criterion. Suppose g1, ..., gm generate an ideal I in a polynomial ring over a field
equipped with a monomial ordering. If it is possible to apply long division to each syzygy S(gi, &) by
Q1,--.,8mand obtain r = 0, then g1, ..., gm is a Grobner basis for 1.

We prove Buchberger’s criterion in the Appendix. To apply Buchberger’s criterion to the
elements gr, we apply long division to each syzygy

S(gaB,8cp)

explicitly by case work. This case work is also done in the Appendix.
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4 The Kidhler package

In this section, we prove the Kédhler package which consists of Poincaré duality, the hard
Lefschetz theorem, and the Hodge-Riemann relations. For all three results, the argument
is by induction on the size of the ground set, and the inductive step is proven using the
semi-small decomposition. Given a matroid M and an element 7 in the ground set E, there is
a matroid M\i on E\i called the deletion of i from M which generalizes deletion of an edge
from a graph.

Definition (Deletion). Let M be a matroid and let i be an element of the ground set E. The
deletion of i from M is the matroid denoted M\i on the ground set E\i defined by any of the
following equivalent conditions:

e Aset] < E\iis independent in M\i if and only if I is independent in M.
o If S < E\i, then rkyp;(S) = rku(S).
o AsetF C E\iis aflat of M\i if and only if F = G\i for some flat G of M.

Note that if M is loopless, then M\i is loopless.

There is a graded algebra homomorphism from the Chow ring of M\i to the Chow ring
of M denoted 9;: CH(M\i) —» CH(M) which is defined by

Vi(xg) = x6 + Xgui

where a variable on the right is set to zero if its label is not a flat of M. It is easy to verify
that 9; sends the incomparability and linear relations to zero and is therefore well-defined.
The algebra map 9; allows us to view CH(M) as a module over CH(M\i). It turns out that
CH(M) decomposes as a direct sum of indecomposable CH(M\i)-modules. The semi-small
decomposition of CH(M) refers to this decomposition, and further characterizes the direct
summands.

Let S; be the collection of nonempty proper subsets F of E\i for which F and F U i are
both flats of M. Let CH(;) < CH(M) denote the image of 9;. Assume that |E| > 2.

The semi-small decomposition. Let M be a loopless matroid, and let i € E. If i is not a coloop,
then there is a direct sum decomposition

CH(M) = CH; ® @ xr.i CHy;)
FES,’

into indecomposable graded CH(M\i)-modules, where all pairs of distinct summands are orthogonal
under the Poincaré pairing of CH(M). If i is a coloop, then there is a direct sum decomposition

CH(M) = CH; ® xp,; CH(y @ @ xrui CH;)
FGS,‘

into indecomposable graded CH(M\i)-modules, where all pairs of distinct summands except the first
two are orthogonal under the Poincaré pairing of CH(M).

Remark. The Poincaré pairing is the bilinear map

CHY (M) x CH¥(M) = R (i, v) — deg,,(uv).
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Poincaré duality is equivalent to the assertion that this pairing is nondegenerate. Subspaces
V < CH"(M) and W < CH'~*(M) are orthogonal under the Poincaré pairing if deg,,(uv) =0
whenever pe Vandve W.

In section 4.2, we prove the semi-small decomposition and Poincaré duality simultane-
ously by induction on the size of the ground set. In section 4.3, we prove the hard Lefschetz
theorem and the Hodge-Riemann relations simultaneously by induction on the size of
the ground set using both the semi-small decomposition and Poincaré duality. In both
arguments, the inductive step assumes the corresponding results for all loopless matroids
on strictly smaller ground sets. The summands appearing in the semi-small decomposition
are not Chow rings of matroids on smaller sets. In order to apply the induction hypothesis
on these summands, we identify them with tensor products of Chow rings of certain
matroids on strict subsets of the ground set in section 4.1. The material in this section
is from [BHM*20, ADH20]. Step 6 of the proof of the hard Lefschetz theorem and the
Hodge-Riemann relations was suggested to the author by June Huh.

4.1 The pullback and pushforward maps

In this section, we identify the summands appearing in the semi-small decomposition
with tensor products of Chow rings of certain matroids on strict subsets of the ground set.
The identification will be as CH(M\i)-modules and in each case there will be some version
of compatibility with the degree maps. The following proposition provides an example of
compatibility with the degree maps.

Proposition 4.1. Let M be a loopless matroid, let i € E, and let 9;: CH(M\i) — CH(M) be the
graded algebra map associated with the deletion. If i is not a coloop, then

deg,; = deg,, o 9.
Ifiis a coloop, then
deg,; = degy o xp; 0 9; = degyoamoI;
where the middle maps in the composites denote multiplication.

Proof. Assume that i is not a coloop. Then

dilam) = 2 XG\i + XGui
jeGi

where the sum is over proper flats of M\i that contain a fixed element j € M\i. It is easy to
verify that this sum is just };.;; xy = am using the fact that E\i is not a flat of M. It follows
that Si(oz]’w\i) = aj}, because 9; is an algebra map. Both M\i and M are of rank r + 1 because i
is not a coloop so the formula follows from the definition of the degree map.

Now assume that i is a coloop. A similar computation as in the previous case shows that
Si(am) = am — xg\;. Thus

aMSi(aerI\}) = ap(am — xp) "' = aly
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where we use the identity xpjam = X\ Xiec X6 = 0. Thus deg,; = degy o an o 9;. Next
observe that

deg,, 0 ap o ¥; = deg,, 0 ;o ap; + deg, 0 xp; 0 ¥; = deg,, 0 xp ;oI
using the fact that ay = 9;(apn;) + xp; and that CH'(M\7) = 0. O

The degree formula of Proposition 4.1 has the following consequence. Suppose CH(M\)
satisfies Poincaré duality. If i is not a coloop, then the map

is an isomorphism of CH(M\7)-modules. Indeed, if p € CH(M\i) is nonzero, there exists
an element v € CH(M\i) for which deg,,;(uv) # 0 by Poincaré duality. Then by the degree
formula deg,,(9;()9i(v)) # 0 so in particular 9;(u) # 0. Thus 9; is injective and is therefore
an isomorphism onto its image. By the same reasoning, if i is a coloop, then the maps

\91‘2 CH(M\I) d CH(i) xE\j o \91‘2 CH(M\Z) d xE\j CH({)

are isomorphisms of CH(M\i)-modules.

To provide similar descriptions for the other summands xr_; CH;) in the semi-small
decomposition, we first define the relevant auxiliary matroids, and then we then define
pullback and pushforward maps which relate the Chow ring of M to those of the auxiliary
matroids.

