Hodge theory for matroids

Joshua Wang

Abstract

This expository paper provides a self-contained proof of the Heron-Rota-Welsh conjecture concerning the characteristic polynomial of a matroid. The conjecture, resolved affirmatively by Adiprasito-Huh-Katz, asserts that the absolute values of its coefficients are log-concave. A key component of the proof is a version of Hodge theory for matroids, which refers to a collection of results about the Chow ring of a matroid that are analogous to results about the cohomology of compact Kähler manifolds obtained by Hodge theory. The results are Poincaré duality, the hard Lefschetz theorem, and the Hodge-Riemann relations, the three of which are collectively referred to as the Kähler package and are proved for matroids directly, independent of their complex-geometric analogues.

After preliminaries on matroids and the characteristic polynomial, we explain how the Kähler package implies the Heron-Rota-Welsh conjecture. The degree map of the Chow ring is then constructed using a Gröbner basis computation, and the Kähler package is proved using semi-small decompositions. This paper is the author's minor thesis, written in partial fulfillment of the mathematics PhD requirements at Harvard University.

Contents

1 Introduction 2
2 Matroid preliminaries 4
2.1 The chromatic and characteristic polynomials 6
2.2 Möbius inversion 9
3 The Chow ring 12
3.1 The Kähler package and log-concavity 16
3.2 The degree map 22
4 The Kähler package 26
4.1 The pullback and pushforward maps 27
4.2 The semi-small decomposition and Poincaré duality 32
4.3 The hard Lefschetz theorem and the Hodge-Riemann relations 34
Appendix 41
References 46

1 Introduction

A sequence of real numbers a_{0}, \ldots, a_{n} is unimodal if there is an index i for which

$$
a_{0} \leqslant \cdots \leqslant a_{i} \geqslant \cdots \geqslant a_{n} .
$$

The sequence is log-concave if

$$
a_{i}^{2} \geqslant a_{i-1} a_{i+1} \quad 0<i<n .
$$

A log-concave sequence of positive numbers is necessarily unimodal. ${ }^{1}$
Many long-standing conjectures about the unimodality of naturally occurring sequences of positive numbers in combinatorics have recently been resolved by proving the stronger conjecture that they are log-concave. Remarkably, the major breakthrough in the recent proofs of log-concavity has been a connection to Hodge theory, which is an analytic theory of compact Kähler manifolds. Initially, Hodge theory was directly used to solve problems in combinatorics [Huh12, HK12]. Later, a combinatorial theory was developed [AHK18], inspired by but logically independent from the main results of Hodge theory. This new theory, referred to as Hodge theory for matroids, has been applied with much success toward many combinatorial problems regarding log-concavity. The purpose of this paper is to provide a self-contained development of Hodge theory for matroids culminating in a proof of the Heron-Rota-Welsh conjecture, whose resolution [AHK18] was one of the first major successes of this new field.

Associated to a finite graph G is a polynomial with integral coefficients called its chromatic polynomial χ_{G}. By definition, the value of χ_{G} at a nonnegative integer q is the number of proper q-colorings of the graph. If G has no loops, then the polynomial $\chi_{G}(q)$ is divisible by q^{c} where c is the number of connected components of G, and the coefficients of the quotient

$$
\frac{\chi_{G}(q)}{q^{c}}=a_{0}(G) q^{n}-a_{1}(G) q^{n-1}+\cdots+(-1)^{n} a_{n}(G) \quad a_{i}>0 \quad i=0,1, \ldots, n
$$

alternate in sign and are all nonzero. Read conjectured in 1968 that the sequence of positive numbers

$$
a_{0}(G), a_{1}(G), \ldots, a_{n}(G)
$$

is unimodal for any finite loopless graph G [Rea68]. Hoggar conjectured in 1974 that the sequence is log-concave [Hog74]. These conjectures were proven by Huh in [Huh12].

Both conjectures have generalizations to matroids, which are combinatorial objects that formalize the notion of linear independence for a collection of vectors in a vector space. A finite graph has an associated graphic matroid that is specified by the data of which subsets of edges are cycleless. A matroid M has a characteristic polynomial χ_{M}, which coincides with $\chi_{G}(q) / q^{c}$ when M is the graphic matroid associated to a finite graph G. If M is loopless, the characteristic polynomial is an integer polynomial whose coefficients are nonzero and alternate in sign. In the 1970s, Heron and Rota conjectured that the absolute values of the coefficients of the characteristic polynomial of a matroid are unimodal [Rot71, Her72], and Welsh later conjectured that they are log-concave [Wel76]. The Heron-Rota-Welsh conjecture was proven by Adiprasito, Huh, and Katz in [AHK18].

[^0]The Chow ring $\mathrm{CH}(M)$ of a matroid M is a graded algebra $\mathrm{CH}(M)=\oplus_{k=0}^{r} \mathrm{CH}^{k}(M)$ over the real numbers. The integer r is (one less than) the rank of the matroid M, and it turns out there is a linear isomorphism $\operatorname{deg}_{M}: \mathrm{CH}^{r}(M) \rightarrow \mathbf{R}$ called the degree map. Hodge theory for matroids refers to a collection of results about the Chow ring, which we now summarize.

- Poincaré duality: for every nonzero element $\mu \in \mathrm{CH}^{k}(M)$, there exists $v \in \mathrm{CH}^{r-k}(M)$ for which $\operatorname{deg}_{M}(\mu v) \neq 0$.
- The hard Lefschetz theorem: if $\ell \in \mathrm{CH}^{1}(M)$ is ample, the map $\mathrm{CH}^{k}(M) \rightarrow \mathrm{CH}^{r-k}(M)$ given by multiplication by $\ell^{r-2 k}$ is an isomorphism for $k \leqslant r / 2$.
- The Hodge-Riemann relations: if $\ell \in \mathrm{CH}^{1}(M)$ is ample, then the symmetric bilinear form

$$
\mathrm{CH}^{k}(M) \times \mathrm{CH}^{k}(M) \quad(\mu, v) \mapsto(-1)^{k} \operatorname{deg}_{M}\left(e^{r-2 k} \mu v\right)
$$

is positive-definite on the kernel of the map $\ell^{r-2 k+1}: \mathrm{CH}^{k}(M) \rightarrow \mathrm{CH}^{r-k+1}(M)$.
The set of ample classes in $\mathrm{CH}^{1}(M)$ is nonempty as long as $r \geqslant 1$. These three theorems are collectively referred to as the Kähler package and were established in [AHK18] to prove the Heron-Rota-Welsh conjecture. We note that the coefficients of the characteristic polynomial are not the dimensions of the graded pieces $\mathrm{CH}^{k}(M)$; instead, they arise as values of the Poincaré pairing. The basic inequality of log-concavity $a c-b^{2} \leqslant 0$ is equivalent to the assertion that a certain symmetric 2×2 matrix has nonpositive determinant, and the Hodge-Riemann relations are what ultimately guarantee such a condition.

In section 2, we define and verify the basic properties of matroids, and show that the characteristic polynomial of a graphic matroid recovers the chromatic polynomial of the graph. In section 3, we define the Chow ring of a matroid and explain how the Kähler package implies log-concavity of the coefficients of the characteristic polynomial. In section 4, we prove the Kähler package using semi-small decompositions.

The author used [Ox103, Ox111] for matroid basics and [Kat16, AHK17, Bak18, Huh18] for surveys and introductions to Hodge theory for matroids. Much of this paper is drawn directly from [AHK18]. The proof of the Kähler package follows [BHM^{+}20]. Two detours were required to make the proof self-contained. The first is the construction of the degree map, where we use the Gröbner basis computation in [FY04] instead of Minkowski weights which seem to ultimately rely on the intersection theory of [FMSS95]. The author thanks Christopher Eur for suggesting this route in constructing the degree map. The second is the proof of the Hodge-Riemann relations for Boolean matroids, which is proved in [$\left.\mathrm{BHM}^{+}{ }^{+} 20\right]$ by citing the usual Hodge theory of compact Kähler manifolds. We instead use an argument appearing in Section 5 of [ADH20] to prove this result using the coloop case of the semi-small decomposition. The author thanks June Huh for suggesting this argument for this purpose.

Acknowledgments. I would like to thank Christopher Eur and June Huh for the help which was essential for the completion of this project. I also thank Lauren Williams for advising my minor thesis, I thank Peter Kronheimer for initially sparking my interest in this subject, and I thank Siddhi Krishna for suggesting that it could be a potential minor thesis topic. This material is based upon work supported by the NSF GRFP through grant DGE-1745303.

2 Matroid preliminaries

Matroids are combinatorial objects that generalize both the notion of linear independence for a collection of vectors in a vector space and the notion of being cycleless for a collection of edges of a graph. We first define matroids and their basic properties. In section 2.1, we define the chromatic polynomial of graphs and the characteristic polynomial of matroids, and we show that the chromatic polynomial of a graph is recovered from the characteristic polynomial of its associated graphic matroid. In section 2.2, we give an alternative expression for the characteristic polynomial using the Möbius function and prove that its coefficients are nonzero and alternate in sign. The material from this section draws from [Zas87, Kat16].

Matroids can be axiomatized in a number of different ways. The three axiomatizations we consider are through independent sets, the rank function, and flats. We first explain each of these three notions for a finite set of vectors in a vector space.
Example. Let E be a finite set of vectors in a vector space over an arbitrary field. A subset $I \subseteq E$ is an independent set if the vectors in I are linearly independent. The rank function of E is the integer-valued function on the power set of E which associates to each subset $S \subseteq E$ the dimension of the span of the vectors in S. A subset $F \subseteq E$ is a flat if every vector in E that lies in the span of the vectors in F is already contained in F.

Each of the three pieces of data determines the other two. Suppose that the rank function of E is known. Then a set I is independent if and only if its size is equal to its rank, and a set F is a flat if and only if all sets strictly containing F are of strictly greater rank. If the independent sets are known, then the rank of a set S is the size of a maximal independent subset of S. If the flats are known, then the rank of a flat F is greatest integer r for which there are flats F_{i} satisfying $F_{0} \subsetneq F_{1} \subsetneq F_{2} \subsetneq \cdots \subsetneq F_{r}=F$, and the rank of an arbitrary subset is the rank of the smallest flat containing it.

Definition (Matroid). Let E be a finite set. A matroid on E is defined by any of the following:

- A collection of subsets of E called independent sets for which

1. The empty set is an independent set.
2. If I is an independent set and $I^{\prime} \subseteq I$, then I^{\prime} is an independent set.
3. If I_{1} and I_{2} are independent sets and $\left|I_{1}\right|<\left|I_{2}\right|$, then there is an element $e \in I_{2} \backslash I_{1}$ such that $I_{1} \cup e$ is an independent set.

- A function $\mathrm{rk}_{M}: \mathscr{P}(E) \rightarrow \mathbf{Z}$ for which

1. If S is a subset of E, then $0 \leqslant \operatorname{rk}_{M}(S) \leqslant|S|$.
2. If S, T are subsets of E for which $S \subseteq T$, then $\operatorname{rk}_{M}(S) \leqslant \operatorname{rk}_{M}(T)$.
3. If S, T are subsets of E, then $r(S \cap T) \leqslant r(S)+r(T)-r(S \cup T)$.

- A collection of subsets of E called flats for which

1. The set E is a flat.
2. If F_{1} and F_{2} are flats, then $F_{1} \cap F_{2}$ is a flat.
3. If F is a flat, then any element of $E \backslash F$ is contained in exactly one flat that is minimal among flats properly containing F.

The set E is called the ground set of M. The rank of M, denoted $\operatorname{rk}(M)$, is defined to be $\operatorname{rk}_{M}(E)$.

It is straightforward to verify that these three axiomatizations are equivalent. If E is a finite set of vectors in a vector space, then it is clear that the independent sets, the rank function, and the flats of E satisfy these axioms, and thereby determine a matroid. This matroid is called the linear matroid on E. Two matroids are isomorphic if there is a one-to-one correspondence between their ground sets which preserves the additional structure in the obvious way. A matroid is realizable if there exists a field k for which it is isomorphic to the linear matroid on a set of vectors in a vector space over k, in which case it is realizable over k. Example. Let G be a finite graph, potentially having loops and multiple edges, and let E be its set of edges. The graphic matroid on E associated to G is defined by declaring a set of edges I to be an independent set if I contains no cycles of G. A set of edges F is a flat if no edge in $E \backslash F$ has its two endpoints joined by a path in F. The rank of the matroid is the size of a maximal forest, which is just the difference of the number of vertices of G and the number of components of G.
Remark. It turns out that every graphic matroid is realizable over every field. The argument involves writing down a matrix whose entries lie in $\{-1,0,1\}$ and verifying that its columns provide the desired collection of vectors when interpreted over a field.
Example. We list the flats of the following graphic matroid by rank.

Example. We list the flats of the following graphic matroid by rank.

\{012\}

Example. Consider the following diagram with 9 points labeled $E=\{0,1, \ldots, 8\}$ and 8 lines where each line contains 3 points.

rank 2 flats:
012, 037, 048, 136, 158, 246, 257, 678,
$05,06,14,17,23,28,34,35,38,45,47,56$

Let M be the matroid on E with the following flats: the only rank 0 flat is the empty set, the rank 1 flats are the 9 singletons, the rank 2 flats are the 8 triples that are contained in a line and the 12 pairs that are not contained in a line, and the only rank 3 flat is the entire set. The
rank 2 flats are listed explicitly above. It is easy to verify that M is indeed a matroid. It turns out that this matroid is not realizable over any field.

We now define loops and coloops of matroids. If M is the graphic matroid associated to a graph G, then a loop of M is just a loop of the graph, and a coloop is a bridge of G. Recall that a loop of a graph is an edge whose two endpoints are the same vertex of G, and a bridge of a graph is an edge whose deletion strictly increases the number of components of the graph.

Definition (Loop). An element i in the ground set E of a matroid M is a loop if any of the following equivalent conditions hold:

- The singleton $\{i\}$ is not independent.
- The rank of $\{i\}$ is zero.
- Every flat contains i.

A matroid M is loopless if every element of E is not a loop. Equivalently, M is loopless if any of the following equivalent conditions hold:

- Every singleton subset of E is independent.
- The only subset of E with zero rank is the empty set.
- The empty set is a flat.

Definition (Coloop). An element i in the ground set E of a matroid M is a coloop if any of the following equivalent conditions hold:

- If I is an independent set, then $I \cup i$ is an independent set.
- $\mathrm{rk}_{M}(E \backslash i)=\mathrm{rk}(M)-1$.
- $E \backslash i$ is a flat.

2.1 The chromatic and characteristic polynomials

Let G be a finite graph, and q a nonnegative integer. A proper q-coloring of G is a coloring of the vertices of G using q colors so that the two endpoints of each edge are colored differently. Let $\chi_{G}(q)$ denote the number of proper q-colorings of G.
Lemma 2.1. The function $q \mapsto \chi_{G}(q)$ is a polynomial with integer coefficients.
The polynomial $\chi_{G}(q)$ is called the chromatic polynomial of G. The proof of Lemma 2.1 is a simple consequence of the deletion-contraction relation that $\chi_{G}(q)$ satisfies. Recall that if e is an edge of G, then the deletion of e is the graph $G \backslash e$ with the same vertices obtained by simply deleting e, while the contraction of e is the graph G / e obtained by identifying the endpoints of e and then deleting e. In particular, deleting and contracting a loop are identical. Note that $\chi_{G}(q)$ satisfies the deletion-contraction relation

$$
\chi_{G}(q)=\chi_{G \backslash e}(q)-\chi_{G / e}(q)
$$

Indeed, suppose that the endpoints of e are v_{0}, v_{1}. We can partition the proper q-colorings of $G \backslash e$ into those for which v_{0} and v_{1} have the same color and those for which v_{0} and v_{1} have different colors. The former are in one-to-one correspondence with the proper q-colorings of G / e while the latter are in one-to-one correspondence with the proper q-colorings of G.

Proof of Lemma 2.1. We prove the result by induction on the number of edges of G. If G has no edges, then G just consists of vertices. If G has k vertices, then $\chi_{G}(q)=q^{k}$. For the inductive step, we choose an edge e and observe that both $G \backslash e$ and G / e have fewer edges than G so the deletion-contraction relation proves the result.

We note that if G has a loop, then $\chi_{G}(q)=0$. If G is loopless, then the deletion-contraction relation implies much more about $\chi_{G}(q)$ than it simply being an integer polynomial.
Proposition 2.2. Let G be a loopless finite graph. Then $\chi_{G}(q)$ is a monic polynomial whose degree is the number of vertices of G. Furthermore, the coefficients of $\chi_{G}(q)$ alternate in sign

$$
\chi_{G}(q)=q^{v}-a_{1}(G) q^{v-1}+\cdots+(-1)^{v} a_{v}(G) \quad a_{i}(G) \geqslant 0
$$

with $a_{v-i}(G)=0$ if and only if i is less than the number of components of G.
Proof. We prove the result by induction on the number of edges of G. When G has no edges, the result is trivial. For the inductive step, we may assume that G has no multiple edges, since deleting a multiple edge does not change the chromatic polynomial. Fix an edge e of G, which we know is neither a loop nor a multiple edge. The two graphs $G \backslash e$ and G / e have fewer edges and are also loopless so their chromatic polynomials satisfy the stated properties. We show that

$$
\chi_{G}(q)=\chi_{G \backslash e}(q)-\chi_{G / e}(q)
$$

therefore also satisfies the stated properties. First, $\chi_{G \backslash e}(q)$ is monic and of degree v because G and $G \backslash e$ have the same number of vertices. Because e is not a loop, the graph G / e has one fewer vertex so $\chi_{G / e}(q)$ is monic of degree $v-1$. Thus $\chi_{G}(q)$ is monic of degree v. It also follows from these observations that the coefficients of $\chi_{G}(q)$ must alternate. Since G / e has the same number of components as G while $G \backslash e$ has at least the number of components as G, we see that the coefficient $a_{v-i}(G)$ is zero when i is less than the number of components of G. The nonvanishing the other coefficients follows from the same property for $\chi_{G \backslash e}(q)$ and $\chi_{G / e}(q)$.

Example. Let G be the cycle with four edges. We can easily compute its chromatic polynomial using the deletion-contraction relation and quick computation that the chromatic polynomial of the path with k edges is $(q-1)^{k} q$.

$$
\begin{aligned}
(i \cdot!) & =(i) \cdot(\stackrel{i}{\bullet})-(\stackrel{\bullet}{\bullet}) \\
& =(q-1)^{3} q-(\underset{\bullet}{\bullet})+(\bullet \bullet) \\
& =(q-1)^{3} q-(q-1)^{2} q+(q-1) q \\
& =q^{4}-4 q^{3}+6 q^{2}-3 q .
\end{aligned}
$$

As we see, the polynomial is monic of degree the number of vertices, and its coefficients alternate in sign and are nonzero except for its constant term. The cycle with five edges therefore has chromatic polynomial

$$
(q-1)^{4} q-\left(q^{4}-4 q^{3}+6 q^{2}-3 q\right)=q^{5}-5 q^{4}+10 q^{3}-10 q^{2}+4 q .
$$

We now define the characteristic polynomial of a matroid and verify its basic properties.
Definition (Characteristic polynomial). Let M be a matroid on a set E. The characteristic polynomial of M is the polynomial

$$
\chi_{M}(q)=\sum_{S \subseteq E}(-1)^{|S|} q^{\mathrm{rk}(M)-\mathrm{rk}_{M}(S)} .
$$

It is clear that $\chi_{M}(q)$ has integer coefficients and that if M is loopless, then $\chi_{M}(q)$ is monic of degree $\operatorname{rk}(M)$. Before proving various other properties of $\chi_{M}(q)$ analogous to those of the chromatic polynomial of a graph, we consider an example.
Example. Let G be the cycle with four edges, and let M be the associated graphic matroid. The rank of a set $S \subseteq E$ equals the rank of the smallest flat containing S, so we may explicitly compute from its list of flats that

$$
\chi_{M}(q)=\sum_{|S|=0} q^{3}-\sum_{|S|=1} q^{2}+\sum_{|S|=2} q-\sum_{|S|=3} q^{0}+\sum_{|S|=4} q^{0}=q^{3}-4 q^{2}+6 q-3
$$

which we observe coincides with $\chi_{G}(q) / q$.
If G is a finite graph with multiple components, let G^{\prime} be obtained by identifying two vertices of G lying in distinct components. The graphic matroids associated to G and G^{\prime} are the same, but $\chi_{G}(q)=q \cdot \chi_{G^{\prime}}(q)$. The chromatic polynomial of G therefore cannot be purely a function of the characteristic polynomial of the associated graphic matroid.

Proposition 2.3. Let G be a finite graph, and let M be the associated graphic matroid. If c is the number of components of G, then

$$
\chi_{G}(q)=q^{c} \chi_{M}(q)
$$

Proof. Given $S \subseteq E$, let G_{S} be the graph obtained from G by deleting the edges in $E \backslash S$ and contracting the edges in S. Observe that G_{S} has no edges, and let $\left|G_{S}\right|$ denote its number of vertices. The deletion-contraction relation of the chromatic polynomial implies that

$$
\chi_{G}(q)=\sum_{S \subseteq E}(-1)^{|S|} q^{\left|G_{S}\right|} .
$$

It suffices to show that $\left|G_{S}\right|=c+\operatorname{rk}(M)-\operatorname{rk}_{M}(S)$ for each $S \subseteq E$. Recall that the rank of M is the size of a maximal forest. A maximal forest has size $v-c$ where v is the number of vertices of G, so we must show that $\left|G_{S}\right|=v-\mathrm{rk}_{M}(S)$ for each $S \subseteq E$.

Fix $S \subseteq E$, and choose a maximal forest I of S. Then I is an independent set of M contained in S for which $\mathrm{rk}_{M}(I)=\mathrm{rk}_{M}(S)$. The graph obtained by deleting the edges in $E \backslash S$ has v vertices, and successively contracting each edge of I lowers the number of vertices by 1 . All edges of the result graph are loops by maximality of I, so their deletion does not change the number of vertices. Thus $\left|G_{S}\right|=v-|I|=v-\operatorname{rk}_{M}(I)=v-\operatorname{rk}_{M}(S)$ as required.

Example. Let M be the loopless rank 3 matroid associated to the diagram

rank 2 flats:
012, 037, 048, 136, 158, 246, 257, 678,
$05,06,14,17,23,28,34,35,38,45,47,56$
whose rank 1 flats are the 9 singletons, and whose rank 2 flats are listed explicitly. Recall that this matroid turns out not to be realizable over any field, and is in particular not a graphic matroid. By direct computation $\chi_{M}(q)=q^{3}-9 q^{2}+28 q-20$.
Remark. Both deletion and contraction can be generalized to matroids, and the characteristic polynomial of matroids satisfies a deletion-contraction relation. Because deletion of an edge in a graph may increase the number of components of the graph, Proposition 2.3 indicates that the deletion-contraction relation for $\chi_{M}(q)$ must be slightly more complicated than that of $\chi_{G}(q)$ and should depend on whether the element $i \in E$ is a coloop.

2.2 Möbius inversion

We show that $\chi_{M}(q)=0$ whenever M has a loop, and we obtain an alternate expression for $\chi_{M}(q)$ in terms of the Möbius function of the lattice of flats of M when M is loopless. We use the latter to show that the coefficients of $\chi_{M}(q)$ are nonzero and alternate in sign.

Definition (Möbius function). Let P be a finite partially ordered set. The Möbius function of P is the unique function $\mu: P \times P \rightarrow \mathbf{Z}$ for which

- $\mu(x, x)=1$ for all $x \in P$.
- If $x<z$, then $\sum_{x \leqslant y \leqslant z} \mu(x, y)=0$ where the sum is over $y \in P$ satisfying $x \leqslant y \leqslant z$.
- If $x \not \approx z$, then $\mu(x, z)=0$.

Existence and uniqueness of the Möbius function are straightforward. Although it seems that μ is essentially a collection of independent functions $\mu(x,-): P \rightarrow \mathbf{Z}$, one for each $x \in P$, there are valid formulas for μ where the second argument is fixed but the first argument varies. The following lemma is an example, from which we derive Möbius inversion.

Lemma 2.4. Let P be a finite partially ordered set, and let μ be its Möbius function. If $x<z$, then

$$
\sum_{x \leqslant y \leqslant z} \mu(y, z)=0
$$

Proof. Let $\lambda: P \times P \rightarrow \mathbf{Z}$ be the unique function for which

- $\lambda(x, x)=1$ for all $x \in P$
- If $x<z$, then $\sum_{x \leqslant y \leqslant z} \lambda(y, z)=0$ where the sum is over $y \in P$ satisfying $x \leqslant y \leqslant z$.
- If $x \leqslant z$, then $\lambda(x, z)=0$.

We show that $\lambda=\mu$. Consider the function $\gamma: P \times P \rightarrow \mathbf{Z}$ given by

$$
\gamma(x, z)=\sum_{x \leqslant y \leqslant w \leqslant z} \mu(x, y) \lambda(w, z)
$$

where the sum is over all pairs y, w satisfying $x \leqslant y \leqslant w \leqslant z$. It follows that

$$
\mu(x, z)=\sum_{x \leqslant y \leqslant z} \mu(x, y) \sum_{y \leqslant w \leqslant z} \lambda(w, z)=\gamma(x, z)=\sum_{x \leqslant w \leqslant z} \lambda(w, z) \sum_{x \leqslant y \leqslant w} \mu(x, y)=\lambda(x, z) .
$$

Proposition 2.5 (Möbius inversion). Let P be a finite partially ordered set. Let f and g be functions on P taking values in \mathbf{Z} (or any abelian group). Then

$$
g(x)=\sum_{y \geqslant x} f(y) \quad \text { if and only if } \quad f(x)=\sum_{y \geqslant x} \mu(x, y) g(y)
$$

and

$$
g(y)=\sum_{x \leqslant y} f(x) \quad \text { if and only if } \quad f(y)=\sum_{x \leqslant y} g(x) \mu(x, y)
$$

where μ is the Möbius function of P.
Proof. Suppose $g(x)=\sum_{y \geqslant x} f(y)$. Then

$$
\sum_{y \geqslant x} \mu(x, y) g(y)=\sum_{y \geqslant x} \mu(x, y) \sum_{z \geqslant y} f(z)=\sum_{z \geqslant x} f(z) \sum_{z \geqslant y \geqslant x} \mu(x, y)=f(x)
$$

The other direction is similar and uses the identity $\sum_{x \leqslant y \leqslant z} \mu(y, z)=0$ of Lemma 2.4. The other if and only if statement is proved in the same way.

In our setting, the finite partially ordered set will be the collection of flats of M ordered by inclusion, and we will only consider the Möbius function where the first argument is the empty set. Let \mathscr{L}_{M} denote the partially ordered set consisting of the flats of M ordered by inclusion. The partially ordered set \mathscr{L}_{M} is called the lattice of flats of M. If S is a subset of E, then the closure of S, denoted $\operatorname{cl}(S)$, is the smallest flat of M containing S. The following lemma implies that $\chi_{M}(q)=0$ when M is not loopless.
Lemma 2.6. Let F be a flat of M. Then

$$
U_{F}:=\sum_{\substack{S \subseteq E \\ \operatorname{cl}(\bar{S})=F}}(-1)^{|S|}= \begin{cases}\mu(\varnothing, F) & \text { if } M \text { is loopless } \\ 0 & \text { if } M \text { is not loopless. }\end{cases}
$$

Proof. The set H of loops of M is the smallest flat of M. We show that for every flat G that strictly contains H

$$
\sum_{H \subseteq F \subseteq G} U_{F}=0
$$

Indeed

$$
\sum_{H \subseteq F \subseteq G} \sum_{\substack{S \subseteq E \\ \operatorname{cl(S)}=F}}(-1)^{|S|}=\sum_{S \subseteq G}(-1)^{|S|}=\sum_{k=0}^{|G|}(-1)^{k}\binom{|G|}{k}=(1-1)^{|G|}=0
$$

If M is loopless, then $U_{H}=U_{\varnothing}=1=\mu(\varnothing, \varnothing)$. It follows that U_{F} satisfies the same defining relation as $\mu(\varnothing, F)$ so they must agree. If M has loops, then $U_{H}=\sum_{S \subseteq H}(-1)^{|S|}=0$, so by induction on the rank of F, every $U_{F}=0$.

Corollary 2.7. If M is not loopless, then $\chi_{M}(q)=0$.

Proof. From the definition of the characteristic polynomial and Lemma 2.6, we have

$$
\chi_{M}(q)=\sum_{S \subseteq E}(-1)^{|S|} q^{\mathrm{rk}(M)-\mathrm{rk} M}(S)=\sum_{F \in \mathscr{L}_{M}}\left(\sum_{\substack{S \subseteq E \\ \mathrm{cl}(S)=F}}(-1)^{|S|}\right) q^{\mathrm{rk}(M)-\mathrm{rk} M(F)}=0
$$

using the fact that $\mathrm{rk}_{M}(S)=\mathrm{rk}_{M}(\mathrm{cl}(S))$.
Corollary 2.8. If M is loopless, then

$$
\chi_{M}(q)=\sum_{F \in \mathscr{I}_{M}} \mu(\varnothing, F) q^{\mathrm{rk}(M)-\mathrm{rk}_{M}(F)}
$$

We now prove a result about the Möbius function of the lattice of flats of a matroid that has the immediate corollary that the coefficients of $\chi_{M}(q)$ alternate in sign. This lemma is also used in the proof of the Heron-Rota-Welsh conjecture.
Lemma 2.9. Let F be a flat of a loopless matroid M, and let μ be the Möbius function of \mathscr{L}_{M}. Then for any $i \in F$

$$
\mu(\varnothing, F)+\sum_{i \notin F^{\prime}<F} \mu\left(\varnothing, F^{\prime}\right)=0
$$

where $F^{\prime} \lessdot F$ means that F^{\prime} is a flat contained in F and $\mathrm{rk}_{M}\left(F^{\prime}\right)=\mathrm{rk}_{M}(F)-1$.
Proof. Fix $i \in E$, and let \mathscr{L}_{M}^{i} denote the set of flats of M that contain i, ordered by inclusion. We use Möbius inversion (Proposition 2.5) for \mathscr{L}_{M}^{i} to prove the result. Define $f: \mathscr{L}_{M}^{i} \rightarrow \mathbf{Z}$ by

$$
f(F)=\mu(\varnothing, F)+\sum_{i \notin F^{\prime}<F} \mu\left(\varnothing, F^{\prime}\right)
$$

where μ is the Möbius function of \mathscr{L}_{M}. Our goal is to show that f is identically zero. By Möbius inversion, it suffices to show that the function $g: \mathscr{L}_{M}^{i} \rightarrow \mathbf{Z}$ defined by

$$
g(F)=\sum_{\substack{F^{\prime} \subseteq F \\ F^{\prime} \in \mathscr{L}_{M}^{i}}} f\left(F^{\prime}\right)=\sum_{i \in F^{\prime} \subseteq F} f\left(F^{\prime}\right)
$$

is identically zero. But note that

$$
g(F)=\sum_{i \in F^{\prime} \subseteq F}\left(\mu\left(\varnothing, F^{\prime}\right)+\sum_{i \notin F^{\prime \prime}<F^{\prime}} \mu\left(\varnothing, F^{\prime \prime}\right)\right)=\sum_{\substack{G \subseteq F \\ G \in \mathscr{L}_{M}}} \mu(\varnothing, G)
$$

because every flat G of M that is contained in F appears exactly once in the expression for $g(F)$. Indeed, either $i \in G$ in which case G appears as F^{\prime} in the sum, or $i \notin G$ in which case the unique minimal flat containing G and i appears as an F^{\prime}. But now $\sum_{G \subseteq F} \mu(\varnothing, G)=0$ so g and f are identically zero.

Proposition 2.10. Let M be a loopless matroid of rank $r+1$. Then the characteristic polynomial of M may be written as

$$
\chi_{M}(q)=w_{0}(M) q^{r+1}-w_{1}(M) q^{r}+\cdots+(-1)^{r+1} w_{r+1}(M) \quad \text { with } \quad w_{i}(M)>0
$$

Proof. By Corollary 2.8, we know that

$$
\chi_{M}(q)=\sum_{F \in \mathscr{L}_{M}} \mu(\varnothing, F) q^{\mathrm{rk}(M)-\mathrm{rk}_{M}(F)}
$$

It suffices to show that $(-1)^{\mathrm{rk}_{M}(F)} \mu(\varnothing, F)>0$ for each flat F. We prove the result by induction on $\mathrm{rk}_{M}(F)$. If $\mathrm{rk}_{M}(F)=0$, then $F=\varnothing$ and $\mu(\varnothing, \varnothing)=1>0$. For the inductive step, choose an element $i \in F$ so that

$$
\mu(\varnothing, F)=-\sum_{i \notin F^{\prime}<F} \mu\left(\varnothing, F^{\prime}\right)
$$

by Lemma 2.9. The result immediately follows from the observation that there indeed does exist a flat F^{\prime} satisfying $i \notin F^{\prime} \lessdot F$ because i is not a loop.

3 The Chow ring

After defining the Chow ring of a matroid, we state the main results of Hodge theory for matroids, collectively referred to as the Kähler package. In section 3.1, we prove the Heron-Rota-Welsh conjecture assuming the Kähler package. In section 3.2, we take the first step in proving the Kähler package by constructing the degree map of the Chow ring. Poincaré duality, the hard Lefschetz theorem, and the Hodge-Riemann relations are proved in section 4. The material of this section is drawn from [FY04, AHK18, BES20].

Definition (Chow ring of a matroid). Let M be a loopless matroid on the ground set E. Define the Chow ring of M to be the graded \mathbf{R}-algebra

$$
\mathrm{CH}(M)=\frac{\mathbf{R}\left[x_{F} \mid F \text { is a nonempty proper flat of } M\right]}{\left.\left\langle x_{F} x_{G}\right| F, G \text { incomparable }\right\rangle+\left\langle\sum_{i \in F} x_{F}-\sum_{j \in F} x_{F} \mid i, j \in E\right\rangle}
$$

The relations of the form $x_{F} x_{G}$ are called the incomparability relations while the relations of the form $\sum_{i \in F} x_{F}-\sum_{j \in F} x_{F}$ are called the linear relations. Note that the sums appearing in the linear relations are over nonempty proper flats F that contain a fixed element i or j. The grading $\mathrm{CH}(M)=\bigoplus_{k=0}^{\infty} \mathrm{CH}^{k}(M)$ is inherited from the usual grading on a polynomial ring.

In the following four statements and in the rest of this paper, M is a loopless matroid of rank $r+1 \geqslant 1$. There is an open convex subset of $\mathrm{CH}^{1}(M)$ that is closed under positive rescaling called the ample cone of M. Elements of the ample cone are called ample classes. The ample cone is nonempty if $r \geqslant 1$.
The degree map. There is a linear isomorphism

$$
\operatorname{deg}_{M}: \mathrm{CH}^{r}(M) \rightarrow \mathbf{R}
$$

characterized by the property that $\operatorname{deg}_{M}\left(x_{F_{1}} \cdots x_{F_{r}}\right)=1$ for every collection of nonempty proper flats F_{1}, \ldots, F_{r} satisfying $F_{1} \subsetneq \cdots \subsetneq F_{r}$. If $k>r$, then $\mathrm{CH}^{k}(M)=0$.