Definition (Localization and contraction). Let M be a matroid on the ground set E, and let
F be a nonempty proper flat of M. The localization of M at F is the matroid denoted M’ on
the ground set F defined by any of the following equivalent conditions:

e Asubset] c Fis independent in MF if and only if I is independent in M.
o If S € F, then rky (S) = rku(S).
e Asubset G C Fisa flat of MF if and only if G is a flat of M.

Note that if i € E is a coloop, then E\i is a flat and ME\ = M\i. The contraction of M by F is
the matroid denoted Mr on the ground set E\F defined by any of the following equivalent
conditions:

e AsubsetI < E\F is independent in Mr if and only if for every maximal independent
subset Ir of F, the set I U I is independent in M.

o If S < ENF, then rkyy, (S) = rkp(S U F) — rky(F).

o Asubset G < E\Fis a flat of Mr if and only if G U F is a flat of M.

Note that &y is just the lattice of flats of M that are contained in F while £y, is the lattice of
flats of M that contain F. If M is loopless, then MF and M are loopless.

Lemma 4.2 (Pullback map). Let M be a loopless matroid, and let F be a nonempty proper flat of M.
There is a unique graded algebra homomorphism

@y CH(M) — CH(MF) ® CH(M")
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called the pullback map for which

0 F and G are incomparable
ouxc) ={1®xc GGCF
xor®l FSG

The map is surjective and additionally satisfies

Ph(xr) = — (1@ ayr + Py, ®1)
Philanm) = an, ®1
P (Bm) = 1® Pue

Proof. For uniqueness, it suffices to show that (pFM must send xr to — (1 ® apr + B, ® 1) if it
has the described behavior on x for G # F. First, observe that for j ¢ F

Phlam) = Y opxe) = Y, xer®1=am ®1

jeG FujcG

whereas forie F

philam) = D) 1®xc + @y (xr) + Y 2o r®1

ieGSF FSG
=1Q@apr + (pi/l(xp) + (am + Bmy) ®1

Thus ¢} (xr) = —(1 ® apr + P, ® 1) as required. The computation that ¢ (Bu) = 1 ® Pus,
is straightforward.

To see existence, we must check that if @} has the described behavior on each x¢ for G a
nonempty proper flat of M, then it respects the incomparability relation and that ¢ (3 ;. xc)
is independent of i. The former is straightforward to verify and the latter follows from our
computations above. Surjectivity is easy to verify as well. m]

Lemma 4.3 (Pushforward map). Let M be a loopless matroid, and let F be a nonempty proper flat
of M. There is a unigue CH(M)-module homomorphism

Yh: CH(Mp) ® CH(MF) — CH(M)

called the pushforward map for which Y% (1) = xp. The tensor product CH(Mr) @ CH(MF) is
viewed as a CH(M)-module via the pullback map ¢}, The pushforward map satisfies the identity

deg, ®deg,;: = deg,, o 4’§A

Proof. Uniqueness follows from the fact that the pullback ¢, is surjective. Existence is also
straightforward and involves checking the incompatibility and linear relations for Mr and
ME. To verify the degree formula, we simply observe that if F; < - - - & F, is a maximal flag
of M for which F; = F for some index i, then ljsz sends

(XF\G XEAG) ® (XFy -+ XF_,) = XF, + - XF,. O
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Remark. The composite i} o ¢}, is just multiplication by xr, while the composite ¢}, o ¢F is
multiplication by ¢? (x¢).

Using the pullback and pushforward maps, we identify the summand xr_; CH;) in the
semi-small decomposition as a CH(M\i)-module and provide a degree formula.

Lemma 4.4. Let M be a loopless matroid, let i € E, and let F € ;. Note that i is a coloop of MEvi
and let ' '

9f': CH(MF) — CH(M™)
be the graded algebra map associated with the deletion of i from MF“'. There is a surjective algebra
map q which makes the following diagram commute

CH(M\i) . s CH(M)
gUzF\/I\i
CH((M\i)r) ® CH((M\i)F) P

N ¥

q
g p @S Foi
CH(Mry i) ® CHM") ——— CH(Mry;) ® CH(M™)

Proof. Note that (M\i)f and M! are matroids on F with
flats of (M\i)f = { G\i | G\i < F and G is a flat of M }
flats of Mf = {G |G < Fand G is a flat of M }

These two sets are the same so (M\i)" = M. Next, observe that (M\i)r and Mr_, are both
matroids on M\(F u i) and that

flats of (M\i)r = { G\(F v i) | G is a flat of M containing F }
flats of Mr_; = { G\(F v i) | G is a flat of M containing F v i }

Thus every flat of Mg, is a flat of (M\i)F so there is a surjective algebra map

xy His a flat of Mp;

CH((M\i)g) — CH(Mg,,; =
((M\i)r) (Mroi) X {0 H is not a flat of M.

The algebra map g is defined to be the tensor product of this surjective map with the identity
CH((M\i)f) — CH(MF). To see that the diagram is commutative, it is straightforward to
verify that (Id® 9/~") o g o (Pi/l\i and @' o 9; are both given by

XG\(Fui) ® 1 Fuic Guiand Guiisaflatof M
X 1® (xg\i + x6ui) G\icF
G\ T )
V)10 — 1@ — fu, ®1 F=G\i
0 otherwise
for G\i a nonempty proper flat of M\i. o
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Proposition 4.5. Let M be a loopless matroid, let i € E, and let F € S;. Then there is a surjective
CH(M\i)-module map

wF: CH(Mpoi) ® CH(M') — xr.; CHy;)
which increases grading by one with the property that for any u,v € CH(Mg,;) ® CH(MF)

deg, (Wi (1) W (v)) = —(degy, , @ degy:) ().

The map g o (p;[\i: CH(M\i) — CH(MF.;) ® CH(MF) of Lemma 4.4 defines the module structure
on the tensor product.

Remark. 1f CH(Mg. ;) and CH(M") satisfy Poincaré duality, then W¥ is an isomorphism of
CH(M\i)-modules. Indeed, if 1 € CH(MF,;) ® CH(MF) is nonzero, then by Poincaré duality
for the two Chow rings, it follows that there exists a v € CH(Mg;) ® CH(MF) for which
(deg), ®deg,;)(uv) # 0. The degree formula then implies that W (u) # 0.

Proof. Let WF be the composite 17 o (Id @ 977). The fact that WF is a surjective CH(M\i)-

module map follows from the commutative diagram

CH(M) s CH(M)

CH(Mr.;) ® CH(MFY)

and Lemma 4.4. It suffices to prove the degree formula.
For ease of notation, we temporarily let = 12", 9 = 97~/ and ¢ = ¢ ~". Observe that

degy, (W ()W} (v)) = degy ($((1d® 8)p) - Y((Id® )v)).
Because ¢ is a CH(M)-module map, the expression equals
degy ¥ (PP ((Id®@ 9)p) - (1A 9)v).
Since deg), o = deg,, ~®deg,.. and ¢ o ¢ is multiplication by ¢(xr;), we obtain
—(degy, ®degyrun) (1@ o + ., ® 1) - (1 9)(1v)

Note that (Bu,, ®1) - (Id® 9;)u - (Id® 9)v lies in CH(Mr,;) ® §(CH(M?)). The rank of MF
is less than the rank of MV so deg, . vanishes on 8(CH(MF)). Thus, our expression is
equal to

— (degy,,  ®degy) (1@ aprer) - (Id® 9)(pv))
= — (degyy, , ® (degyprui © aproi 0 9)) ().

The result now follows from the formula deg,» = deg, .. © ayroi o 9 of Proposition 4.1. O
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4.2 The semi-small decomposition and Poincaré duality

We prove the semi-small decomposition and Poincaré duality for M when |E| > 2 from
the assumption that Poincaré duality holds for all loopless matroids on nonempty proper
subsets of E. The base case of our induction is the trivial fact that Poincaré duality holds
when |E| = 1.

Proof of the semi-small decomposition and Poincaré duality. Let M be a loopless matroid with
|E| = 2, and assume that Poincaré duality holds for all matroids on nonempty proper subsets
of E, and fix an element i € E. We prove the result in four steps.

Step 1: The subspace xp_; CH;) is zero in grading r for each F € S;. The surjective map
WE: CH(Mr.;) ® CH(M") — xpoi CH;

of Proposition 4.5 increases grading by one, so it suffices to show that CH(Mr_i) ® CH(MF )
is zero in grading r — 1. Note that rtk(Mp ;) = r — rky(F) and rk(MF) = rky(F), so the top
grading in which CH(MF.;) ® CH(MF) is nonzero is (r — rky (F) — 1) + (rkp(F) — 1) = r — 2.

Step 2: Nondegeneracy of the Poincaré pairing on the subspaces.

e The Poincaré pairing is nondegenerate on each x¢_; CH;). By surjectivity of W¥, an
arbitrary nonzero element of xr_; CHy; is of the form \I’f (u) for some nonzero element
p € CH(Mg,;) ® CH(MF). Poincaré duality holds for both CH(Mg,,;) and CH(MF), so
there is an element v € CH(Mr_;) ® CH(MF) for which (deg,, ®deg,;)(uv) # 0. It
follows that
degy, (W (1) WF(v)) = —(degy,  @degye) () # 0

as required.

e If i is not a coloop, then the Poincaré pairing is nondegenerate on CH ;). This result
follows from the formula deg,, 0 9; = degM\i of Proposition 4.1. Indeed, if 9;(1) € CH;
is nonzero, by Poincaré duality for M\i there is an element v € CH(M\i) for which

0 # degyy (uv) = degy (9i(uv)) = degy, (9i(p) i (v))-

e If i is a coloop, then the Poincaré pairing is nondegenerate on CH ;) + xg; CH;y. We
have the formula deg,,; = deg,, o xg; o 9; from Proposition 4.1. Given a nonzero
element 9;(u) € CH;), there exists v € CH(M\i) for which deg,,;(uv) # 0 by Poincaré
duality for M\i. The element xg\;9;(v) € xg; CH;) satisfies

deg,,(xp\i9:i(v)9i(p)) = degM\i(VH) # 0.

The same argument shows that for any nonzero element xg\;9; (1) € xg; CH;), there
exists 9;(v) € CHy;) for which deg,,(xg\;9i(1)9i(v)) # 0.

Step 3: Orthogonality of the subspaces under the pairing and trivial pairwise intersection. We first
show that the relevant pairs are orthogonal with respect to the Poincaré pairing. It follows
that each such pair intersects trivially by Step 2.
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e Assume F, G are distinct elements of S;. If F, G are incomparable, then xr_; CH;) and
xcui CHy;) are clearly orthogonal. Assume that F < G and note that

XroiXGui = Xroi(XG + Xgui) = Xruidi(xc)

so that xr; CH;) - xgui CH(;y < xrui CH(yy. Since xro; CHy;) is zero in degree 7, the
subspaces are orthogonal.

e If i is not a coloop, then CH ;) - xp,; CH;y < xrui CH(;) which is zero in degree r so
CHy;) is orthogonal to each xr_; CH ;).

e If i is a coloop, then CH;) - xri CH(;) < xro i CH;) which is zero in degree r, and
xpixroi = 0 because E\i and F u i are incomparable.

It remains to show that CH(;) and xg,; CH;) intersect trivially when i is a coloop. If u is a
nontrivial element in their intersection, then there exists v € CH;) for which deg,,(uv) # 0
by the third part of Step 5. However, uv is an element of CH(;) which is zero in grading .
Thus CH(,‘) N XE\i CH(,‘) =0.
Step 4: The direct sum spans CH(M). The result is clear in grading 0. To show the result in
grading 1, it suffices to show that x¢ lies in the direct sum for each nonempty proper flat
G. If G\i is not a flat, then xg = 9i(xg\;) € CH(;. If G\i and G are distinct nonempty flats,
then XG\i € S;and xg € x(G\i)uiCH(i)- If G\l = G, then xg = 9i(xg) — xgui lies in CH(i) or
CH;) ® xcui CH(;y depending on whether G U i is a flat. The last case is G = {i}, which is
handled by the observation that x; can be written as a linear combination of the variables
xy for H # G.