Poincaré duality. For every nonzero element $\mu \in \mathrm{CH}(M)$, there exists an element $v \in \mathrm{CH}(M)$ for which $\operatorname{deg}_{M}(\mu \nu) \neq 0$. Equivalently, the map

$$
\mathrm{CH}^{k}(M) \rightarrow \operatorname{Hom}_{\mathbf{R}}\left(\mathrm{CH}^{r-k}(M), \mathbf{R}\right) \quad \mu \mapsto\left(v \mapsto \operatorname{deg}_{M}(\mu v)\right)
$$

is an isomorphism for every integer k.

The hard Lefschetz theorem. Let ℓ be an ample class of M. Then the multiplication map

$$
\ell^{r-2 k}: \mathrm{CH}^{k}(M) \rightarrow \mathrm{CH}^{r-k}(M)
$$

is an isomorphism for $k \leqslant r / 2$.
The Hodge-Riemann relations. Let ℓ be an ample class of M. Then the symmetric bilinear form

$$
\mathrm{CH}^{k}(M) \times \mathrm{CH}^{k}(M) \rightarrow \mathbf{R} \quad(\mu, v) \mapsto(-1)^{k} \operatorname{deg}_{M}\left(\ell^{r-2 k} \mu v\right)
$$

is positive-definite on the kernel of $\ell^{r-2 k+1}: \mathrm{CH}^{k}(M) \rightarrow \mathrm{CH}^{r-k+1}(M)$ for $k \leqslant r / 2$.

To amplify the definition of the Chow ring and to define the ample cone, we introduce some terminology. Just as before, M is a loopless matroid with ground set E.

Definition (Linear and piecewise linear functions). We call any real-valued function ℓ on the set of nonempty proper flats of M a piecewise linear function on M.

If f is a real-valued function on the ground set E satisfying $\sum_{i \in E} f(i)=0$, then we define a piecewise linear function on M by the rule $F \mapsto \sum_{i \in F} f(i)$. Any piecewise linear function arising in this way is called a linear function on M. We note that two different functions on E may define the same linear function on M.

Two piecewise linear functions on M are equivalent if their difference is a linear function on M. The following lemma shows that the linear relations $\sum_{i \in F} x_{F}-\sum_{j \in F} x_{F}$ in the Chow ring capture the notion of equivalence of piecewise linear functions on M.

Lemma 3.1. The vector space of piecewise linear functions on M modulo linear functions on M may be naturally identified with $\mathrm{CH}^{1}(M)$ by the map $\ell \mapsto \sum_{F} \ell(F) x_{F}$.

Proof. Note that $\mathrm{CH}^{1}(M)$ is the quotient

$$
\mathrm{CH}^{1}(M)=\frac{\left.\mathbf{R}\left\langle x_{F}\right| F \text { is a nonempty proper flat }\right\rangle}{\left\langle\sum_{i \in F} x_{F}-\sum_{j \in F} x_{F}\right\rangle} .
$$

Under the rule $\ell \mapsto \sum_{F} \ell(F) x_{F}$, the space of piecewise linear functions on M is naturally identified with the vector space $\mathbf{R}\left\langle x_{F}\right| F$ is a nonempty proper flat \rangle. Given distinct elements $i, j \in E$, let $f_{i j}: E \rightarrow \mathbf{R}$ be the function which sends $i \mapsto 1, j \mapsto-1$, and all other elements to 0 . The associated linear function on M corresponds to $\sum_{i \in F} x_{F}-\sum_{j \in F} x_{F}$ under the identification. It therefore suffices to prove that linear functions on M are spanned by those arising from the $f_{i j}$. This is true because any real-valued function f on E satisfying $\sum_{i \in E} f(i)=0$ is a real linear combination of the $f_{i j}$.

A collection $\mathscr{F}=\left\{F_{1}, \ldots, F_{k}\right\}$ of flats for which $F_{1} \subsetneq \ldots \subsetneq F_{k}$ is called a k-flag. The flags we consider will always consist of nonempty proper flats of M. A maximal flag of nonempty proper flats is just a flag which cannot be extended to a longer flag of nonempty proper flats. If the rank of M is $r+1$, a k-flag of nonempty proper flats is maximal if and only if $k=r$. The following lemma shows that piecewise linear functions are "linear on flags."

Lemma 3.2. Let $F_{1} \subsetneq \cdots \subsetneq F_{k}$ be a k-flag of nonempty proper flats of M, and let ℓ be a piecewise linear function on M. Then there is a linear function on M which agrees with ℓ on the flats F_{1}, \ldots, F_{k}.

Proof. We construct a suitable function $f: E \rightarrow \mathbf{R}$ whose associated linear function agrees with ℓ on F_{1}, \ldots, F_{k}. For each $j \in F_{1}$, let $f(j)=\ell\left(F_{1}\right) /\left|F_{1}\right|$. Assume that f has been defined on F_{i}. For each $j \in F_{i+1} \backslash F_{i}$, let $f(j)=\left(\ell\left(F_{i+1}\right)-\ell\left(F_{i}\right)\right) /\left|F_{i+1} \backslash F_{i}\right|$. Once f is defined on F_{k}, define f on $E \backslash F_{k}$ in such a way to satisfy the condition $\sum_{i \in E} f(i)=0$.

If \mathscr{F} is a k-flag of nonempty proper flats, we say that a nonempty proper flat F extends \mathscr{F} to a $(k+1)$-flag if $\mathscr{F} \cup\{F\}$ is a $(k+1)$-flag. More explicitly, F extends $\mathscr{F}=\left\{F_{1}, \ldots, F_{k}\right\}$ with $F_{1} \subsetneq \cdots \subsetneq F_{k}$ if and only if there is an index $i \in\{0, \ldots, k\}$ for which $F_{i} \subsetneq F \subsetneq F_{i+1}$ with the convention $F_{0}=\varnothing$ and $F_{k+1}=E$.

Definition (Convex and strictly convex). Let \mathscr{F} be a k-flag $F_{1} \subsetneq \cdots \subsetneq F_{k}$ of nonempty proper flats. A piecewise linear function ℓ is convex at \mathscr{F} if it is equivalent to a piecewise linear function ℓ^{\prime} which is zero on each $F_{i} \in \mathscr{F}$ and nonnegative on each nonempty proper flat F that extends \mathscr{F} to a $(k+1)$-flag. The piecewise linear function ℓ is convex if it is convex at every flag of nonempty proper flats.

A piecewise linear function ℓ is strictly convex at \mathscr{F} if it is equivalent to a piecewise linear function ℓ^{\prime} which is zero on each $F_{i} \in \mathscr{F}$ and positive on each nonempty proper flat F that extends \mathscr{F} to a $(k+1)$-flag, and ℓ is strictly convex if it is strictly convex at every flag of nonempty proper flats.
Definition (Ample and nef). The elements in $\mathrm{CH}^{1}(M)$ corresponding to the equivalence classes of convex piecewise linear functions are called nef classes. The collection of nef classes is called the nef cone.

The elements of $\mathrm{CH}^{1}(M)$ corresponding to the equivalence classes of strictly convex piecewise linear functions are called ample classes. The collection of ample classes is called the ample cone.

Lemma 3.3. The nef cone is closed, convex, and invariant under nonnegative rescaling. The ample cone is open, convex, and invariant under positive rescaling.

Proof. It is straightforward to verify that both cones are convex and invariant under suitable rescaling. To see that the ample cone is open, fix a k-flag \mathscr{F} of proper nonempty flats, and fix a piecewise linear function ℓ that is strictly convex at \mathscr{F}. Up to equivalence, we may assume that ℓ vanishes on each flat of \mathscr{F} and is positive on each nonempty proper flat F that extends \mathscr{F} to a $(k+1)$-flag. Let ℓ^{\prime} be an arbitrary piecewise linear function, which we may assume vanishes on \mathscr{F}. Then there is a sufficiently small $\delta>0$ for which $\ell+\delta \ell^{\prime}$ is also strictly convex at \mathscr{F}. By choosing a basis for the piecewise linear functions modulo linear functions, the argument extends to show that the space of piecewise linear functions that are strictly convex at \mathscr{F} is open. There are finitely many flags so the ample cone, being the intersection of finitely many open sets, is open.

We show that the nef cone is closed by showing that its complement is open. Suppose ℓ is a piecewise linear function that is not convex. Then there is some k-flag \mathscr{F} of nonempty proper flats with the property that for every linear function λ for which $\lambda\left(F_{i}\right)=\ell\left(F_{i}\right)$ for each $F_{i} \in \mathscr{F}$, there exists a nonempty proper flat F extending \mathscr{F} to a $(k+1)$-flag for which $\lambda(F)>\ell(F)$. Up to equivalence, we may assume that ℓ vanishes on each flat of \mathscr{F}. For each linear function λ that vanishes on \mathcal{F}, set

$$
\varepsilon_{\lambda}=\max _{F}(\lambda(F)-\ell(F))
$$

where the maximum is taken over all nonempty proper flats F extending \mathscr{F}. Note that ε_{λ} is a positive continuous function on the space of linear functions λ that vanish on \mathscr{F}. Next, note that for any real number $c>1$, we have

$$
\varepsilon_{c \lambda}=\max _{F}(c \lambda(F)-\ell(F))>\max _{F}(\lambda(F)-\ell(F))=\varepsilon_{\lambda} .
$$

It follows that the ε_{λ} attains a global positive minimum on the space of linear functions λ vanishing on \mathscr{F}. Let ε be a positive number smaller than this global minimum.

Let ℓ^{\prime} be an arbitrary piecewise linear function, which up to equivalence we may assume vanishes on \mathscr{F}. Choose $\delta>0$ small enough that for all nonempty proper flats F extending \mathscr{F}, we have

$$
\left|\delta \ell^{\prime}(F)\right|<\varepsilon / 2
$$

Then for any linear function λ vanishing on \mathscr{F}, there is a nonempty proper flat F extending \mathscr{F} for which $\lambda(F)-\ell(F)>\varepsilon$. It follows that $\lambda(F)-\left(\ell(F)+\delta \ell^{\prime}(F)\right)>\varepsilon / 2$ so $\ell+\delta \ell^{\prime}$ is not nef. Again by choosing a basis for the piecewise linear functions modulo linear functions, we extend the argument to see that the complement of the nef cone is open.

If $\operatorname{rk}(M) \leqslant 1$, then there are no nonempty proper flats so the ample cone is empty. The next lemma shows that as long as $\operatorname{rk}(M) \geqslant 2$, there exist ample classes.

Lemma 3.4. If the rank of M is at least 2 , then the ample cone is nonempty.
Proof. Let ℓ be the piecewise linear function defined by

$$
\ell(F)=|F| \cdot|E \backslash F| .
$$

Fix a k-flag \mathscr{F} of nonempty proper flats $F_{1} \subsetneq \cdots \subsetneq F_{k}$. We now define a function $f: E \rightarrow \mathbf{R}$ satisfying $\sum_{i \in E} f(i)=0$ with the property that $\sum_{i \in F_{j}} f(i)=\ell\left(F_{j}\right)$ for each $F_{j} \in \mathscr{F}$ and for which $\sum_{i \in F} f(i)<\ell(F)$ for each nonempty proper flat F which extends \mathscr{F} to a $(k+1)$-flag.

For $i \in F_{1}$, set $f(i)=\left|E \backslash F_{1}\right|$ so that $\sum_{i \in F_{1}} f(i)=\ell\left(F_{1}\right)$. Note that if F is a nonempty flat properly contained in F_{1}, then

$$
\sum_{i \in F} f(i)=|F|\left|E \backslash F_{1}\right|<|F||E \backslash F|=\ell(F)
$$

Assume that f has been defined in F_{j} and satisfies the desired properties on all flats contained in F_{j}. For $i \in F_{j+1} \backslash F_{j}$ set

$$
f(i)=\frac{\ell\left(F_{j+1}\right)-\ell\left(F_{j}\right)}{\left|F_{j+1} \backslash F_{j}\right|}
$$

so that $\sum_{i \in F_{j+1}} f(i)=\ell\left(F_{j+1}\right)$. Fix a flat F for which $F_{j} \subsetneq F \subsetneq F_{j+1}$. Then by direct computation

$$
\ell(F)-\sum_{i \in F} f(i)=\left|F \backslash F_{j}\right|\left|F_{j+1} \backslash F\right|>0
$$

The argument is valid when $j=k$ when we set $F_{k+1}=E$. Thus ℓ is strictly convex and therefore defines an ample class.

Remark. A real-valued function c on the set of subsets of E satisfying $c(\varnothing)=c(E)=0$ is called strictly submodular if

$$
c(S)+c(T)>c(S \cap T)+c(S \cup T)
$$

for every pair of incomparable subsets S, T of E. It turns out that every strictly submodular function defines an ample class of $\mathrm{CH}^{1}(M)$. The function $c(S)=|S||E \backslash S|$ is easily seen to be strictly submodular.

The Boolean matroid B on E is the matroid for which every subset of E is a flat. A piecewise linear function on B can be thought of as a function c on subsets of E satisfying $c(\varnothing)=c(E)=0$. It turns out that a piecewise linear function on B is strictly convex if and only if it is strictly submodular.

Proposition 3.5. If the rank of M is at least 2 , then the closure of the ample cone is the nef cone.
Proof. Since the nef cone contains the ample cone and is closed by Lemma 3.3, the closure of the ample cone is contained in the nef cone. By Lemma 3.4, the ample cone is nonempty, so we may choose an ample class $\ell \in \mathrm{CH}^{1}(M)$. Fix a nef class $\eta \in \mathrm{CH}^{1}(M)$ as well. It is straightforward to verify that the classes $t \ell+(1-t) \eta$ are ample for $t \in(0,1]$, which proves the result.

3.1 The Kähler package and log-concavity

The key observation which allows the Kähler package to establish an equality of the form $b^{2} \geqslant a c$ is the following. Suppose $\ell \in \mathrm{CH}^{1}(M)$ is ample, and let $\eta \in \mathrm{CH}^{1}(M)$ be arbitrary. By the Hodge-Riemann relations in degree 1, the Hodge-Riemann form

$$
\mathrm{CH}^{1}(M) \times \mathrm{CH}^{1}(M) \rightarrow \mathbf{R} \quad(\mu, v) \mapsto-\operatorname{deg}_{M}\left(\ell^{r-2} \mu v\right)
$$

is positive-definite on the kernel of $\ell^{r-1}: \mathrm{CH}^{1}(M) \rightarrow \mathrm{CH}^{r}(M)$. Since $\ell^{r-1} \cdot \ell$ is nonzero by the hard Lefschetz theorem in degree 0 , we have a direct sum splitting

$$
\mathrm{CH}^{1}(M)=\mathbf{R}\langle\ell\rangle \oplus \operatorname{ker}\left(\ell^{r-1}\right)
$$

which is easily seen to be orthogonal with respect to the Hodge-Riemann form. Furthermore, the form is negative-definite on $\mathbf{R}\langle\ell\rangle$ and positive-definite on $\operatorname{ker}\left(\ell^{r-1}\right)$. Now consider the symmetric 2×2 matrix

$$
\left(\begin{array}{ll}
-\operatorname{deg}_{M}\left(\ell^{r-2}(\ell \ell)\right) & -\operatorname{deg}_{M}\left(\ell^{r-2}(\ell \eta)\right) \\
-\operatorname{deg}_{M}\left(\ell^{r-2}(\eta \ell)\right) & -\operatorname{deg}_{M}\left(\ell^{r-2}(\eta \eta)\right)
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)
$$

If ℓ and η are linearly independent, then this 2×2 matrix represents the restriction of the Hodge-Riemann form to the subspace $\mathbf{R}\langle\ell\rangle \oplus \mathbf{R}\langle\eta\rangle$ with respect to the given basis. This matrix must have exactly one negative eigenvalue so its determinant is negative. If ℓ and η are not linearly independent, then the determinant of the matrix is 0 . In any case, we find that

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)=a c-b^{2} \leqslant 0
$$

which is an inequality of the described form. A continuity argument extends this result to case when ℓ is only nef.

Let M be a loopless matroid of $\operatorname{rank} r+1$, and write its characteristic polynomial as

$$
\chi_{M}(q)=w_{0}(M) q^{r+1}-w_{1}(M) q^{r}+\cdots+(-1)^{r+1} w_{r+1}(M)
$$

By Proposition 2.10, we have $w_{k}(M)>0$ for each $k=0, \ldots, r+1$. Expressing $\chi_{M}(q)$ in terms of the Möbius function of the lattice of flats of M (Corollary 2.8), we find that the evaluation of $\chi_{M}(q)$ at $q=1$ yields

$$
\chi_{M}(1)=\sum_{F \in \mathscr{L}_{M}} \mu(\varnothing, F) 1^{\mathrm{rk}(M)-\mathrm{rk}_{M}(F)}=\sum_{F \in \mathscr{L}_{M}} \mu(\varnothing, F)=0
$$

so $q-1$ divides $\chi_{M}(q)$. The reduced characteristic polynomial of M, denoted $\overline{\chi_{M}}(q)$, is defined to be $\chi_{M}(q) /(q-1)$. Write

$$
\overline{\chi_{M}}(q)=\mu^{0}(M) q^{r}-\mu^{1}(M) q^{r-1}+\cdots+(-1)^{r} \mu^{r}(M)
$$

and observe that $w_{0}(M)=\mu^{0}(M)$ and $w_{k}(M)=\mu^{k}(M)+\mu^{k-1}(M)$ for each $k=1, \ldots, r$ and $w_{r+1}(M)=\mu^{r}(M)$. We will see that the coefficients $\mu^{k}(M)$ are all positive integers. It is easy to verify that log-concavity of the $\mu^{k}(M)$ implies that of log-concavity of the $w_{k}(M)$.