Note that the direct sum of the semi-small decomposition is just the CH(M\i)-submodule
of CH(M) generated by CH' (M). To show that the direct sum is all of CH(M), it suffices to
prove that

CHY, -CH‘(M) = CH*"'(M)  for each k > 1,

In fact, it suffices to prove the case k = 1. Indeed
CHY,, - CH"(M) = CHy, - CH' - CH*" (M) = CH*(M) - CH*"!(M) = CH*"(M)

foreachk > 1.
Assume that i is not a coloop. Since

CH?*(M) = CH'(M) - CH'(M) = (CH}I.) P xFUiCH(gZ.)> -CH'(M)
FeS;

it suffices to show that xr_,; - CH! (M) < CH%Z.) .CH! (M) for each F € §;. Next, since
XFoi CH! (M) = xpyi (CH%U &) @ JCGU,‘CH(()i)>

GEeS;

it suffices to show that xr_;xc.; is contained in CH%I.) -CH! (M) foreach G e §;. If Fand G
are distinct, then

0 F and G are incomparable
XruiXcui = { xruivi(xg) F< G
di(xp)xgui GG F
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which lies in CH}I.) -CH!(M). What remains is to show that X% € CH%i) -CH'(M).
We first observe that

2
XFuiOM = XFuinG = XFui ( Z xG) + Xpyi T XFui ( Z XG)

ieG ieGZFui FuicG

while at the same time forany j ¢ F Ui

XFuiM = XFui 2 XG = XFrui 2 XG.
jeG Fu{ij}sG

Thus

—XF; = XFui Z X6+ Z X6 — Z X6
ieGSFui FuicG Fu{i,j}cG
Ifie G < Fui, then xpuixg = 9i(xp)xc. Similarly, if F Ui & G, then xp_ixg = xruidi(xg\i) SO
X7 € CH}i) -CH'(M) as required.
If i is a coloop, then

CH*(M) = (CH}O @ xp; CHY,y ® @ xroi CH(()i)> -CH'(M).
FeS;

The previous arguments reduce the problem to showing that xé\i € CH%Z.) -CH'(M). Using a
similar observation as before, we have

2
0= xE\inG = Xp\iOM = XE\i Z XG = Xp; T XE\ Z XG
i€G jeG jeGSENi

for some j # i. Since xp\iXg = xp\;9i(x¢), it follows that xé\i € CH%I.) -CH'(M) asrequired. O

4.3 The hard Lefschetz theorem and the Hodge-Riemann relations

Remark. Let M be a loopless matroid. If ¢ is an arbitrary element of CH'(M), we say that
CH(M) satisfies the Hodge-Riemann relations for € if the conclusion of the Hodge-Riemann
relations hold for £, which is to say that the Hodge-Riemann form associated to ¢

CHf(M) x CH*(M) - R (u,v) — (—1)"deg,, (" *uv)

is positive-definite on ker(¢£~%*+1) for each k < r/2.

Since M satisfies Poincaré duality, the Hodge-Riemann relations for £ € CH! (M) imply
the hard Lefschetz theorem for . If 1 € CH* (M) satisfies £/~21) = 0, then 1 lies in the kernel
of £'=2+1. But (—1)Fdeg,,(¢'=*nn) = (—1)*deg,,(0) = 0, and since the Hodge-Riemann
form is positive-definite on the kernel of {"~%+1, it follows that n = 0. By Poincaré duality,
the injective map £'~%: CH'(M) — CH'~*(M) is an isomorphism.

We also note that the hard Lefschetz theorem for ¢ is equivalent to the nondegeneracy of
the Hodge-Riemann form of ¢, which is easily seen by induction.
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Proposition 4.6. If M and N are loopless matroids for which CH(M) and CH(N) satisfy the
Hodge-Riemann relations for € € CH' (M) and h € CH'(N), respectively, then CH(M) ® CH(N)
satisfies the Hodge-Riemann relations for (@1 + 1 ® h.

Proof. Letrk(M) =r+1and rk(N) = s + 1, and set

P* = ker (t’r_2k+1 . CH" (M) — CHV_kH(M))
R = ker (°~2*": CH/(N) — CH/*1(N))

for k < r/2 and j < s/2. The Hodge-Riemann relations yield the direct sum decompositions

CH (M) = PP @ 6 'P @ - .- @ P @ P¥
CH/(N) =WR°@h R'®---®hRIT'@®R

which are orthogonal with respect to their Hodge-Riemann forms.

To prove that CH(M) ® CH(N) satisfies the Hodge-Riemann relations for {® 1 + 1 ® h in
each degree k < (r + 5)/2, first note that the k-graded part of CH(M) ® CH(N) decomposes
as a direct sum

P PR
a+i+b+j=k
where 4,1, b, j are nonnegative integers that sum to k. For each pair of nonnegative integers
i,jfor whichi<r/2,j<s/2,andi+ j<k,let

V= @D CPQIR.

a+b=k—(i+)

It is straightforward to verify that QZ and QZ] " are orthogonal with respect to the Hodge-
Riemann form of {® 1 + 1 ®h when (i, j) # (i, j'). It therefore suffices to prove the result on
each such summand.

Fix nonnegative integers i, j for which i < r/2 and j < s/2. We prove the Hodge-Riemann

relations on
r+s—(i+])

ij

oy
which is sufficient because multiplication by £ ® 1 + 1 ® h preserves i,j. By choosing a
basis for P! ® R/ and using the Hodge-Riemann relations for £ and /, the argument reduces
to showing that R[¢, 1] /(£+!, h9+1) satisfies the Hodge-Riemann relations for ¢ + h where
¢ =r—2iand d = s — 2j. The result then follows from the usual Hodge-Riemann relations
for the compact Kahler manifold CP° x CP? or by a more direct combinatorial argument
using the Lindstrom-Gessel-Viennot lemma, explained in the proof of [AHK18, Lemma 7.8].

We only briefly outline the argument.?

Without loss of generality, we may assume that ¢ < d. It suffices to consider gradings
k < ¢, since the map (€ + )" ~%+1 is injective when ¢ < k < (c+d)/2. For k < ¢, a basis for the

2The author may return to this later to provide the details.
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k-graded part of R[¢, h]/(€5T1, h¥*1) is ¢k, €=k, ..., h¥. The entries of the matrix representing
the Hodge-Riemann form with respect to this basis are binomial coefficients

c+d—2k>

deg((f + h)c+d72k{)i+jhk7i+k7j) _ ( o _]'

A combinatorial argument using the Lindstrom-Gessel-Viennot lemma computes the sign of
the determinant of the Hodge-Riemann form from this observation. The result then follows
using the fact that the kernel of (¢ + h)"~%%*! is one-dimensional for k < c. O

Lemma 4.7. Let M be a loopless matroid, and suppose M satisfies the hard Lefschetz theorem with
respect to € € CH'(M). Then M satisfies the Hodge-Riemann relations with respect to ¢ if and only
if the signature of its Hodge-Riemann form on CH(M) is

(=1)*J(dim CH/(M) — dim CH/~*(M))
0

k
j=

foreach k < r/2.
Proof. Since M satisfies the hard Lefschetz theorem with respect to ¢, we have the splitting