To establish the Heron-Rota-Welsh conjecture from the Kähler package, we define nef classes $\alpha_{M}, \beta_{M} \in \mathrm{CH}^{1}(M)$ and prove that

$$
\mu^{k}(M)=\operatorname{deg}_{M}\left(\beta_{M}^{k} \alpha_{M}^{r-k}\right)
$$

In particular, the matrix

$$
\left(\begin{array}{cc}
\mu^{r-2}(M) & \mu^{r-1}(M) \\
\mu^{r-1}(M) & \mu^{r}(M)
\end{array}\right)=\left(\begin{array}{ll}
\operatorname{deg}_{M}\left(\beta_{M}^{r-2}\left(\alpha_{M} \alpha_{M}\right)\right) & \operatorname{deg}_{M}\left(\beta_{M}^{r-2}\left(\beta_{M} \alpha_{M}\right)\right) \\
\operatorname{deg}_{M}\left(\beta_{M}^{r-2}\left(\beta_{M} \alpha_{M}\right)\right) & \operatorname{deg}_{M}\left(\beta_{M}^{r-2}\left(\beta_{M} \beta_{M}\right)\right)
\end{array}\right)
$$

has negative determinant so $\mu^{r-1}(M) \mu^{r-1}(M) \geqslant \mu^{r-2}(M) \mu^{r}(M)$. The inequalities for the other $\mu^{k}(M)$ follow from this one applied to the truncation $\operatorname{tr}(M)$ of M, which is a matroid with the property that $\mu^{k}(\operatorname{tr}(M))=\mu^{k}(M)$ for $k=0, \ldots, r-1$ but $\operatorname{rk}(\operatorname{tr}(M))=\operatorname{rk}(M)-1$.

We now define the elements α_{M} and β_{M}, and show that $\operatorname{deg}_{M}\left(\beta_{M}^{k} \alpha_{M}^{r-k}\right)$ is a count of certain k-flags of nonempty proper flats of M. We then show that μ^{k} also equals this count using the truncation argument. For each i in the ground set E, let

$$
\alpha_{M, i}=\sum_{i \in F} x_{F} \quad \text { and } \quad \beta_{M, i}=\sum_{i \notin F} x_{F}
$$

The linear relations in the Chow ring assert that the class of $\alpha_{M, i}$ in $\mathrm{CH}^{1}(M)$ is independent of i. Let α_{M} be this class. It is clear that the sum $\alpha_{M, i}+\beta_{M, i}$ is independent of i so the class of $\beta_{M, i}$ in $\mathrm{CH}^{1}(M)$ is also independent of i. We let β_{M} denote this class.

Remark. Matroids with different characteristic polynomials may have isomorphic Chow rings. In this case, the classes α_{M} and β_{M} will differ between the matroids. We compute two simple examples to illustrate this.

Example. Let M be the graphic matroid associated to the path with two edges. Then the flats of M are $\varnothing,\{0\},\{1\}$, and $E=\{0,1\}$. It follows that the Chow ring of M is

$$
\mathrm{CH}(M)=\mathbf{Q}\left[x_{0}, x_{1}\right] /\left(x_{0}-x_{1}, x_{0} x_{1}\right)=\mathbf{Q}\left[x_{0}\right] /\left(x_{0}^{2}\right)
$$

and $\operatorname{deg}_{M}: \mathrm{CH}^{1}(M) \rightarrow \mathbf{R}$ is just the map sending $x_{0} \mapsto 1$. The ample cone is $\mathbf{R}_{>0} \cdot x_{0}$ while the nef cone is $\mathbf{R}_{\geqslant 0} \cdot x_{0}$. In this example $\alpha_{M}=\beta_{M}=x_{0}$. The reduced characteristic polynomial of M is $\overline{\chi_{M}}(q)=q-1$ so $\mu^{0}=\mu^{1}=1$. Note that $\operatorname{deg}_{M}\left(\beta_{M}^{0} \alpha_{M}^{1}\right)=\operatorname{deg}_{M}\left(\beta_{M}^{1} \alpha_{M}^{0}\right)=1$ as well.
Example. Let M be the graphic matroid associated to the cycle with three edges. The flats of M are $\varnothing,\{0\},\{1\},\{2\}, E$ and the Chow ring is $\mathrm{CH}(M)=\mathbf{Q}\left[x_{0}\right] /\left(x_{0}\right)^{2}$ where $x_{0}=x_{1}=x_{2}$. The degree map again sends $x_{0} \mapsto 1$. Here $\alpha_{M}=x_{0}$ while $\beta_{M}=2 x_{0}$. We see that $\operatorname{deg}_{M}\left(\alpha_{M}\right)=1$ and $\operatorname{deg}_{M}\left(\beta_{M}\right)=2$ which agrees with the fact that $\overline{\chi_{M}}(q)=q-2$.

Lemma 3.6. The classes α_{M} and β_{M} in $\mathrm{CH}^{1}(M)$ are nef.
Proof. Let \mathscr{F} be a k-flag of nonempty proper flats $F_{1} \subsetneq \cdots \subsetneq F_{k}$. Choose $i \in F_{1}$ and $j \notin F_{k}$. Then

$$
\beta_{M, i}=\sum_{i \notin F} x_{F} \quad \text { and } \quad \alpha_{M, j}=\sum_{j \in F} x_{F}
$$

correspond to nonnegative piecewise linear functions that are zero on each $F_{m} \in \mathscr{F}$.
Let \mathscr{F} be a k-flag of nonempty proper flats $F_{1} \subsetneq \cdots \subsetneq F_{k}$ of M. We use the shorthand notation $x_{\mathscr{F}}:=x_{F_{1}} \cdots x_{F_{k}}$ throughout. Fix an element $i \notin F_{k}$ and observe that

$$
x_{\varsubsetneqq} \alpha_{M}=x_{\varsubsetneqq} \sum_{i \in F} x_{F}=x_{\mathscr{F}} \sum_{F_{k} \cup i \subseteq F} x_{F}=\sum_{\mathscr{F}^{\prime}} x_{\mathscr{F}^{\prime}}
$$

where the final sum is over $(k+1)$-flags \mathscr{F}^{\prime} of the form $\mathscr{F} \cup F$ where F extends \mathscr{F} on the right and contains i. Hence heuristically, multiplication by α_{M} extends flags on the right. Similarly, if we fix an element $i \in F_{1}$, then

$$
\beta_{M} x_{\mathscr{F}}=\sum_{i \notin F} x_{F} x_{\mathscr{F}}=\sum_{i \notin F \subseteq F_{1}} x_{F} x_{\mathscr{F}}=\sum_{Y^{\prime}} x_{\mathscr{F}}
$$

where the final sum is over $(k+1)$-flags \mathscr{F} ' of the form $F \cup \mathscr{F}$ where F extends \mathscr{F} on the left and does not contain i. Heuristically, multiplication by β_{M} extends flags on the left.

Definition (Initial). Let \mathscr{F} be a k-flag $F_{1} \subsetneq \cdots \subsetneq F_{k}$ of nonempty proper flats of M. Then \mathscr{F} is initial if $\mathrm{rk}_{M}\left(F_{m}\right)=m$ for each $m \in\{1, \ldots, k\}$.
Lemma 3.7. Let \mathscr{F} be a k-flag of nonempty proper flats $F_{1} \subsetneq \cdots \subsetneq F_{k}$.

- If \mathscr{F} is not initial, then $x_{\mp} \alpha_{M}^{r-k}=0 \in \mathrm{CH}^{r}(M)$.
- If \mathscr{F} is initial, then $x_{\mathscr{F}} \alpha_{M}^{r-k}=\alpha_{M}^{r} \in \mathrm{CH}^{r}(M)$.

Proof. If $\mathrm{rk}_{M}\left(F_{m}\right) \neq m$ for some m, then $\mathrm{rk}_{M}\left(F_{k}\right)>k$. Thus it is not possible to extend \mathscr{F} to an r-flag of nonempty proper flats by appending flats only to the right. Since multiplication by α_{M} extends flags to the right, we find that $x_{\varsubsetneqq} \alpha_{M}^{r-k}=0$. This argument is easily formalized by descending induction on k.

Now assume that $\operatorname{rk}_{M}\left(F_{m}\right)=m$ for all m. The product $x_{\mathscr{F}} \alpha_{M}$ is a sum of elements of the form $x_{\mathscr{F} \prime}$ where \mathscr{F}^{\prime} is a $(k+1)$-flag obtained by extending \mathscr{F} on the right by a flat F that contains a fixed element $i \notin F_{k}$. Among such flats F, there is a unique flat F of $\operatorname{rank} k+1$. It follows from the first assertion that $x_{\mathscr{F}} \alpha_{M}^{r-k}=x_{\mathscr{G}}$ where \mathscr{G} is an arbitrary r-flag containing \mathscr{F}. In particular, $x_{\mathscr{G}}=x_{\mathscr{G}}$ for any two r-flags $\mathscr{G}, \mathscr{G}^{\prime}$ containing \mathscr{F}. Choosing \mathscr{F} to be the 0 -flag, we see that $\alpha_{M}^{r}=x_{\mathscr{G}}=x_{\mathscr{G}^{\prime}}$ for any two r-flags $\mathscr{G}, \mathscr{G}^{\prime}$ of nonempty proper flats. This argument is again easily formalized by ascending induction on k.

Proposition 3.8. The vector space $\mathrm{CH}^{k}(M)$ is spanned by elements of the form $x_{\mathscr{F}}$ for \mathscr{F} a k-flag of nonempty proper flats. In particular, $\mathrm{CH}^{k}(M)=0$ for $k>r$. Furthermore, $\alpha_{M}^{r}=x_{\mathscr{F}}$ for any r-flag \mathscr{F} of nonempty proper flats of M, so α_{M}^{r} spans $\mathrm{CH}^{r}(M)$.

Proof. Let

$$
x_{F_{1}}^{k_{1}} \cdots x_{F_{\ell}}^{k_{\ell}}
$$

be an arbitrary degree $k=k_{1}+\cdots+k_{\ell}$ monomial, where the F_{i} are distinct and the k_{i} are positive. If any two of the F_{i} are incomparable, the monomial is zero. We may assume that the flats are all comparable so that they form an ℓ-flag \mathscr{F}. If $\ell=k$, then each $k_{i}=1$ and the monomial is just $x_{\mathscr{F}}$. Otherwise, fix an index j for which $k_{j}>1$, and note that there is a linear function λ for which $\lambda\left(F_{j}\right)=-1$ but $\lambda\left(F_{i}\right)=0$ for $i \neq j$. It follows from the corresponding linear relation that

$$
x_{F_{j}}=\sum_{G} \lambda\left(x_{G}\right) x_{G}
$$

where the sum ranges over nonempty proper flats G for which $G \notin \mathscr{F}$. Substituting this expression in the monomial expresses the monomial as a linear combination of other monomials, each of which is one step closer to having all exponents equal to 1 .

The main result of section 3.2 is that α_{M}^{r} is nonzero. The existence and uniqueness of the degree map then follows from Proposition 3.8. The isomorphism $\operatorname{deg}_{M}: \mathrm{CH}^{r}(M) \rightarrow \mathbf{R}$ is defined by sending $\alpha_{M}^{r} \mapsto 1$ and has the property that $\operatorname{deg}_{M}\left(x_{\mathscr{F}}\right)=1$ whenever \mathscr{F} is an r-flag.

Definition (Descending). Order the elements of the ground set E so that we may view E is the set of numbers $\{0,1, \ldots, n\}$. Let \mathscr{F} be a k-flag $F_{1} \subsetneq \cdots \subsetneq F_{k}$ of nonempty proper flats of M. Then \mathscr{F} is descending if

$$
\min \left(F_{1}\right)>\cdots>\min \left(F_{k}\right)>0
$$

where $\min \left(F_{m}\right)$ is the smallest number in F_{m} thought of as a subset of $\{0,1, \ldots, n\}$.
Whether a flag is descending depends on the ordering of E, but the following lemma shows that the sum $\sum_{\mathscr{F}} x_{\mathscr{F}} \in \mathrm{CH}^{k}(M)$ over all descending k-flags \mathscr{F} is independent of the ordering.

Lemma 3.9. For each positive k, we have

$$
\beta_{M}^{k}=\sum_{\mathscr{F}} x_{\mathscr{F}}
$$

where the sum is over all descending k-flags \mathscr{F} of nonempty proper flats of M.

Proof. We prove the result by induction on k. A descending 1-step flag of nonempty proper flats is just a single nonempty proper flat F that does not contain $0 \in E$. Note that

$$
\beta_{M}=\beta_{M, 0}=\sum_{0 \notin F} x_{F}
$$

as required. Fix a particular descending k-step flag $\mathscr{F}=\left\{F_{1} \subsetneq \cdots \subsetneq F_{k}\right\}$ and let $i_{\mathscr{F}}=\min \left(F_{1}\right)$. Note that $i_{\mathscr{F}}$ is an element of each flag of this flat. Then $\beta_{M} x_{\mathscr{F}}=\sum_{F} x_{F} x_{\mathscr{F}}$ where the sum ranges over all nonempty flats F contained in F_{1} that do not contain $i_{\mathscr{F}}$. For any such flat F, the flag $F \cup \mathscr{F}$ is a descending $(k+1)$-flag. It follows that $\beta_{M} x_{\mathscr{F}}=\sum_{\mathscr{F}^{\prime}} x_{\mathscr{F}^{\prime}}$ where the sum is over all descending $(k+1)$-flags whose last k terms are \mathscr{F}. By induction, we know that

$$
\beta_{M}^{k+1}=\sum_{\mathscr{F}} \beta_{M} x_{\mathscr{F}}
$$

where the sum is over all descending k-flags F. Thus $\beta_{M}^{k+1}=\sum_{\mathscr{F}^{\prime}} x_{\mathscr{F}^{\prime}}$ where the sum is over all descending $(k+1)$-flags as required.

Let $D_{k}(M)$ be the set of k-flags of nonempty proper flats of M that are both initial and descending. The following is immediate from Lemmas 3.7 and 3.9.
Corollary 3.10. For each $k \in\{0, \ldots, r\}$, we have $\beta_{M}^{k} \alpha_{M}^{r-k}=\left|D_{k}(M)\right| \alpha_{M}^{r} \in \mathrm{CH}^{r}(M)$.

We now show that $\mu^{k}(M)=\left|D_{k}(M)\right|$ where

$$
\overline{\chi_{M}}(q)=\mu^{0}(M) q^{r}-\mu^{1}(M) q^{r-1}+\cdots+(-1)^{r} \mu^{r}(M)
$$

It follows from this that each $\mu^{k}(M)$ is a positive integer. We first show that $\mu^{r}(M)=\left|D_{r}(M)\right|$ directly, and then use a truncation argument for the other coefficients.

Lemma 3.11. We have the equality $\mu^{r}(M)=\left|D_{r}(M)\right|$.
Proof. Note that $(-1)^{r+1} \mu^{r}(M)=(-1)^{r+1} w_{r+1}(M)$ is the constant term of $\chi_{M}(q)$ so it suffices to show that $\chi_{M}(0)=(-1)^{r+1}\left|D_{r}(M)\right|$. By Corollary 2.8, we have

$$
\chi_{M}(0)=\sum_{F \in \mathscr{I}_{M}} \mu(\varnothing, F) 0^{\mathrm{rk}(M)-\mathrm{rk}_{M}(F)}=\mu(\varnothing, E)
$$

since the ground set $E=\{0,1, \ldots, n\}$ is the unique flat of M of rank $r+1$.
Let F be a flat of rank $k+1>0$. We show by induction on k that $(-1)^{k+1} \mu(\varnothing, F)$ is just the number of initial descending k-flags of nonempty proper flats $F_{1} \subsetneq \cdots \subsetneq F_{k}$ for which $F_{k} \subsetneq F$. The result follows from the case $F=E$. If $k=0$, then the only flat contained in F is \varnothing so $-\mu(\varnothing, F)=\mu(\varnothing, \varnothing)=1$ as required since the unique 0 -flag is vacuously initial and descending. For the inductive step, we know that

$$
(-1)^{k+1} \mu(\varnothing, F)=\sum_{i \notin F^{\prime}<F}(-1)^{k} \mu\left(\varnothing, F^{\prime}\right)
$$

by Lemma 2.9. Here i is an arbitrarily chosen element of F and the sum is over flats $F^{\prime} \subsetneq F$ of rank k that do not contain i. We choose i to be $\min (F)$ so that each F^{\prime} appearing in the sum satisfies $\min \left(F^{\prime}\right)>\min (F)$. By the induction hypothesis, we know that $(-1)^{k} \mu\left(\varnothing, F^{\prime}\right)$ is the number of initial descending $(k-1)$-flags properly contained in F^{\prime}, so it follows that $(-1)^{k+1} \mu(\varnothing, F)$ is the number of initial descending k-flags properly contained in F.

Definition (Truncation). Let M be a matroid of rank $r+1$ a the ground set E. The truncation of M is the matroid denoted $\operatorname{tr}(M)$ on E with rank function

$$
\mathrm{rk}_{\operatorname{tr}(M)}(S)=\min \left(\mathrm{rk}_{M}(S), r\right)
$$

The flats of $\operatorname{tr}(M)$ are precisely the flats F of M for which $\operatorname{rk}_{M}(F) \neq r$. The ground set E which is a flat of rank $r+1$ in M becomes a flat of rank r in $\operatorname{tr}(M)$. If M is loopless then $\operatorname{tr}(M)$ is loopless.

It is immediate from the definitions that $D_{k}(\operatorname{tr}(M))=D_{k}(M)$ for $0 \leqslant k \leqslant r-1$. Together with Lemma 3.11, the following result implies that $\mu^{k}(M)=\left|D_{k}(M)\right|$ for all k.

Lemma 3.12. There is an equality $\mu^{k}(\operatorname{tr}(M))=\mu^{k}(M)$ for each $k \in\{0, \ldots, r-1\}$.
Proof. Recall that the two sequences of numbers $w_{k}(M)$ and $\mu^{k}(M)$ are defined by

$$
\begin{aligned}
& \chi_{M}(q)=w_{0}(M) q^{r+1}-w_{1}(M) q^{r}+\cdots+(-1)^{r+1} w_{r+1}(M) \\
& \overline{\chi_{M}}(q)=\mu^{0}(M) q^{r}-\mu^{1}(M) q^{r-1}+\cdots+(-1)^{r} \mu^{r}(M)
\end{aligned}
$$

with $(q-1) \overline{\chi_{M}}(q)=\chi_{M}(q)$. Hence

$$
w_{0}(M)=\mu^{0}(M) \quad w_{k}(M)=\mu^{k}(M)+\mu^{k-1}(M) \text { for } k \in\{1, \ldots, r\} \quad w_{r+1}(M)=\mu^{r}(M)
$$

It therefore suffices to show that $w_{k}(\operatorname{tr}(M))=w_{k}(M)$ for all $k<r$. Note that

$$
(-1)^{k} w_{k}(M)=\sum_{\substack{F \in \mathscr{S}_{M} \\ \operatorname{rk}_{M}(F)=k}} \mu(\varnothing, F)
$$

by Corollary 2.8. Since $k<r$, we know that $(-1)^{k} w_{k}(\operatorname{tr}(M))$ is a sum over the same set, and the result now follows from the observation that the Möbius function $\mu(\varnothing, F)$ depends only on the partially ordered set of flats contained in F.

Corollary 3.13. There is an equality $\mu^{k}(M)=\left|D_{k}(M)\right|$ for each $k \in\{0,1, \ldots, r\}$.

Assuming the Kähler package, we now prove the Heron-Rota-Welsh conjecture.
Theorem 3.14 (Heron-Rota-Welsh conjecture). Let M be a matroid. Then the absolute values of the coefficients of $\chi_{M}(q)$ are log-concave.
Proof. If M is not loopless, then $\chi_{M}(q)=0$ by Corollary 2.7, so we assume M is loopless and of rank $r+1$. We claim that it suffices to prove that

$$
\mu^{r-1}(M) \mu^{r-1}(M) \geqslant \mu^{r-2}(M) \mu^{r}(M)
$$

Indeed, the inequality $\mu^{k}(M) \mu^{k}(M) \geqslant \mu^{k-1}(M) \mu^{k+1}(M)$ for $k<r-1$ follows from the given inequality for the iterated truncations of M by Lemma 3.12. Using the existence of the degree map and Corollaries 3.10 and 3.13, we have

$$
\left(\begin{array}{cc}
\mu^{r-2}(M) & \mu^{r-1}(M) \\
\mu^{r-1}(M) & \mu^{r}(M)
\end{array}\right)=\left(\begin{array}{lc}
\left|D_{r-2}(M)\right| & \left|D_{r-1}(M)\right| \\
\left|D_{r-1}(M)\right| & \left|D_{r}(M)\right|
\end{array}\right)
$$

$$
=\left(\begin{array}{ll}
\operatorname{deg}_{M}\left(\beta_{M}^{r-2}\left(\alpha_{M} \alpha_{M}\right)\right) & \operatorname{deg}_{M}\left(\beta_{M}^{r-2}\left(\beta_{M} \alpha_{M}\right)\right) \\
\operatorname{deg}_{M}\left(\beta_{M}^{r-2}\left(\beta_{M} \alpha_{M}\right)\right) & \operatorname{deg}_{M}\left(\beta_{M}^{r-2}\left(\beta_{M} \beta_{M}\right)\right)
\end{array}\right)
$$

and it suffices to show that this matrix has nonpositive determinant.
Let $\ell \in \mathrm{CH}^{1}(M)$ be an ample class, which exists as long as $r \geqslant 1$ by Lemma 3.4. If $r<1$, then the result is trivially true. By the Hodge-Riemann relations in grading 1, we know that the Hodge-Riemann form

$$
\mathrm{CH}^{1}(M) \times \mathrm{CH}^{1}(M) \rightarrow \mathbf{R} \quad(\mu, v) \mapsto-\operatorname{deg}_{M}\left(\ell^{r-2} \mu v\right)
$$

is positive-definite on the kernel of $\ell^{r-1}: \mathrm{CH}^{1}(M) \rightarrow \mathrm{CH}^{r}(M)$. The map $\ell^{r}: \mathrm{CH}^{0}(M) \rightarrow$ $\mathrm{CH}^{r}(M)$ is an isomorphism by the hard Lefschetz theorem in grading 0 so we have a direct sum splitting

$$
\mathrm{CH}^{1}(M)=\mathbf{R}\langle\ell\rangle \oplus \operatorname{ker}\left(\ell^{r-1}\right) .
$$

If $v \in \operatorname{ker}\left(\ell^{r-1}\right)$, then $\operatorname{deg}_{M}\left(\ell^{r-2} \ell v\right)=0$ so this splitting is orthogonal with respect to the Hodge-Riemann form. Furthermore, the Hodge-Riemann form is negative-definite on $\mathbf{R}\langle\ell\rangle$ because $\operatorname{deg}_{M}\left(\ell^{r}\right)>0$ by the Hodge-Riemann relations in degree 0 . It follows that the matrix

$$
\left(\begin{array}{cc}
\operatorname{deg}_{M}\left(\ell^{r-2}\left(\alpha_{M} \alpha_{M}\right)\right) & \operatorname{deg}_{M}\left(\ell^{r-2}\left(\ell \alpha_{M}\right)\right) \\
\operatorname{deg}_{M}\left(\ell^{r-2}\left(\ell \alpha_{M}\right)\right) & \operatorname{deg}_{M}\left(\ell^{r-2}(\ell \ell)\right)
\end{array}\right)
$$

has nonpositive determinant. Finally $\ell_{t}:=t \beta_{M}+(1-t) \ell$ is ample for every $t \in[0,1)$ because β_{M} is nef by Lemma 3.6. The given matrix with ℓ_{t} in place of ℓ has nonpositive determinant for each $t \in[0,1)$ so it also has nonpositive determinant for $t=1$ by continuity.

Corollary 3.15 (Read's conjecture and Hoggar's conjecture). Let G be a finite graph. Then the absolute values of the coefficients of $\chi_{G}(q)$ are log-concave.
Proof. The result follows from the Heron-Rota-Welsh conjecture and Proposition 2.3.

3.2 The degree map

The purpose of this section is to prove that α_{M}^{r} is nonzero. Since $\mathrm{CH}^{r}(M)$ is spanned by α_{M}^{r} by Proposition 3.8, it follows that $\mathrm{CH}^{r}(M)$ is nonzero and the degree map $\operatorname{deg}_{M}: \mathrm{CH}^{r}(M) \rightarrow$ \mathbf{R} is well-defined. This result is proved using Minkowski weights and toric geometry in [AHK18, BHM^{+}20] and ultimately cites the main result of [FMSS95]. We instead prove this result using the Gröbner basis computation appearing in [FY04]. This route to showing that $\alpha_{M}^{r} \neq 0$ was suggested to the author by Christopher Eur. We explain the main argument here, but prove that the given generating set is in fact a Gröbner basis in the Appendix. Our exposition concerning the Chow ring partially follows [BES20] and the basic material on Gröbner bases is from [DF04].

Showing that α_{M}^{r} is nonzero in $\mathrm{CH}(M)$ is equivalent to showing that a certain polynomial does not lie in the ideal of $\mathbf{R}\left[x_{F} \mid F\right.$ is a nonempty proper flat of M] generated by the incomparability and linear relations. A key feature of a Gröbner basis of an ideal is that it provides a practical method for checking whether a given element lies in the ideal. Rather than defining a Gröbner basis for the ideal directly, we use a slightly different presentation of the Chow ring used in [FY04]. If M is a loopless matroid, then

$$
\mathrm{CH}(M)=\mathbf{R}\left[z_{F} \mid F \text { is a nonempty flat of } M\right] / \mathscr{J}
$$

where \mathscr{J} is the ideal

$$
\left.\mathscr{I}=\left\langle z_{F} z_{G}\right| F, G \text { incomparable }\right\rangle+\left\langle\sum_{i \in F} z_{F} \mid i \in E\right\rangle .
$$

We again call the $z_{F} z_{G}$ the incomparability relations and the $\sum_{i \in F} z_{F}$ the linear relations. Note that z_{E} is now a generator and we recover the original presentation by setting

$$
z_{F}= \begin{cases}x_{F} & F \subsetneq E \\ -\alpha_{M} & F=E\end{cases}
$$

A monomial ordering is a well ordering on the set of monomials of a polynomial ring over a field for which $a c \geqslant b c$ whenever $a \geqslant b$ for monomials a, b, c. Fix a total ordering on the set of nonempty flats of M with the property that if $\mathrm{rk}_{M}(F)<\mathrm{rk}_{M}(G)$ then $F>G$. In this total ordering, the ground set E satisfies $F>E$ for all proper flats F. The lexicographical ordering on monomials in $\mathbf{R}\left[z_{F} \mid F\right.$ is a nonempty flat of $\left.M\right]$ is a monomial ordering. Explicitly, we may write any two monomials as

$$
z_{F_{1}}^{n_{1}} \cdots z_{F_{k}}^{n_{k}} \quad \text { and } \quad z_{G_{1}}^{m_{1}} \cdots z_{G_{\ell}}^{n_{\ell}}
$$

where the exponents are all positive and $F_{1}>\cdots>F_{k}$ and $G_{1}>\cdots>G_{\ell}$. It follows that $\operatorname{rk}_{M}\left(F_{1}\right) \leqslant \cdots \leqslant \operatorname{rk}_{M}\left(F_{k}\right)$ and $\operatorname{rk}_{M}\left(G_{1}\right) \leqslant \cdots \leqslant \operatorname{rk}_{M}\left(G_{\ell}\right)$. To compare the two monomials, we first compare F_{1} and G_{1}. If either is larger, then the corresponding monomial is declared larger. If they agree and one n_{1} and m_{1} is larger, then the corresponding monomial is declared larger. If $F_{1}=G_{1}$ and $n_{1}=m_{1}$, then we move on to the next pair of flats and do the same comparison procedure. In this monomial ordering which is fixed for the rest of the section, the smallest monomials are $1<z_{E}<z_{E}^{2}<\cdots$.

Given a monomial ordering, any polynomial now has a leading term just like a singlevariable polynomial. The leading term $L T(f)$ of a nonzero polynomial f is the monomial term cm where m is the largest monomial appearing in the polynomial with nonzero coefficient. In particular, the leading term is $c m$, the monomial with its nonzero coefficient. The leading term of the zero polynomial is defined to be zero. In our situation, note that if the leading term of a polynomial f is $c z_{E}^{k}$ for some $k \geqslant 0$ and $c \in \mathbf{R}$, then f is a single-variable polynomial in $\mathbf{R}\left[z_{E}\right]$.

Definition (Gröbner basis). Let I be an ideal in a polynomial ring over a field with a fixed monomial ordering. A Gröbner basis for I is a finite set of elements $g_{1}, \ldots, g_{m} \in I$ that generate I and whose leading terms generate the ideal of leading terms of I, which is the ideal generated by the leading terms of all elements of I.

Remark. There is no minimality condition on g_{1}, \ldots, g_{m} as one might expect for a "basis". If g_{1}, \ldots, g_{m} is a Gröbner basis for I and $f \in I$, then g_{1}, \ldots, g_{m}, f is a Gröbner basis for I.

Given any collection of elements g_{1}, \ldots, g_{m} and an arbitrary polynomial f, we have a procedure of polynomial division. Set polynomials q_{1}, \ldots, q_{m} all equal to zero initially and repeat the following procedure:

1. If there does not exist a monomial term of f that is divisible by $L T\left(g_{i}\right)$ for some g_{i}, then terminate the procedure and let $r=f$.
2. If some monomial term μ of f is divisible by $L T\left(g_{i}\right)$ for some g_{i}, then $\mu=a L T\left(g_{i}\right)$ for some monomial term a. Add a to q_{i}, and replace f by $f-a g_{i}$, and repeat.
After the procedure terminates, the original polynomial f then satisfies

$$
f=q_{1} g_{1}+\cdots+q_{m} g_{m}+r
$$

Note that the polynomials q_{1}, \ldots, q_{m} may depend on the choices made during the procedure. A variation of the following proposition shows that r is independent of these choices when g_{1}, \ldots, g_{m} is a Gröbner basis.

Proposition 3.16. Let g_{1}, \ldots, g_{m} be a Gröbner basis of an ideal I. Let f be a polynomial, and let q_{1}, \ldots, q_{m}, r be obtained by polynomial division. Then $f \in I$ if and only if $r=0$.

Proof. It is clear that if $r=0$ then $f \in I$. If $f \in I$, then we show that $r=0$ by induction on the number of nonzero monomial terms in f. The base case $f=0$ is trivial. In the inductive step, we know that $L T(f)$ lies in the ideal of leading terms of I, so by definition of a Gröbner basis we know that $L T(f)$ can be written as $a_{1} L T\left(g_{1}\right)+\cdots a_{m} L T\left(g_{m}\right)$ for some polynomials a_{i}. However, since $L T(f)$ is just the product of a nonzero constant with a monomial, it follows that there exists an i for which $L T(f)=a L T\left(g_{i}\right)$. The polynomial $f-a g_{i}$ still lies in I and has strictly fewer nonzero monomial terms.

Proposition 3.17. The following collection of elements is a Gröbner basis of the ideal \mathcal{F} :

$$
\begin{array}{ll}
g_{F, G}=z_{F} z_{G} & F, G \text { are incomparable nonempty flats } \\
g_{F, G}=z_{F}\left(\sum_{G \subseteq H} z_{H}\right)^{\mathrm{rk}_{M}(G)-\mathrm{rk} \mathrm{k}_{M}(F)} & F \subsetneq G \text { and } F, G \text { are nonempty flats } \\
g_{\varnothing, G}=\left(\sum_{G \subseteq H} z_{H}\right)^{\mathrm{rk}_{M}(G)} & G \text { is a nonempty flat. }
\end{array}
$$

Corollary 3.18. The element α_{M}^{r} is nonzero in $\mathrm{CH}^{r}(M)$.
Proof. Since $z_{E}=-\alpha_{M}$, it suffices to show that z_{E}^{r} does not lie in \mathscr{F}. We apply polynomial division to z_{E}^{r} with respect to the Gröbner basis of Proposition 3.17. The leading terms of the elements of the Gröbner basis are

$$
\begin{array}{ll}
L T\left(g_{F, G}\right)=z_{F} z_{G} & F, G \text { are incomparable nonempty flats } \\
L T\left(g_{F, G}\right)=z_{F} z_{G}^{\mathrm{rk}_{M}(G)-\mathrm{rk}_{M}(F)} & F \subsetneq G \text { and } F, G \text { are nonempty flats } \\
L T\left(g_{\varnothing, G}\right)=z_{G}^{\mathrm{rk}_{M}(G)} & G \text { is a nonempty flat. }
\end{array}
$$

Note that $L T\left(g_{\varnothing, E}\right)=z_{E}^{r+1}$ because $\operatorname{rk}_{M}(E)=\operatorname{rk}(M)=r+1$. Thus z_{E}^{r} is not divisible by any of these leading terms so polynomial division terminates with $r=z_{E}^{r}$. As z_{E}^{r} is nonzero in the polynomial ring, it follows from Proposition 3.16 that $z_{E}^{r} \notin \mathcal{F}$.
Proof of the existence and uniqueness of the degree map. The result follows from Proposition 3.8 and Corollary 3.18.

To prove that the elements $g_{F, G}$ defined in Proposition 3.17 form a Gröbner basis, we first prove that they generate \mathcal{F}, and then apply Buchberger's criterion.

Lemma 3.19. The elements $g_{F, G}$ generate \mathcal{F}.
Proof. It is easy to see that \mathcal{F} is contained in the ideal generated by the $g_{F, G}$. It is obvious for the incomparability relations, and for any $i \in E$, if we let G be the smallest flat containing i, then $g_{\varnothing, G}$ is precisely the linear relation $\sum_{i \in H} z_{H}$. It suffices to show that every $g_{F, G}$ lies in \mathscr{F} which is equivalent to saying that $g_{F, G} \equiv 0$ in $\mathrm{CH}(M)$. The result is trivial when F, G are incomparable. Let F, G be flats for which $F \subsetneq G$. We show that $g_{F, G} \equiv 0$ in $\mathrm{CH}(M)$ by induction on $\operatorname{rk}_{M}(G)-\mathrm{rk}_{M}(F)$. Throughout, we use the convention that $z_{F}=1$ if $F=\varnothing$.