CHN(M) = ker(£~2*1) @ ¢(CH (M)

which is orthogonal with respect to the Hodge-Riemann form of ¢. If the Hodge-Riemann
relations are valid for ¢, then its Hodge-Riemann form has the stated signature by induction
on k using this decomposition. The converse is similarly verified. m]

Proof of the hard Lefschetz theorem and the Hodge-Riemann relations. We prove both results by
simultaneous induction on the size of |E|. If |E| = 1, then tk(M) = r + 1 = 1 and there are no
ample classes. Hence both results are vacuous. We assume that |[E| > 2. If r = 0, then again
there are no ample classes and the results are vacuous. If r = 1, then CH’(M) = R = CH'(M).
A class € € CH' (M) is ample if and only if deg,,(¢) > 0 so both the hard Lefschetz theorem
and the Hodge-Riemann relations are easy to see. Thus, we assume that r > 2. By induction,
we assume that both the hard Lefschetz theorem and the Hodge-Riemann relations hold for
all matroids on nonempty proper subsets of E.

Our proof is in six steps which we now outline. Step 1 is to prove the hard Lefschetz
theorem for M. The remaining steps are to prove the Hodge-Riemann relations for M. Step 2
reduces the Hodge-Riemann relations for all ample classes to the Hodge-Riemann relations
for a single nef class. The proof of Step 2 uses the result of Step 1. For Steps 3 - 6, we fix an
element i € E and use the semi-small decomposition to prove the Hodge-Riemann relations
for a nef class. If i is not a coloop, then the nef class we use is 9;(¢) where £ € CH'(M\{) is
ample. If i is a coloop, then the nef class we use is 9;({) + exg\; for a sufficiently small ¢ > 0.
The proof of the Hodge-Riemann relations is done summand-by-summand in the semi-small
decomposition. Step 3 handles the summands xr_; CH;) for F € S;. Step 4 finishes the case
where i is not a coloop. Step 5 verifies that 9;(£) + exg; for small ¢ > 0 is indeed nef when i
is a coloop. Step 6 finishes the case where i is a coloop.

Step 1: The hard Lefschetz theorem for M. Let £ € CH' (M) be ample, and suppose 1 € CH*(M)
satisfies {'~21) = 0 where k < r/2. We show that xpn = 0 for each nonempty proper flat F of
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M using the Hodge-Riemann relations for CH(Mr) ® CH(MF). It follows that un = 0 for
all u e CH*(M) so = 0 by Poincaré duality for M. Thus ¢/~%: CH*(M) — CH"*(M) is
injective and is therefore an isomorphism again by Poincaré duality for M.

Fix a nonempty proper flat F. We have the commutative diagram

CH(M 2 H(M)

\/

CH(Mr) ® CH(MF)

where @}, and ¢}, are the pushforward and pullback maps defined in Lemmas 4.2 and 4.3,
respectively. Let np = ¢! (1) and €r = @} (£). Write £ = Y5 cgxc with cp = 0 and ¢ > 0
whenever G, F are distinct and comparable. Then

b = <Z CGxG\F> ®1+1® <Z CGXG>

F<G GSF

It is straightforward to verify that > r_; ccxc\r € CH' (M) is ample as along as the sum is
nonempty, and similarly that >} ccxc € CH' (M) is ample as long as the sum is nonempty.
At least one of the sums is nonempty by assumption that » > 2. If one of the sums is empty,
then the corresponding Chow ring is simply a copy of R in grading 0. Hence, in all cases,
CH(Mr) ® CH(MF) satisfies the Hodge-Riemann relations for ¢ by Proposition 4.6. From
the identity deg, = deg,, ®deg,; = deg,, o ¥}, we see that

57‘—21(—1

deg (6> "npnr) = deg,, (xpt* ).

Write € = > crxr where each cr is positive, and observe that
0 = degy, ('~ *nenr) = > cr degy, (xrl 1) = ) cr degp (6> neng).
F F

Since cr is positive for every F, we find that degF(@*Zk*lnmp) = 0 for every F. Since nr

lies in the kernel of 5;*2", the Hodge-Riemann relations for CH(Mr) ® CH(MF) imply that
nr = 0. Since Y}, (nr) = x¢1, we have shown that xpn = 0 for every F as required.

Step 2: Reduction of the Hodge-Riemann relations from the ample cone to a single nef class. We
show that if the Hodge-Riemann relations are true with respect to a nef class of M, then they
are true with respect to every ample class of M.

Let A € CH!(M) be a nef class for which the Hodge-Riemann form

() = (~1) degy, (V%)

on CHF(M) is positive-definite on the kernel of A’~2*1 for each k < r/2. The hard Lefschetz
theorem is therefore valid for A. Thus, there is a decomposition

CHN(M) = A(CH (M) @ ker(A"~2+1)
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for each k < r/2 which is orthogonal with respect to the Hodge-Riemann form. By Lemma 4.7,
the signature of the Hodge-Riemann form associated to A on CHF (M) is

k
o = Y. (=17 (dim CH/(M) — dim CH/~}(M)).
j=0

If £ € CH'(M) is ample, then ¢; == t{ + (1 — t)A is ample for each t € (0,1]. Thus, the
Hodge-Riemann form on CH"(M) associated with ¢; is nondegenerate for each t € [0,1]
by Step 1. It follows that the Hodge-Riemann forms on CH¥(M) associated with £ and A
have the same signature. Indeed, signature is the difference between the number of positive
and negative eigenvalues, so it locally constant on the space of nondegenerate forms. The
Hodge-Riemann relations for ¢ then follow from Lemma 4.7.

Step 3: Forany i € E and F € S;, the Hodge-Riemann relations for xr_; CH;y are valid for 9;()
if £ € CH'(M\i) is ample. More precisely, the Hodge-Riemann form of 9;(¢) restricted to
XFoi CH’ESl is positive-definite on the kernel of

Si(f)r_Zk: xFuiCHlElgl — XFUiCH’(;k_l

for each k < r/2. Let {¢ be the image of £ under the map
g0 @by CH(M\i) — CH(Mr,;) ® CH(M")

appearing in Lemma 4.4 which defines the CH(M\7)-module structure on the tensor product.
By the argument in Step 1, we know that

o) = @1 +1®L

where at least one of ¢, £ is ample, and both are ample unless one of the two Chow rings is
just a copy of R in grading 0. From the proof of Lemma 4.4, every flat of Mr , is a flat of
(M\i)r and the map g is the tensor product of the map

Gi flat of Mp;
q/: CH((M\I)F) N CH(MFui) xXg — XG 1sa .a @) F
0 otherwise.

with the identity CH((M\i)f) — CH(MF). It is easy to see that ¢’ sends ample classes to
ample classes. Since {r is of the form 4'(¢') ® 1 + 1 ® ¢”, it follows from Proposition 4.6 that
CH(Mg,;) ® CH(MF) satisfies the Hodge-Riemann relations for ¢r.