If $\operatorname{rk}_{M}(G)=\operatorname{rk}_{M}(F)+1$, then fix an element $i \in G \backslash F$ and observe that

$$
g_{F, G}=z_{F}\left(\sum_{G \subseteq H} z_{H}\right) \equiv z_{F}\left(\sum_{i \in H} z_{H}\right) \equiv 0
$$

where the first equivalence follows from incomparability and the second follows from the linear relations. Now let $\mathrm{rk}_{M}(G)-\operatorname{rk}_{M}(F)=d>1$ and again fix $i \in G \backslash F$. Then we know that

$$
0 \equiv z_{F}\left(\sum_{i \in K} z_{K}\right)\left(\sum_{G \subseteq H} z_{H}\right)^{d-1}=g_{F, G}+z_{F}\left(\sum_{\substack{i \in K \\ G \subseteq K}} z_{K}\right)\left(\sum_{G \subseteq H} z_{H}\right)^{d-1}
$$

by the linear relations. We show that $z_{F} z_{K}\left(\sum_{G \subseteq H} z_{H}\right)^{d-1} \equiv 0$ for each K satisfying $i \in K$ and $G \varsubsetneqq K$. By the incomparability relation, we may assume that $F \subsetneq K$. But then

$$
z_{K}\left(\sum_{G \subseteq H} z_{H}\right)^{d-1} \equiv z_{K}\left(\sum_{\operatorname{cl}(G \cup K) \subseteq H} z_{H}\right)^{d-1}
$$

again by the incomparability relations where $\mathrm{cl}(G \cup K)$ is the smallest flat containing both G and K. The expression on the right is divisible by $g_{K, \mathrm{cl}(G \cup K)}$ because

$$
\operatorname{rk}_{M}(G \cup K)-\operatorname{rk}_{M}(K) \leqslant \operatorname{rk}_{M}(G)-\operatorname{rk}_{M}(G \cap K)<\operatorname{rk}_{M}(G)-\operatorname{rk}(F)=d
$$

since $G \cap K$ strictly contains F. By induction, we know that $g_{K, \mathrm{cl}(G \cup K)} \equiv 0$.
The syzygy $S(f, g)$ of two polynomials f, g is defined to be

$$
S(f, g)=\frac{M}{L T(f)} f-\frac{M}{L T(g)} g
$$

where M is the monic least common multiple of $L T(f)$ and $L T(g)$. Note that the syzygy of any two elements of an ideal I is also in I. Suppose g_{1}, \ldots, g_{m} generate the ideal I. If they form a Gröbner basis of I, then clearly long division of $S\left(g_{i}, g_{j}\right)$ by g_{1}, \ldots, g_{m} results in $r=0$. Buchberger's criterion is the converse.
Buchberger's criterion. Suppose g_{1}, \ldots, g_{m} generate an ideal I in a polynomial ring over a field equipped with a monomial ordering. If it is possible to apply long division to each syzygy $S\left(g_{i}, g_{j}\right)$ by g_{1}, \ldots, g_{m} and obtain $r=0$, then g_{1}, \ldots, g_{m} is a Gröbner basis for I.

We prove Buchberger's criterion in the Appendix. To apply Buchberger's criterion to the elements $g_{F, G}$, we apply long division to each syzygy

$$
S\left(g_{A, B}, g_{C, D}\right)
$$

explicitly by case work. This case work is also done in the Appendix.

4 The Kähler package

In this section, we prove the Kähler package which consists of Poincaré duality, the hard Lefschetz theorem, and the Hodge-Riemann relations. For all three results, the argument is by induction on the size of the ground set, and the inductive step is proven using the semi-small decomposition. Given a matroid M and an element i in the ground set E, there is a matroid $M \backslash i$ on $E \backslash i$ called the deletion of i from M which generalizes deletion of an edge from a graph.

Definition (Deletion). Let M be a matroid and let i be an element of the ground set E. The deletion of i from M is the matroid denoted $M \backslash i$ on the ground set $E \backslash i$ defined by any of the following equivalent conditions:

- A set $I \subseteq E \backslash i$ is independent in $M \backslash i$ if and only if I is independent in M.
- If $S \subseteq E \backslash i$, then $\mathrm{rk}_{M \backslash i}(S)=\mathrm{rk}_{M}(S)$.
- A set $F \subseteq E \backslash i$ is a flat of $M \backslash i$ if and only if $F=G \backslash i$ for some flat G of M.

Note that if M is loopless, then $M \backslash i$ is loopless.
There is a graded algebra homomorphism from the Chow ring of $M \backslash i$ to the Chow ring of M denoted $\vartheta_{i}: \mathrm{CH}(M \backslash i) \rightarrow \mathrm{CH}(M)$ which is defined by

$$
\vartheta_{i}\left(x_{G}\right)=x_{G}+x_{G \cup i}
$$

where a variable on the right is set to zero if its label is not a flat of M. It is easy to verify that ϑ_{i} sends the incomparability and linear relations to zero and is therefore well-defined. The algebra map ϑ_{i} allows us to view $\mathrm{CH}(M)$ as a module over $\mathrm{CH}(M \backslash i)$. It turns out that $\mathrm{CH}(M)$ decomposes as a direct sum of indecomposable $\mathrm{CH}(M \backslash i)$-modules. The semi-small decomposition of $\mathrm{CH}(M)$ refers to this decomposition, and further characterizes the direct summands.

Let δ_{i} be the collection of nonempty proper subsets F of $E \backslash i$ for which F and $F \cup i$ are both flats of M. Let $\mathrm{CH}_{(i)} \subseteq \mathrm{CH}(M)$ denote the image of $\mathfrak{\vartheta}_{i}$. Assume that $|E| \geqslant 2$.

The semi-small decomposition. Let M be a loopless matroid, and let $i \in E$. If i is not a coloop, then there is a direct sum decomposition

$$
\mathrm{CH}(M)=\mathrm{CH}_{(i)} \oplus \bigoplus_{F \in \mathcal{S}_{i}} x_{F \cup i} \mathrm{CH}_{(i)}
$$

into indecomposable graded $\mathrm{CH}(M \backslash i)$-modules, where all pairs of distinct summands are orthogonal under the Poincaré pairing of $\mathrm{CH}(M)$. If i is a coloop, then there is a direct sum decomposition

$$
\mathrm{CH}(M)=\mathrm{CH}_{(i)} \oplus x_{E \backslash i} \mathrm{CH}_{(i)} \oplus \underset{F \in \mathcal{S}_{i}}{\oplus} x_{F \cup i} \mathrm{CH}_{(i)}
$$

into indecomposable graded $\mathrm{CH}(M \backslash i)$-modules, where all pairs of distinct summands except the first two are orthogonal under the Poincaré pairing of $\mathrm{CH}(M)$.

Remark. The Poincaré pairing is the bilinear map

$$
\mathrm{CH}^{k}(M) \times \mathrm{CH}^{r-k}(M) \rightarrow \mathbf{R} \quad(\mu, v) \mapsto \operatorname{deg}_{M}(\mu v) .
$$

Poincaré duality is equivalent to the assertion that this pairing is nondegenerate. Subspaces $V \subseteq \mathrm{CH}^{k}(M)$ and $W \subseteq \mathrm{CH}^{r-k}(M)$ are orthogonal under the Poincaré pairing if $\operatorname{deg}_{M}(\mu v)=0$ whenever $\mu \in V$ and $v \in W$.

In section 4.2, we prove the semi-small decomposition and Poincaré duality simultaneously by induction on the size of the ground set. In section 4.3, we prove the hard Lefschetz theorem and the Hodge-Riemann relations simultaneously by induction on the size of the ground set using both the semi-small decomposition and Poincaré duality. In both arguments, the inductive step assumes the corresponding results for all loopless matroids on strictly smaller ground sets. The summands appearing in the semi-small decomposition are not Chow rings of matroids on smaller sets. In order to apply the induction hypothesis on these summands, we identify them with tensor products of Chow rings of certain matroids on strict subsets of the ground set in section 4.1. The material in this section is from $\left[\mathrm{BHM}^{+} 20, \mathrm{ADH} 20\right]$. Step 6 of the proof of the hard Lefschetz theorem and the Hodge-Riemann relations was suggested to the author by June Huh.

4.1 The pullback and pushforward maps

In this section, we identify the summands appearing in the semi-small decomposition with tensor products of Chow rings of certain matroids on strict subsets of the ground set. The identification will be as $\mathrm{CH}(M \backslash i)$-modules and in each case there will be some version of compatibility with the degree maps. The following proposition provides an example of compatibility with the degree maps.

Proposition 4.1. Let M be a loopless matroid, let $i \in E$, and let $\vartheta_{i}: \mathrm{CH}(M \backslash i) \rightarrow \mathrm{CH}(M)$ be the graded algebra map associated with the deletion. If i is not a coloop, then

$$
\operatorname{deg}_{M \backslash i}=\operatorname{deg}_{M} \circ \vartheta_{i} .
$$

If i is a coloop, then

$$
\operatorname{deg}_{M \backslash i}=\operatorname{deg}_{M} \circ x_{E \backslash i} \circ \vartheta_{i}=\operatorname{deg}_{M} \circ \alpha_{M} \circ \vartheta_{i}
$$

where the middle maps in the composites denote multiplication.
Proof. Assume that i is not a coloop. Then

$$
\vartheta_{i}\left(\alpha_{M \backslash i}\right)=\sum_{j \in G \backslash i} x_{G \backslash i}+x_{G \cup i}
$$

where the sum is over proper flats of $M \backslash i$ that contain a fixed element $j \in M \backslash i$. It is easy to verify that this sum is just $\sum_{j \in H} x_{H}=\alpha_{M}$ using the fact that $E \backslash i$ is not a flat of M. It follows that $\vartheta_{i}\left(\alpha_{M \backslash i}^{r}\right)=\alpha_{M}^{r}$ because ϑ_{i} is an algebra map. Both $M \backslash i$ and M are of rank $r+1$ because i is not a coloop so the formula follows from the definition of the degree map.

Now assume that i is a coloop. A similar computation as in the previous case shows that $\vartheta_{i}\left(\alpha_{M \backslash i}\right)=\alpha_{M}-x_{E \backslash i}$. Thus

$$
\alpha_{M} \vartheta_{i}\left(\alpha_{M \backslash i}^{r-1}\right)=\alpha_{M}\left(\alpha_{M}-x_{E \backslash i}\right)^{r-1}=\alpha_{M}^{r}
$$

where we use the identity $x_{E \backslash i} \alpha_{M}=x_{E \backslash i} \sum_{i \in G} x_{G}=0$. Thus $\operatorname{deg}_{M \backslash i}=\operatorname{deg}_{M} \circ \alpha_{M} \circ \vartheta_{i}$. Next observe that

$$
\operatorname{deg}_{M} \circ \alpha_{M} \circ \vartheta_{i}=\operatorname{deg}_{M} \circ \vartheta_{i} \circ \alpha_{M \backslash i}+\operatorname{deg}_{M} \circ x_{E \backslash i} \circ \vartheta_{i}=\operatorname{deg}_{M} \circ x_{E \backslash i} \circ \vartheta_{i}
$$

using the fact that $\alpha_{M}=\vartheta_{i}\left(\alpha_{M \backslash i}\right)+x_{E \backslash i}$ and that $\mathrm{CH}^{r}(M \backslash i)=0$.
The degree formula of Proposition 4.1 has the following consequence. Suppose $\mathrm{CH}(M \backslash i)$ satisfies Poincaré duality. If i is not a coloop, then the map

$$
\vartheta_{i}: \mathrm{CH}(M \backslash i) \rightarrow \mathrm{CH}_{(i)}
$$

is an isomorphism of $\mathrm{CH}(M \backslash i)$-modules. Indeed, if $\mu \in \mathrm{CH}(M \backslash i)$ is nonzero, there exists an element $v \in \mathrm{CH}(M \backslash i)$ for which $\operatorname{deg}_{M \backslash i}(\mu v) \neq 0$ by Poincaré duality. Then by the degree formula $\operatorname{deg}_{M}\left(\vartheta_{i}(\mu) \vartheta_{i}(v)\right) \neq 0$ so in particular $\vartheta_{i}(\mu) \neq 0$. Thus ϑ_{i} is injective and is therefore an isomorphism onto its image. By the same reasoning, if i is a coloop, then the maps

$$
\vartheta_{i}: \mathrm{CH}(M \backslash i) \rightarrow \mathrm{CH}_{(i)} \quad x_{E \backslash i} \circ \vartheta_{i}: \mathrm{CH}(M \backslash i) \rightarrow x_{E \backslash i} \mathrm{CH}_{(i)}
$$

are isomorphisms of $\mathrm{CH}(M \backslash i)$-modules.
To provide similar descriptions for the other summands $x_{F \cup i} \mathrm{CH}_{(i)}$ in the semi-small decomposition, we first define the relevant auxiliary matroids, and then we then define pullback and pushforward maps which relate the Chow ring of M to those of the auxiliary matroids.

Definition (Localization and contraction). Let M be a matroid on the ground set E, and let F be a nonempty proper flat of M. The localization of M at F is the matroid denoted M^{F} on the ground set F defined by any of the following equivalent conditions:

- A subset $I \subseteq F$ is independent in M^{F} if and only if I is independent in M.
- If $S \subseteq F$, then $\operatorname{rk}_{M^{F}}(S)=\operatorname{rk}_{M}(S)$.
- A subset $G \subseteq F$ is a flat of M^{F} if and only if G is a flat of M.

Note that if $i \in E$ is a coloop, then $E \backslash i$ is a flat and $M^{E \backslash i}=M \backslash i$. The contraction of M by F is the matroid denoted M_{F} on the ground set $E \backslash F$ defined by any of the following equivalent conditions:

- A subset $I \subseteq E \backslash F$ is independent in M_{F} if and only if for every maximal independent subset I_{F} of F, the set $I \cup I_{F}$ is independent in M.
- If $S \subseteq E \backslash F$, then $\mathrm{rk}_{M_{F}}(S)=\mathrm{rk}_{M}(S \cup F)-\mathrm{rk}_{M}(F)$.
- A subset $G \subseteq E \backslash F$ is a flat of M_{F} if and only if $G \cup F$ is a flat of M.

Note that $\mathscr{L}_{M^{F}}$ is just the lattice of flats of M that are contained in F while $\mathscr{L}_{M_{F}}$ is the lattice of flats of M that contain F. If M is loopless, then M^{F} and M_{F} are loopless.

Lemma 4.2 (Pullback map). Let M be a loopless matroid, and let F be a nonempty proper flat of M. There is a unique graded algebra homomorphism

$$
\varphi_{M}^{F}: \mathrm{CH}(M) \rightarrow \mathrm{CH}\left(M_{F}\right) \otimes \mathrm{CH}\left(M^{F}\right)
$$

called the pullback map for which

$$
\varphi_{M}^{F}\left(x_{G}\right)= \begin{cases}0 & F \text { and } G \text { are incomparable } \\ 1 \otimes x_{G} & G \subsetneq F \\ x_{G \backslash F} \otimes 1 & F \subsetneq G\end{cases}
$$

The map is surjective and additionally satisfies

$$
\begin{aligned}
\varphi_{M}^{F}\left(x_{F}\right) & =-\left(1 \otimes \alpha_{M^{F}}+\beta_{M_{F}} \otimes 1\right) \\
\varphi_{M}^{F}\left(\alpha_{M}\right) & =\alpha_{M_{F}} \otimes 1 \\
\varphi_{M}^{F}\left(\beta_{M}\right) & =1 \otimes \beta_{M_{F}}
\end{aligned}
$$

Proof. For uniqueness, it suffices to show that φ_{M}^{F} must send x_{F} to $-\left(1 \otimes \alpha_{M^{F}}+\beta_{M_{F}} \otimes 1\right)$ if it has the described behavior on x_{G} for $G \neq F$. First, observe that for $j \notin F$

$$
\varphi_{M}^{F}\left(\alpha_{M}\right)=\sum_{j \in G} \varphi_{M}^{F}\left(x_{G}\right)=\sum_{F \cup j \subseteq G} x_{G \backslash F} \otimes 1=\alpha_{M_{F}} \otimes 1
$$

whereas for $i \in F$

$$
\begin{aligned}
\varphi_{M}^{F}\left(\alpha_{M}\right) & =\sum_{i \in G \subsetneq F} 1 \otimes x_{G}+\varphi_{M}^{F}\left(x_{F}\right)+\sum_{F \subsetneq G} x_{G \backslash F} \otimes 1 \\
& =1 \otimes \alpha_{M^{F}}+\varphi_{M}^{F}\left(x_{F}\right)+\left(\alpha_{M_{F}}+\beta_{M_{F}}\right) \otimes 1
\end{aligned}
$$

Thus $\varphi_{M}^{F}\left(x_{F}\right)=-\left(1 \otimes \alpha_{M^{F}}+\beta_{M_{F}} \otimes 1\right)$ as required. The computation that $\varphi_{M}^{F}\left(\beta_{M}\right)=1 \otimes \beta_{M_{F}}$ is straightforward.

To see existence, we must check that if φ_{M}^{F} has the described behavior on each x_{G} for G a nonempty proper flat of M, then it respects the incomparability relation and that $\varphi_{M}^{F}\left(\sum_{i \in G} x_{G}\right)$ is independent of i. The former is straightforward to verify and the latter follows from our computations above. Surjectivity is easy to verify as well.

Lemma 4.3 (Pushforward map). Let M be a loopless matroid, and let F be a nonempty proper flat of M. There is a unique $\mathrm{CH}(M)$-module homomorphism

$$
\psi_{M}^{F}: \mathrm{CH}\left(M_{F}\right) \otimes \mathrm{CH}\left(M^{F}\right) \rightarrow \mathrm{CH}(M)
$$

called the pushforward map for which $\psi_{M}^{F}(1)=x_{F}$. The tensor product $\mathrm{CH}\left(M_{F}\right) \otimes \mathrm{CH}\left(M^{F}\right)$ is viewed as a $\mathrm{CH}(M)$-module via the pullback map φ_{M}^{F}. The pushforward map satisfies the identity

$$
\operatorname{deg}_{M_{F}} \otimes \operatorname{deg}_{M^{F}}=\operatorname{deg}_{M} \circ \psi_{M}^{F}
$$

Proof. Uniqueness follows from the fact that the pullback φ_{M}^{F} is surjective. Existence is also straightforward and involves checking the incompatibility and linear relations for M_{F} and M^{F}. To verify the degree formula, we simply observe that if $F_{1} \subsetneq \cdots \subsetneq F_{r}$ is a maximal flag of M for which $F_{i}=F$ for some index i, then ψ_{M}^{F} sends

$$
\left(x_{F_{i+1} \backslash G} \cdots x_{F_{r} \backslash G}\right) \otimes\left(x_{F_{1}} \cdots x_{F_{i-1}}\right) \mapsto x_{F_{1}} \cdots x_{F_{r}} .
$$

Remark. The composite $\psi_{M}^{F} \circ \varphi_{M}^{F}$ is just multiplication by x_{F}, while the composite $\varphi_{M}^{F} \circ \psi_{M}^{F}$ is multiplication by $\varphi_{M}^{F}\left(x_{F}\right)$.

Using the pullback and pushforward maps, we identify the summand $x_{F \cup i} \mathrm{CH}_{(i)}$ in the semi-small decomposition as a $\mathrm{CH}(M \backslash i)$-module and provide a degree formula.

Lemma 4.4. Let M be a loopless matroid, let $i \in E$, and let $F \in \mathcal{S}_{i}$. Note that i is a coloop of $M^{F \cup i}$ and let

$$
\vartheta_{i}^{F \cup i}: \mathrm{CH}\left(M^{F}\right) \rightarrow \mathrm{CH}\left(M^{F \cup i}\right)
$$

be the graded algebra map associated with the deletion of ifrom $M^{F \cup i}$. There is a surjective algebra map q which makes the following diagram commute

Proof. Note that $(M \backslash i)^{F}$ and M^{F} are matroids on F with

$$
\begin{aligned}
\text { flats of }(M \backslash i)^{F} & =\{G \backslash i \mid G \backslash i \subseteq F \text { and } G \text { is a flat of } M\} \\
\text { flats of } M^{F} & =\{G \mid G \subseteq F \text { and } G \text { is a flat of } M\}
\end{aligned}
$$

These two sets are the same so $(M \backslash i)^{F}=M^{F}$. Next, observe that $(M \backslash i)_{F}$ and $M_{F \cup i}$ are both matroids on $M \backslash(F \cup i)$ and that

$$
\begin{aligned}
\text { flats of }(M \backslash i)_{F} & =\{G \backslash(F \cup i) \mid G \text { is a flat of } M \text { containing } F\} \\
\text { flats of } M_{F \cup i} & =\{G \backslash(F \cup i) \mid G \text { is a flat of } M \text { containing } F \cup i\}
\end{aligned}
$$

Thus every flat of $M_{F \cup i}$ is a flat of $(M \backslash i)_{F}$ so there is a surjective algebra map

$$
\mathrm{CH}\left((M \backslash i)_{F}\right) \rightarrow \mathrm{CH}\left(M_{F \cup i}\right) \quad x_{H} \mapsto \begin{cases}x_{H} & H \text { is a flat of } M_{F \cup i} \\ 0 & H \text { is not a flat of } M_{F \cup i} .\end{cases}
$$

The algebra map q is defined to be the tensor product of this surjective map with the identity $\mathrm{CH}\left((M \backslash i)^{F}\right) \rightarrow \mathrm{CH}\left(M^{F}\right)$. To see that the diagram is commutative, it is straightforward to verify that $\left(\operatorname{Id} \otimes \vartheta_{i}^{F \cup i}\right) \circ q \circ \varphi_{M \backslash i}^{F}$ and $\varphi_{M}^{F \cup i} \circ \vartheta_{i}$ are both given by

$$
x_{G \backslash i} \mapsto \begin{cases}x_{G \backslash(F \cup i)} \otimes 1 & F \cup i \subsetneq G \cup i \text { and } G \cup i \text { is a flat of } M \\ 1 \otimes\left(x_{G \backslash i}+x_{G \cup i}\right) & G \backslash i \subsetneq F \\ 1 \otimes x_{F}-1 \otimes \alpha_{M^{F \cup i}}-\beta_{M_{F \cup i}} \otimes 1 & F=G \backslash i \\ 0 & \text { otherwise }\end{cases}
$$

for $G \backslash i$ a nonempty proper flat of $M \backslash i$.

Proposition 4.5. Let M be a loopless matroid, let $i \in E$, and let $F \in \mathcal{S}_{i}$. Then there is a surjective $\mathrm{CH}(M \backslash i)$-module map

$$
\Psi_{i}^{F}: \mathrm{CH}\left(M_{F \cup i}\right) \otimes \mathrm{CH}\left(M^{F}\right) \rightarrow x_{F \cup i} \mathrm{CH}_{(i)}
$$

which increases grading by one with the property that for any $\mu, v \in \mathrm{CH}\left(M_{F \cup i}\right) \otimes \mathrm{CH}\left(M^{F}\right)$

$$
\operatorname{deg}_{M}\left(\Psi_{i}^{F}(\mu) \Psi_{i}^{F}(v)\right)=-\left(\operatorname{deg}_{M_{F \cup i}} \otimes \operatorname{deg}_{M^{F}}\right)(\mu v)
$$

The map $q \circ \varphi_{M \backslash i}^{F}: \mathrm{CH}(M \backslash i) \rightarrow \mathrm{CH}\left(M_{F \cup i}\right) \otimes \mathrm{CH}\left(M^{F}\right)$ of Lemma 4.4 defines the module structure on the tensor product.

Remark. If $\mathrm{CH}\left(M_{F \cup i}\right)$ and $\mathrm{CH}\left(M^{F}\right)$ satisfy Poincaré duality, then Ψ_{i}^{F} is an isomorphism of $\mathrm{CH}(M \backslash i)$-modules. Indeed, if $\mu \in \mathrm{CH}\left(M_{F \cup i}\right) \otimes \mathrm{CH}\left(M^{F}\right)$ is nonzero, then by Poincaré duality for the two Chow rings, it follows that there exists a $v \in \mathrm{CH}\left(M_{F \cup i}\right) \otimes \mathrm{CH}\left(M^{F}\right)$ for which $\left(\operatorname{deg}_{M_{F \cup i}} \otimes \operatorname{deg}_{M^{F}}\right)(\mu v) \neq 0$. The degree formula then implies that $\Psi_{i}^{F}(\mu) \neq 0$.
Proof. Let Ψ_{i}^{F} be the composite $\psi_{M}^{F \cup i} \circ\left(\operatorname{Id} \otimes \vartheta_{i}^{F \cup i}\right)$. The fact that Ψ_{i}^{F} is a surjective $\mathrm{CH}(M \backslash i)$ module map follows from the commutative diagram

and Lemma 4.4. It suffices to prove the degree formula.
For ease of notation, we temporarily let $\psi=\psi_{M}^{F \cup i}, \vartheta=\vartheta_{i}^{F \cup i}$, and $\varphi=\varphi_{M}^{F \cup i}$. Observe that

$$
\operatorname{deg}_{M}\left(\Psi_{i}^{F}(\mu) \Psi_{i}^{F}(v)\right)=\operatorname{deg}_{M}(\psi((\operatorname{Id} \otimes \vartheta) \mu) \cdot \psi((\operatorname{Id} \otimes \vartheta) v))
$$

Because ψ is a $\mathrm{CH}(M)$-module map, the expression equals

$$
\operatorname{deg}_{M} \psi(\varphi \psi((\operatorname{Id} \otimes \vartheta) \mu) \cdot(\operatorname{Id} \otimes \vartheta) v)
$$

Since $\operatorname{deg}_{M} \circ \psi=\operatorname{deg}_{M_{F \cup i}} \otimes \operatorname{deg}_{M^{F \cup i}}$ and $\varphi \circ \psi$ is multiplication by $\varphi\left(x_{F \cup i}\right)$, we obtain

$$
-\left(\operatorname{deg}_{M_{F \cup i}} \otimes \operatorname{deg}_{M^{F \cup i}}\right)\left(\left(1 \otimes \alpha_{M^{F \cup i}}+\beta_{M_{F \cup i}} \otimes 1\right) \cdot(\operatorname{Id} \otimes \vartheta)(\mu v)\right)
$$

Note that $\left(\beta_{M_{F \cup i}} \otimes 1\right) \cdot\left(\operatorname{Id} \otimes \vartheta_{i}\right) \mu \cdot(\operatorname{Id} \otimes \vartheta) v$ lies in $\mathrm{CH}\left(M_{F \cup i}\right) \otimes \vartheta\left(\mathrm{CH}\left(M^{F}\right)\right)$. The rank of M^{F} is less than the rank of $M^{F \cup i}$ so $\operatorname{deg}_{M^{F \cup i}}$ vanishes on $\vartheta\left(\mathrm{CH}\left(M^{F}\right)\right.$). Thus, our expression is equal to

$$
\begin{aligned}
& -\left(\operatorname{deg}_{M_{F \cup i}} \otimes \operatorname{deg}_{M^{F \cup i}}\right)\left(\left(1 \otimes \alpha_{M^{F \cup i}}\right) \cdot(\operatorname{Id} \otimes \vartheta)(\mu v)\right) \\
= & -\left(\operatorname{deg}_{M_{F \cup i}} \otimes\left(\operatorname{deg}_{M^{F \cup i}} \circ \alpha_{M^{F \cup i}} \circ \vartheta\right)\right)(\mu v) .
\end{aligned}
$$

The result now follows from the formula $\operatorname{deg}_{M^{F}}=\operatorname{deg}_{M^{F \cup i}} \circ \alpha_{M^{F \cup i}} \circ \vartheta$ of Proposition 4.1.

4.2 The semi-small decomposition and Poincaré duality

We prove the semi-small decomposition and Poincaré duality for M when $|E| \geqslant 2$ from the assumption that Poincaré duality holds for all loopless matroids on nonempty proper subsets of E. The base case of our induction is the trivial fact that Poincaré duality holds when $|E|=1$.

Proof of the semi-small decomposition and Poincaré duality. Let M be a loopless matroid with $|E| \geqslant 2$, and assume that Poincaré duality holds for all matroids on nonempty proper subsets of E, and fix an element $i \in E$. We prove the result in four steps.

Step 1: The subspace $x_{F \cup i} \mathrm{CH}_{(i)}$ is zero in grading r for each $F \in \mathcal{S}_{i}$. The surjective map

$$
\Psi_{i}^{F}: \mathrm{CH}\left(M_{F \cup i}\right) \otimes \mathrm{CH}\left(M^{F}\right) \rightarrow x_{F \cup i} \mathrm{CH}_{(i)}
$$

of Proposition 4.5 increases grading by one, so it suffices to show that $\mathrm{CH}\left(M_{F \cup i}\right) \otimes \mathrm{CH}\left(M^{F}\right)$ is zero in grading $r-1$. Note that $\operatorname{rk}\left(M_{F \cup i}\right)=r-\mathrm{rk}_{M}(F)$ and $\operatorname{rk}\left(M^{F}\right)=\mathrm{rk}_{M}(F)$, so the top grading in which $\mathrm{CH}\left(M_{F \cup i}\right) \otimes \mathrm{CH}\left(M^{F}\right)$ is nonzero is $\left(r-\mathrm{rk}_{M}(F)-1\right)+\left(\operatorname{rk}_{M}(F)-1\right)=r-2$.
Step 2: Nondegeneracy of the Poincaré pairing on the subspaces.

- The Poincaré pairing is nondegenerate on each $x_{F \cup i} \mathrm{CH}_{(i)}$. By surjectivity of Ψ_{i}^{F}, an arbitrary nonzero element of $x_{F \cup i} \mathrm{CH}_{(i)}$ is of the form $\Psi_{i}^{F}(\mu)$ for some nonzero element $\mu \in \mathrm{CH}\left(M_{F \cup i}\right) \otimes \mathrm{CH}\left(M^{F}\right)$. Poincaré duality holds for both $\mathrm{CH}\left(M_{F \cup i}\right)$ and $\mathrm{CH}\left(M^{F}\right)$, so there is an element $v \in \mathrm{CH}\left(M_{F \cup i}\right) \otimes \mathrm{CH}\left(M^{F}\right)$ for which $\left(\operatorname{deg}_{M_{F \cup i}} \otimes \operatorname{deg}_{M^{F}}\right)(\mu v) \neq 0$. It follows that

$$
\operatorname{deg}_{M}\left(\Psi_{i}^{F}(\mu) \Psi_{i}^{F}(v)\right)=-\left(\operatorname{deg}_{M_{F \cup i}} \otimes \operatorname{deg}_{M^{F}}\right)(\mu v) \neq 0
$$

as required.

- If i is not a coloop, then the Poincaré pairing is nondegenerate on $\mathrm{CH}_{(i)}$. This result follows from the formula $\operatorname{deg}_{M} \circ \vartheta_{i}=\operatorname{deg}_{M \backslash i}$ of Proposition 4.1. Indeed, if $\vartheta_{i}(\mu) \in \mathrm{CH}_{(i)}$ is nonzero, by Poincaré duality for $M \backslash i$ there is an element $v \in \mathrm{CH}(M \backslash i)$ for which

$$
0 \neq \operatorname{deg}_{M \backslash i}(\mu v)=\operatorname{deg}_{M}\left(\vartheta_{i}(\mu v)\right)=\operatorname{deg}_{M}\left(\vartheta_{i}(\mu) \vartheta_{i}(v)\right)
$$

- If i is a coloop, then the Poincaré pairing is nondegenerate on $\mathrm{CH}_{(i)}+x_{E \backslash i} \mathrm{CH}_{(i)}$. We have the formula $\operatorname{deg}_{M \backslash i}=\operatorname{deg}_{M} \circ x_{E \backslash i} \circ \vartheta_{i}$ from Proposition 4.1. Given a nonzero element $\vartheta_{i}(\mu) \in \mathrm{CH}_{(i)}$, there exists $v \in \mathrm{CH}(M \backslash i)$ for which $\operatorname{deg}_{M \backslash i}(\mu v) \neq 0$ by Poincaré duality for $M \backslash i$. The element $x_{E \backslash i} \vartheta_{i}(v) \in x_{E \backslash i} \mathrm{CH}_{(i)}$ satisfies

$$
\operatorname{deg}_{M}\left(x_{E \backslash i} \vartheta_{i}(v) \vartheta_{i}(\mu)\right)=\operatorname{deg}_{M \backslash i}(v \mu) \neq 0
$$

The same argument shows that for any nonzero element $x_{E \backslash i} \vartheta_{i}(\mu) \in x_{E \backslash i} \mathrm{CH}_{(i)}$, there exists $\vartheta_{i}(v) \in \mathrm{CH}_{(i)}$ for which $\operatorname{deg}_{M}\left(x_{E \backslash i} \vartheta_{i}(\mu) \vartheta_{i}(v)\right) \neq 0$.

Step 3: Orthogonality of the subspaces under the pairing and trivial pairwise intersection. We first show that the relevant pairs are orthogonal with respect to the Poincare pairing. It follows that each such pair intersects trivially by Step 2.

- Assume F, G are distinct elements of δ_{i}. If F, G are incomparable, then $x_{F \cup i} \mathrm{CH}_{(i)}$ and $x_{G \cup i} \mathrm{CH}_{(i)}$ are clearly orthogonal. Assume that $F \subsetneq G$ and note that

$$
x_{F \cup i} x_{G \cup i}=x_{F \cup i}\left(x_{G}+x_{G \cup i}\right)=x_{F \cup i} \vartheta_{i}\left(x_{G}\right)
$$

so that $x_{\mathrm{F} \cup i} \mathrm{CH}_{(i)} \cdot x_{G \cup i} \mathrm{CH}_{(i)} \subseteq x_{F \cup i} \mathrm{CH}_{(i)}$. Since $x_{F \cup i} \mathrm{CH}_{(i)}$ is zero in degree r, the subspaces are orthogonal.

- If i is not a coloop, then $\mathrm{CH}_{(i)} \cdot x_{F \cup i} \mathrm{CH}_{(i)} \subseteq x_{F \cup i} \mathrm{CH}_{(i)}$ which is zero in degree r so $\mathrm{CH}_{(i)}$ is orthogonal to each $x_{F \cup i} \mathrm{CH}_{(i)}$.
- If i is a coloop, then $\mathrm{CH}_{(i)} \cdot x_{F \cup i} \mathrm{CH}_{(i)} \subseteq x_{F \cup i} \mathrm{CH}_{(i)}$ which is zero in degree r, and $x_{E \backslash i} i_{F \cup i}=0$ because $E \backslash i$ and $F \cup i$ are incomparable.
It remains to show that $\mathrm{CH}_{(i)}$ and $x_{E \backslash i} \mathrm{CH}_{(i)}$ intersect trivially when i is a coloop. If μ is a nontrivial element in their intersection, then there exists $v \in \mathrm{CH}_{(i)}$ for which $\operatorname{deg}_{M}(\mu v) \neq 0$ by the third part of Step 5 . However, μv is an element of $\mathrm{CH}_{(i)}$ which is zero in grading r. Thus $\mathrm{CH}_{(i)} \cap x_{E \backslash i} \mathrm{CH}_{(i)}=0$.
Step 4: The direct sum spans $\mathrm{CH}(M)$. The result is clear in grading 0 . To show the result in grading 1 , it suffices to show that x_{G} lies in the direct sum for each nonempty proper flat G. If $G \backslash i$ is not a flat, then $x_{G}=\mathcal{\vartheta}_{i}\left(x_{G \backslash i}\right) \in \mathrm{CH}_{(i)}$. If $G \backslash i$ and G are distinct nonempty flats, then $x_{G \backslash i} \in \mathcal{S}_{i}$ and $x_{G} \in x_{(G \backslash i) \cup i} \mathrm{CH}_{(i)}$. If $G \backslash i=G$, then $x_{G}=\mathcal{\vartheta}_{i}\left(x_{G}\right)-x_{G \cup i}$ lies in $\mathrm{CH}_{(i)}$ or $\mathrm{CH}_{(i)} \oplus x_{G \cup i} \mathrm{CH}_{(i)}$ depending on whether $G \cup i$ is a flat. The last case is $G=\{i\}$, which is handled by the observation that x_{G} can be written as a linear combination of the variables x_{H} for $H \neq G$.