By Proposition 4.5, an arbitrary nonzero element in the kernel of

9:(0) % xp CH@;l — XFoi CHgk*1
is of the form W} (u) for some u € CH(Mr,;) ® CH(MF) in grading k — 1. Next
0= Si() W () = Wi(G )
because W¥ is a CH(M\i)-module map. Poincaré duality for Mr_; and M" imply that W¥ is

injective so
—2)—2(k—1)+1
é’F(r )=2(k=1) u=0.
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By the Hodge-Riemann relations for ¢, it follows that
0 < (=1)"!(degy, , ®degye) (6 ) = (=1)" degy, (9:(0) W] ()W} (1))

as required.

Step 4: Ifi € E is not a coloop and £ € CH' (M\i) is ample, then CH(M) satisfies the Hodge-Riemann
relations with respect to the nef class 9;(€). It is straightforward to verify that 9;({) is nef. We
have the semi-small decomposition

CH(M) = CH(,‘) &) (—D XFUi CH(i)
FesS;

which is orthogonal with respect to the Poincaré pairing. Because 9;(¢) € CH(i), the induced
decomposition of CH*(M) is also orthogonal with respect to the Hodge-Riemann form. It
therefore suffices to show that the Hodge-Riemann form is positive definite on the kernel of
9i(€ )*=2+1 on each summand. The summands of the form xr,; CHy;) for F € §; are handled
by Step 3.
Fix a nonzero element 9;() in the kernel of
(€)1 CHY) — CHEI.)"” :

Then 0 = 9;(£)~2+19;(u) = 9;(€"~2+1y). Because M\ satisfies Poincaré duality, the map 9;
is injective so u € CH*(M\i) lies in the kernel of £/~%+1, By the Hodge-Riemann relations
for M\i, we have that

0 < (~1)* degy, (€ 2 up) = (1) degy, (91(6)%8;(1)(u)).

Step 5: If i € E is a coloop and ¢ € CH'(M\i) is ample, then 9;(£) + EXE\; € CH' (M) is nef for all
sufficiently small ¢ > 0. Let €. = 8;({) + exg\; for each ¢ > 0. We show that £. is nef when ¢ is
sufficiently small by showing that for each flag % of nonempty proper flats of M, the class ¢;
is convex at #F for sufficiently small e. Since there are finitely many flags, the result follows.

e Suppose F is a k-flag of nonempty proper flats F; & - - - & F of M for which Fy = E\i.
Then Fy < --- & Fx_; is a (k — 1)-flag of nonempty proper flats of M\i. Thus, we may
write

te = ZCG(JCG + XGui) + EXp\
G

where the sum ranges over nonempty proper flats G of M\i with the property that
cp; =0forj=1,...,k—1and cg > 0 for all nonempty proper flats G of M that extend
F toa (k + 1)-flag. Indeed, any such flat G is also a nonempty proper flat of M\i which
extends F1 & --- & Fi_q to a k-flag of M\i. Now let A be an arbitrary linear function
on M for which A(F;) = 0for j =1,...,k —1and A(E\i) = 1. If ¢ > 0 is sufficiently
small, then the linear function ¢A agrees with the piecewise linear function £, on &
and ¢A(G) < c¢ for any nonempty proper flat G of M extending F to a (k + 1)-flag. It
follows that ¢, is strictly convex at F for sufficiently small £ > 0.
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o Assume F is a k-flag of nonempty proper flats F; < - - - & F, of M for which F # E\i.
Then Fy\i € --- < F;\iis a flag of proper flats of M\i. We may write

e = ZCG(XG + xcu,-) + EXE\i
G

where the sum ranges over nonempty proper flats G of M\i, so that the coefficient of
Xp; is zero in this expression for each j = 1,...,k and so that cg > 0 for each nonempty
proper flat G of M\i that extends Fi\i < - - - < Fi\i. If H is a nonempty proper flat of M
extending F to a (k + 1)-flag, then H\i is comparable to each of F1\i < --- < F;\i. It
follows the coefficient of xy is nonnegative. Thus ¢, is convex at # independent of the
choice of ¢ > 0.

Step 6: If i € E is a coloop and £ € CH'(M\{) is ample, then CH(M) satisfies the Hodge-Riemann
relations with respect to the nef class 9;({) + exg\; for all sufficiently small ¢ > 0. We have the
semi-small decomposition
CH(M) = S® P xr.i CHy;) where S = CH; @ xp; CHy;)
FeS;

whose induced decomposition of CH*(M) is easily seen to be orthogonal with respect to the
Hodge-Riemann form of £,. It therefore suffices to prove the Hodge-Riemann relations for ¢,
on each summand. The summands xr_; CH;) are handled by Step 3 because multiplication
by ¢ is the same as multiplication by 9;(f) on xr_; CH;). If 0 < k < (r — 1)/2, then let
Pk < CH¥(M\i) denote the kernel of the map ¢/~ so that CH*(M\i) = P @ ¢(CH*' (M\i))
by the Hodge-Riemann relations for ¢. Thus

Sk = 9,(PXy @ 9;(¢) CH’ESl @ XE\; CH’glgl .

If  is even and k = /2, then CH/2(M\i) = £(CH"/?>~!(M\i)) so the same decomposition is
valid after defining P"/? = 0.

We will first show that the Hodge-Riemann form of ¢, is nondegenerate on S for k < /2
for sufficiently small ¢ > 0. To then prove the Hodge-Riemann relations for ¢, on SF, it
suffices to show that the form is positive-definite on S° and that its signature oy on S* equals
dim S¥ — dim S¥! — g;_ for 1 < k < r/2. Note that this is equivalent to showing that
ox = dim P*. Indeed dim P° = dim S° and it is straightforward to verify that

dim S — dim $¥! — dim P! = dim P*.

Our goal then is to show that the Hodge-Riemann form of ¢, restricted to S* is nondegenerate
and has signature P* for all small ¢ > 0.
With respect to the given splitting of S, let the symmetric matrix

Hll(é‘) le(é') H13(€)
H(e) Haxl(e) Has(e)
Hzi(e) Hx(e) Haz(e)

represent the Hodge-Riemann form of £, restricted to S¥. This matrix is congruent to

¢ 'Hi(e) e 'Hip(e) His(e)
H(S)Z €_1H21(€) E_1H22(€) H23(€) .

Hzi(¢) Hy(e)  eHas(e)
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Each entry is a polynomial in ¢, so we may define H(0) to be the limit of the matrices H(¢)
as ¢ — 0. We show that H(0) is nondegenerate and has signature dim P¥, which implies the
same for H(¢) for all sufficiently small ¢. First, we explicitly calculate H(0). If p,v € Pk then

(-1

degM({’z’ZkSi(y)Si(v)) = (—1)" deg,,((r — 2k)xE\,-S,~(€r*1*2kuv)) + O(e)
= (r— 2K)(~1) degyy (€ uv) + O(e)

so the limit of e ~'Hj1 (€) as ¢ — 0 is just a positive multiple of the Hodge-Riemann form of ¢
restricted to P¥ when r > 2k. If r = 2k, then e ~'Hy; (¢) is just the empty matrix. By similar
calculations, we find that ¢ “'Hy,(¢), Hiz(¢), and eHss(¢) go to zero as ¢ — 0. We also find
that e 'Hx(€) and Hps(€) both limit to negative multiples of the Hodge-Riemann form of ¢
on CH"1(M\i). In particular

(r — 2k) Q| 0 0
H(0) = ( 0 —(r—20)Q}" —Q’;_l)
0 —Q! 0

where Q| is the Hodge-Riemann form of £ restricted to P¥ = CH*(M\i) and where ng_l is
the Hodge-Riemann form of £ on CH*"!(M\). It follows from the nondegeneracy of Q’;| p

and Q’;_l that H(0) is nondegenerate.
The signature of H(0) is just the sum of the dimension of P¥ with the signature of

k—1 k—1
A B\ _ —(r=20Q, -Q,
B 0 Q! 0
because QF|px is positive-definite. We claim that the signature of this 2 x 2 matrix is zero.

Note that both A and B are symmetric matrices, and B is invertible. If r > 2k, then A is also
invertible. In this case

A B\ [ Id 0) /(A 0 Id A'B
B 0/ \BA! 1d/\0 —-BA~'B 0 Id

from which the result follows because A and BA~!B have the same signature. If r = 2k, then
A = 0. Let A(6) be an invertible symmetric matrix for each 6 > 0 for which A(6) — A(0) :=0
as 6 — 0. Then the signature of

A(5) B

(" o)

is zero for all 6 > 0 and so the signature is also zero when 6 = 0 by nondegeneracy of the
matrix. Thus H(0) is nondegenerate and has signature dim P* from which it follows that the
same is true for the Hodge-Riemann form of . on S* for sufficiently small ¢ > 0. o

Appendix

We prove Buchberger’s criterion and use it to verify Proposition 3.17 which asserts that
the elements

8EG = ZFZG F, G are incomparable nonempty flats
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)rkM(G)_rkM(F)

8rc = zr (ZGQH zZH F ¢ G and F, G are nonempty flats

)l‘kM (G)

826 = (Xoenzn G is a nonempty flat.

of R[ xr | F is a nonempty flat | form a Grébner basis of

J = {zrz¢ | F,G incomparable ) + <22p |ieE).
ieF
Proof of Buchberger’s criterion. If f is a nonzero polynomial, then its degree is the monomial
of LT(f). We compare the degrees of two polynomials by comparing the monomials using
the monomial ordering.

Let f be a nonzero polynomial in I and write f = >, h;g; for some polynomials hy, ..., hy,.
Let M be the maximal degree among h1g1, ..., hugm. If M equals the degree of f, then it
follows that the leading term of f lies in the ideal generated by the leading terms of g1, ..., gm-
Otherwise, M is greater than the degree of f. We will find a new collection of polynomials
hy, ..., h, for which f = >} hig; and for which the maximal degree of the /g; is less than M.
The result then follows from the assumption that a monomial ordering is a well ordering.

Let ] < {1,...,m} be the set of indices j for which the degree of /;¢; is M. Then

f =D LT(h))gj + Y (hj — LT(h)g; + ) higi

jel jel i¢]

where the degree of each term in the latter two sums is less than M. Note that the first sum

s= > .LT(hj)g;

jeJ

therefore also has strictly smaller degree than M. We claim that s may be written as

S = Z bi,jS(LT(hi)gi/ LT(hf)gf)
ije]

where b; j are constants in the ground field. To see this, first note that
S(LT(h;)&i, LT (h;)g;) = AiLT(hi)gi — A;LT(hj)g;

where A;, A; are nonzero constants because LT (h;)g; and LT(h;)g; for i, j € | have the same
degree M. It follows that the polynomials LT (k;)g; for j € | have the span linear span as the
syzygies S(LT(h;)gi, LT (hj)g;) for i, j € | together with a fixed LT (h)gx for k € |. Hence s is a
linear combination of the syzygies along with LT (h)gx, but because the degrees of s and the
syzygies are strictly smaller than that of LT (f)gx, the coefficient of LT (f)gx must be zero.
Hence
f =D bi;S(LT(hi)gi, LT(h)gn) + Y \(hj — LT(hy))gj + > higi-
ije] jeJ i¢]

The degree of each S(LT(h;)g;, LT (h;)g;) is less than M so if we can express each such syzygy
as a sum ) ; {xgx where each ;g is of degree at most the degree of the syzygy, then we
are done. Note that S(LT(h;)gi, LT(h;)g;) is the product of S(g;, gj) and a monomial term.
Because long division of 5(g;, &j) by g1, ..., ¢m may be done to obtain r = 0, it follows that
S(LT(h;)&i, LT (h;)g;) can indeed be expressed as a sum Y ; {,gx where each £;g; has degree
at most the degree of the syzygy. O
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Proof of Proposition 3.17. Because the elements gr¢ generate ¥ by Lemma 3.19, it suffices by
Buchberger’s criterion to apply long division to each syzygy S(g4,8, §c,p) by the elements
grc and obtain ¥ = 0. Throughout, we use the convention that zr = 1if F = ¢J. Note that if
a polynomial f is divisible by gr¢, then LT(f) is divisible by LT(grg). Thus if at any stage
of long division, the polynomial f is divisible by some g, we are done.

Case: Both pairs {A, B} and {C, D} are incomparable. Then S(zazp, zczp) = 0 since the syzygy
of any two monomials is zero.

Case: One pair is incomparable while the other pair is comparable. We may assume that A, B
are incomparable and C ¢ D. Let d = rky(D) — rky(C) so that LT(gc,p) = zcz%). If the sets
{A, B} and {C, D} are disjoint, then the syzygy is just

S(gap,gcp) = LT(gcp)gas + LT(gap)gco = LT(gcp)gaB + §AB8CD
and is therefore divisible by g4 p. The two sets {A, B} and {C, D} cannot be equal, so we may
assume that A € {C,D} and B ¢ {C,D}. If A = C, then the syzygy is
S(848,84D) = Zpzaze — 2824 (Xpep 21)"

which is again divisible by ga s = zazp. Finally assume that A = D. Then

—5(8a8,8ca) = z82c(Dacy zn)" — zzcZY

One term in the expansion of the sum zpzc (Y 4y zn)? is szcsz‘ which is canceled. Among
the rest of the terms, we may subtract the monomials that are divisible by z4azg = ga . The
result is

Zpzc (ZAgH ZH)d
If B and C are incomparable, then the polynomial is divisible by gz, so assume that they
are comparable. It follows that C & B because B and A are incomparable. Now again by
subtracting monomials in which two incomparable flats appear, we obtain
Zpzc (ch(AuB)gH z)"

We claim that this polynomial is divisible by gp (aup)- Indeed

rkp (A U B) — rky(B) < rk(A) — rk(A n B) < rk(A) — rk(C) =d.

Case: Both pairs are comparableand B = D. Wehave A € Band C & B. Letd = rky(B) —rky(A)
and e = rky(B) — rky(C) and assume without loss of generality that e > d. Then the syzygy

S(gaB, gcp) is

22 24 (Xpen zn)® — zazc(Cpen 2n)¢ = zazc(Xpen zn)* (25 ¢ — (Cpen z0) )

which is divisible by g4 p.

Case: Both pairs are comparable and A = C. Here A < Band A < D. Letd = rky(B) — rky(A)
and e = rky(D) — rkp(A). Then the syzygy S(ga8,84,p) is

252A(Xpen 20)? — 2324 (X pey 2H)"-

43



If B, D are incomparable, then by dropping incomparable terms, we obtain

ZEDZA(ZCI(BUD)QH zp)? — Zng (ch(BuD)gH zn)".

There is no cancellation between these sums. The first sum is divisible by ¢p «(pup) while
the second is divisible by g (supy. If B, D are comparable, then assume that B < D without
loss of generality. In the syzygy, the lead terms of the two polynomials cancel, so the syzygy
is difference of the two polynomials

202 ((Spen z0)" — 24) — 242§ ((Zpen zn)° — 20).

Notice that every monomial term in the second polynomial is divisible by z{ while no term
of the first polynomial is. Thus, there is no cancellation between the two polynomials. Every
term of the second polynomial is divisible by the leading term of g4 5, so we may add

845((Xpen z0)* — 2p)
to the syzygy. We thereby obtain

242y (Lpen z0)" — 24) + 24((Epen 21)" — 25) (Xpen 21)° — 2p)

=zA((Xpen ZH)d - Z%)(ZDQH zn)*

which is divisible by ga p.

Case: Both pairs are comparable and B = C. Here A € B < D, and we let d = rky(B) — rky(A)
and e = rky(D) — rky(B). The syzygy S(g4,,$8,p) is

242 (Zpcn 21)" — 25) — 2425 ((Spen 2n)° — 25).

Expressed as the difference of the two given polynomials, there is no cancellation between the

two. The second polynomial is divisible by LT (ga ) = zAz’é soweadd gas((Xpep zH) —25)

to syzygy to obtain
z24((Lpen z1)" — 2) (Xpen zn)"-
The sum of the terms that are divisible by LT(gpp) = zpz;, is
z24((Lpenzn)? — 25 — (Xpen z1)")2p.
We subtract the corresponding multiple of ggp
ZA((ZB;H ZH)d - Zg - (ZB;H ZH)d) (ZDQH zy)°
from the expression to obtain
ZA (ZBgH ZH)d(ZDgH zy)’.

Suppose some monomial p of (3 5y zy)?isdivisibleby zy where Y < D. Thenzap (Y pepy zH)°
is divisible by gyp so we delete these terms. Of the remaining monomials of (3 5y zy)4,
consider the ones from (3, zir)?. The sum of their corresponding terms is za (>, pcpy zn )"
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which is just ga p so we delete these as well. Every remaining term is divisible by a polyno-
mial of the form zazw (X,pcpy zr)° where B & W and W, D are incomparable. Note that by
incomparability, this polynomial reduces to

ZAZW(ZCI(DuW)gH zn)
which is divisible by EWl(DUW)-

Last case: Both pairs are comparable and {A, B} and {C, D} are disjoint. Here A< Band C < D,
and let d = rky(B) — rkym(A) and e = rky (D) — rky(C). The syzygy S(ga,8,§cp) is

zczpza((Xpen zn)" — 25) — 2aZgzc(Epen 20)° — 2p)

If A, C are incomparable, this polynomial is divisible by g4 c. Assume they are comparable
and that A ¢ C without loss of generality.

e Subcase: B, C are incomparable. The second sum is divisible by ggc so we drop it. If
B, D are incomparable, then by further dropping incomparable terms, we obtain
zazczp (Xapop)ch zp)"
which is divisible by ¢p «sup)- If B, D are comparable, then B < D and by dropping
incomparable terms, we have obtain
zazezp (ZapocycH zp)"

which is divisible by ¢cauc)-
e Subcase: C ¢ B. If B and D are incomparable, then by dropping incomparable terms,
we obtain

zczpza(Xason)cH )" — ZAZgZC(ch(BuD)gH zn)
with no cancellation. The first polynomial is divisible by ¢p «(3_p) and the second is
divisible by ¢g qsup). If B and D are comparable, then the syzygy is the difference

zazczy(Upen 21)? — 28) — zazzc((Xpep z0)° — 25)

with no cancellation. If B & D, then add a multiple of g4z to obtain
zaze((XUpen ZH)d - ZdB) (Xpenza)

which is a multiple of gcp. If D & B, then subtract a multiple of gcp to obtain
zazc(zp — (Xpen 2n)) (Epen 21)°

which is a multiple of ga p.
e Subcase: B < C. We write the syzygy as the difference

zazczp(Spen zn)? — 2) — zazfzc(Xpen zn)° — 25)

which has no cancellation. Adding the appropriate multiple of g4 p corresponding to
the terms divisible by zAzg, we obtain

zazc((Bpen 21)" — 23)(Xpen z1)°

which is divisible by gcp. O
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