Note that the direct sum of the semi-small decomposition is just the $\mathrm{CH}(M \backslash i)$-submodule of $\mathrm{CH}(M)$ generated by $\mathrm{CH}^{1}(M)$. To show that the direct sum is all of $\mathrm{CH}(M)$, it suffices to prove that

$$
\mathrm{CH}_{(i)}^{1} \cdot \mathrm{CH}^{k}(M)=\mathrm{CH}^{k+1}(M) \quad \text { for each } k \geqslant 1 .
$$

In fact, it suffices to prove the case $k=1$. Indeed

$$
\mathrm{CH}_{(i)}^{1} \cdot \mathrm{CH}^{k}(M)=\mathrm{CH}_{(i)}^{1} \cdot \mathrm{CH}^{1} \cdot \mathrm{CH}^{k-1}(M)=\mathrm{CH}^{2}(M) \cdot \mathrm{CH}^{k-1}(M)=\mathrm{CH}^{k+1}(M)
$$

for each $k \geqslant 1$.
Assume that i is not a coloop. Since

$$
\mathrm{CH}^{2}(M)=\mathrm{CH}^{1}(M) \cdot \mathrm{CH}^{1}(M)=\left(\mathrm{CH}_{(i)}^{1} \oplus \bigoplus_{F \in \mathcal{S}_{i}} x_{F \cup i} \mathrm{CH}_{(i)}^{0}\right) \cdot \mathrm{CH}^{1}(M)
$$

it suffices to show that $x_{F \cup i} \cdot \mathrm{CH}^{1}(M) \subseteq \mathrm{CH}_{(i)}^{1} \cdot \mathrm{CH}^{1}(M)$ for each $F \in \mathcal{S}_{i}$. Next, since

$$
x_{F \cup i} \cdot \mathrm{CH}^{1}(M)=x_{F \cup i}\left(\mathrm{CH}_{(i)}^{1} \oplus \bigoplus_{G \in \mathcal{S}_{i}} x_{G \cup i} \mathrm{CH}_{(i)}^{0}\right)
$$

it suffices to show that $x_{F \cup \cup} x_{G \cup i}$ is contained in $\mathrm{CH}_{(i)}^{1} \cdot \mathrm{CH}^{1}(M)$ for each $G \in \mathcal{S}_{i}$. If F and G are distinct, then

$$
x_{F \cup i} x_{G \cup i}= \begin{cases}0 & F \text { and } G \text { are incomparable } \\ x_{F \cup \cup \vartheta_{i}\left(x_{G}\right)} & F \subsetneq G \\ \vartheta_{i}\left(x_{F}\right) x_{G \cup i} & G \subsetneq F\end{cases}
$$

which lies in $\mathrm{CH}_{(i)}^{1} \cdot \mathrm{CH}^{1}(M)$. What remains is to show that $x_{F \cup i}^{2} \in \mathrm{CH}_{(i)}^{1} \cdot \mathrm{CH}^{1}(M)$.
We first observe that

$$
x_{F \cup i} \alpha_{M}=x_{F \cup i} \sum_{i \in G} x_{G}=x_{F \cup i}\left(\sum_{i \in G \subsetneq F \cup i} x_{G}\right)+x_{F \cup i}^{2}+x_{F \cup i}\left(\sum_{F \cup i \subsetneq G} x_{G}\right)
$$

while at the same time for any $j \notin F \cup i$

$$
x_{F \cup i} \alpha_{M}=x_{F \cup i} \sum_{j \in G} x_{G}=x_{F \cup i} \sum_{F \cup\{i, j\} \subseteq G} x_{G} .
$$

Thus

$$
-x_{F \cup i}^{2}=x_{F \cup i}\left(\sum_{i \in G \subsetneq F \cup i} x_{G}+\sum_{F \cup i \subsetneq G} x_{G}-\sum_{F \cup\{i, j\} \subseteq G} x_{G}\right)
$$

If $i \in G \subsetneq F \cup i$, then $x_{F \cup i} x_{G}=\vartheta_{i}\left(x_{F}\right) x_{G}$. Similarly, if $F \cup i \subsetneq G$, then $x_{F \cup i} x_{G}=x_{F \cup i} \vartheta_{i}\left(x_{G \backslash i}\right)$ so $x_{F \cup i}^{2} \in \mathrm{CH}_{(i)}^{1} \cdot \mathrm{CH}^{1}(M)$ as required.

If i is a coloop, then

$$
\mathrm{CH}^{2}(M)=\left(\mathrm{CH}_{(i)}^{1} \oplus x_{E \backslash i} \mathrm{CH}_{(i)}^{0} \oplus \bigoplus_{F \in \mathcal{S}_{i}} x_{F \cup i} \mathrm{CH}_{(i)}^{0}\right) \cdot \mathrm{CH}^{1}(M) .
$$

The previous arguments reduce the problem to showing that $x_{E \backslash i}^{2} \in \mathrm{CH}_{(i)}^{1} \cdot \mathrm{CH}^{1}(M)$. Using a similar observation as before, we have

$$
0=x_{E \backslash i} \sum_{i \in G} x_{G}=x_{E \backslash i} \alpha_{M}=x_{E \backslash i} \sum_{j \in G} x_{G}=x_{E \backslash i}^{2}+x_{E \backslash i} \sum_{j \in G \subsetneq E \backslash i} x_{G}
$$

for some $j \neq i$. Since $x_{E \backslash i} x_{G}=x_{E \backslash i} \vartheta_{i}\left(x_{G}\right)$, it follows that $x_{E \backslash i}^{2} \in \mathrm{CH}_{(i)}^{1} \cdot \mathrm{CH}^{1}(M)$ as required.

4.3 The hard Lefschetz theorem and the Hodge-Riemann relations

Remark. Let M be a loopless matroid. If ℓ is an arbitrary element of $\mathrm{CH}^{1}(M)$, we say that $\mathrm{CH}(M)$ satisfies the Hodge-Riemann relations for ℓ if the conclusion of the Hodge-Riemann relations hold for ℓ, which is to say that the Hodge-Riemann form associated to ℓ

$$
\mathrm{CH}^{k}(M) \times \mathrm{CH}^{k}(M) \rightarrow \mathbf{R} \quad(\mu, v) \mapsto(-1)^{k} \operatorname{deg}_{M}\left(\ell^{r-2 k} \mu v\right)
$$

is positive-definite on $\operatorname{ker}\left(\ell^{r-2 k+1}\right)$ for each $k \leqslant r / 2$.
Since M satisfies Poincaré duality, the Hodge-Riemann relations for $\ell \in \mathrm{CH}^{1}(M)$ imply the hard Lefschetz theorem for ℓ. If $\eta \in \mathrm{CH}^{k}(M)$ satisfies $\ell^{r-2 k} \eta=0$, then η lies in the kernel of $\ell^{r-2 k+1}$. But $(-1)^{k} \operatorname{deg}_{M}\left(\ell^{r-2 k} \eta \eta\right)=(-1)^{k} \operatorname{deg}_{M}(0)=0$, and since the Hodge-Riemann form is positive-definite on the kernel of $\ell^{r-2 k+1}$, it follows that $\eta=0$. By Poincaré duality, the injective map $\ell^{r-2 k}: \mathrm{CH}^{k}(M) \rightarrow \mathrm{CH}^{r-k}(M)$ is an isomorphism.

We also note that the hard Lefschetz theorem for ℓ is equivalent to the nondegeneracy of the Hodge-Riemann form of ℓ, which is easily seen by induction.

Proposition 4.6. If M and N are loopless matroids for which $\mathrm{CH}(M)$ and $\mathrm{CH}(N)$ satisfy the Hodge-Riemann relations for $\ell \in \mathrm{CH}^{1}(M)$ and $h \in \mathrm{CH}^{1}(N)$, respectively, then $\mathrm{CH}(M) \otimes \mathrm{CH}(N)$ satisfies the Hodge-Riemann relations for $\ell \otimes 1+1 \otimes h$.

Proof. Let $\operatorname{rk}(M)=r+1$ and $\operatorname{rk}(N)=s+1$, and set

$$
\begin{aligned}
& P^{k}:=\operatorname{ker}\left(\ell^{r-2 k+1}: \mathrm{CH}^{k}(M) \rightarrow \mathrm{CH}^{r-k+1}(M)\right) \\
& R^{j}:=\operatorname{ker}\left(h^{s-2 j+1}: \mathrm{CH}^{j}(N) \rightarrow \mathrm{CH}^{s-j+1}(N)\right)
\end{aligned}
$$

for $k \leqslant r / 2$ and $j \leqslant s / 2$. The Hodge-Riemann relations yield the direct sum decompositions

$$
\begin{aligned}
\mathrm{CH}^{k}(M) & =\ell^{k} P^{0} \oplus \ell^{k-1} P^{1} \oplus \cdots \oplus \ell P^{k-1} \oplus P^{k} \\
\mathrm{CH}^{j}(N) & =h^{j} R^{0} \oplus h^{j-1} R^{1} \oplus \cdots \oplus h R^{j-1} \oplus R^{j}
\end{aligned}
$$

which are orthogonal with respect to their Hodge-Riemann forms.
To prove that $\mathrm{CH}(M) \otimes \mathrm{CH}(N)$ satisfies the Hodge-Riemann relations for $\ell \otimes 1+1 \otimes h$ in each degree $k \leqslant(r+s) / 2$, first note that the k-graded part of $\mathrm{CH}(M) \otimes \mathrm{CH}(N)$ decomposes as a direct sum

$$
\bigoplus_{a+i+b+j=k} \ell^{a} P^{i} \otimes h^{b} R^{j}
$$

where a, i, b, j are nonnegative integers that sum to k. For each pair of nonnegative integers i, j for which $i \leqslant r / 2, j \leqslant s / 2$, and $i+j \leqslant k$, let

$$
Q_{k}^{i j}=\bigoplus_{a+b=k-(i+j)} \ell^{a} P^{i} \otimes h^{b} R^{j} .
$$

It is straightforward to verify that $Q_{k}^{i j}$ and $Q_{k}^{i^{\prime} j^{\prime}}$ are orthogonal with respect to the HodgeRiemann form of $\ell \otimes 1+1 \otimes h$ when $(i, j) \neq\left(i^{\prime}, j^{\prime}\right)$. It therefore suffices to prove the result on each such summand.

Fix nonnegative integers i, j for which $i \leqslant r / 2$ and $j \leqslant s / 2$. We prove the Hodge-Riemann relations on

which is sufficient because multiplication by $\ell \otimes 1+1 \otimes h$ preserves i, j. By choosing a basis for $P^{i} \otimes R^{j}$ and using the Hodge-Riemann relations for ℓ and h, the argument reduces to showing that $\mathbf{R}[\ell, h] /\left(\ell^{c+1}, h^{d+1}\right)$ satisfies the Hodge-Riemann relations for $\ell+h$ where $c=r-2 i$ and $d=s-2 j$. The result then follows from the usual Hodge-Riemann relations for the compact Kähler manifold $\mathbf{C P}^{c} \times \mathbf{C P}^{d}$ or by a more direct combinatorial argument using the Lindström-Gessel-Viennot lemma, explained in the proof of [AHK18, Lemma 7.8]. We only briefly outline the argument. ${ }^{2}$

Without loss of generality, we may assume that $c \leqslant d$. It suffices to consider gradings $k \leqslant c$, since the map $(\ell+h)^{r-2 k+1}$ is injective when $c<k \leqslant(c+d) / 2$. For $k \leqslant c$, a basis for the

[^1]k-graded part of $\mathbf{R}[\ell, h] /\left(\ell^{c+1}, h^{d+1}\right)$ is $\ell^{k}, \ell^{k-1} h, \ldots, h^{k}$. The entries of the matrix representing the Hodge-Riemann form with respect to this basis are binomial coefficients
$$
\operatorname{deg}\left((\ell+h)^{c+d-2 k} \ell^{i+j} h^{k-i+k-j}\right)=\binom{c+d-2 k}{c-i-j}
$$

A combinatorial argument using the Lindström-Gessel-Viennot lemma computes the sign of the determinant of the Hodge-Riemann form from this observation. The result then follows using the fact that the kernel of $(\ell+h)^{r-2 k+1}$ is one-dimensional for $k \leqslant c$.

Lemma 4.7. Let M be a loopless matroid, and suppose M satisfies the hard Lefschetz theorem with respect to $\ell \in \mathrm{CH}^{1}(M)$. Then M satisfies the Hodge-Riemann relations with respect to ℓ if and only if the signature of its Hodge-Riemann form on $\mathrm{CH}^{k}(M)$ is

$$
\sum_{j=0}^{k}(-1)^{k-j}\left(\operatorname{dim} \mathrm{CH}^{j}(M)-\operatorname{dim} \mathrm{CH}^{j-1}(M)\right)
$$

for each $k \leqslant r / 2$.
Proof. Since M satisfies the hard Lefschetz theorem with respect to ℓ, we have the splitting

$$
\mathrm{CH}^{k}(M)=\operatorname{ker}\left(\ell^{r-2 k+1}\right) \oplus \ell\left(\mathrm{CH}^{k-1}(M)\right)
$$

which is orthogonal with respect to the Hodge-Riemann form of ℓ. If the Hodge-Riemann relations are valid for ℓ, then its Hodge-Riemann form has the stated signature by induction on k using this decomposition. The converse is similarly verified.

Proof of the hard Lefschetz theorem and the Hodge-Riemann relations. We prove both results by simultaneous induction on the size of $|E|$. If $|E|=1$, then $\operatorname{rk}(M)=r+1=1$ and there are no ample classes. Hence both results are vacuous. We assume that $|E| \geqslant 2$. If $r=0$, then again there are no ample classes and the results are vacuous. If $r=1$, then $\mathrm{CH}^{0}(M)=\mathbf{R}=\mathrm{CH}^{1}(M)$. A class $\ell \in \mathrm{CH}^{1}(M)$ is ample if and only if $\operatorname{deg}_{M}(\ell)>0$ so both the hard Lefschetz theorem and the Hodge-Riemann relations are easy to see. Thus, we assume that $r \geqslant 2$. By induction, we assume that both the hard Lefschetz theorem and the Hodge-Riemann relations hold for all matroids on nonempty proper subsets of E.

Our proof is in six steps which we now outline. Step 1 is to prove the hard Lefschetz theorem for M. The remaining steps are to prove the Hodge-Riemann relations for M. Step 2 reduces the Hodge-Riemann relations for all ample classes to the Hodge-Riemann relations for a single nef class. The proof of Step 2 uses the result of Step 1. For Steps 3-6, we fix an element $i \in E$ and use the semi-small decomposition to prove the Hodge-Riemann relations for a nef class. If i is not a coloop, then the nef class we use is $\vartheta_{i}(\ell)$ where $\ell \in \mathrm{CH}^{1}(M \backslash i)$ is ample. If i is a coloop, then the nef class we use is $\vartheta_{i}(\ell)+\varepsilon x_{E \backslash i}$ for a sufficiently small $\varepsilon>0$. The proof of the Hodge-Riemann relations is done summand-by-summand in the semi-small decomposition. Step 3 handles the summands $x_{F \cup i} \mathrm{CH}_{(i)}$ for $F \in \delta_{i}$. Step 4 finishes the case where i is not a coloop. Step 5 verifies that $\vartheta_{i}(\ell)+\varepsilon X_{E \backslash i}$ for small $\varepsilon>0$ is indeed nef when i is a coloop. Step 6 finishes the case where i is a coloop.
Step 1: The hard Lefschetz theorem for M. Let $\ell \in \mathrm{CH}^{1}(M)$ be ample, and suppose $\eta \in \mathrm{CH}^{k}(M)$ satisfies $\ell^{r-2 k} \eta=0$ where $k \leqslant r / 2$. We show that $x_{F} \eta=0$ for each nonempty proper flat F of
M using the Hodge-Riemann relations for $\mathrm{CH}\left(M_{F}\right) \otimes \mathrm{CH}\left(M^{F}\right)$. It follows that $\mu \eta=0$ for all $\mu \in \mathrm{CH}^{r-k}(M)$ so $\eta=0$ by Poincaré duality for M. Thus $\ell^{r-2 k}: \mathrm{CH}^{k}(M) \rightarrow \mathrm{CH}^{r-k}(M)$ is injective and is therefore an isomorphism again by Poincaré duality for M.

Fix a nonempty proper flat F. We have the commutative diagram

where φ_{M}^{F} and ψ_{M}^{F} are the pushforward and pullback maps defined in Lemmas 4.2 and 4.3, respectively. Let $\eta_{F}=\varphi_{M}^{F}(\eta)$ and $\ell_{F}=\varphi_{M}^{F}(\ell)$. Write $\ell=\sum_{G} c_{G} x_{G}$ with $c_{F}=0$ and $c_{G}>0$ whenever G, F are distinct and comparable. Then

$$
\ell_{F}=\left(\sum_{F \subsetneq G} c_{G} x_{G \backslash F}\right) \otimes 1+1 \otimes\left(\sum_{G \subsetneq F} c_{G} x_{G}\right)
$$

It is straightforward to verify that $\sum_{F \subsetneq G} \mathcal{C}_{G} x_{G \backslash F} \in \mathrm{CH}^{1}\left(M_{F}\right)$ is ample as along as the sum is nonempty, and similarly that $\sum_{G \subsetneq F} c_{G} x_{G} \in \mathrm{CH}^{1}\left(M^{F}\right)$ is ample as long as the sum is nonempty. At least one of the sums is nonempty by assumption that $r \geqslant 2$. If one of the sums is empty, then the corresponding Chow ring is simply a copy of \mathbf{R} in grading 0 . Hence, in all cases, $\mathrm{CH}\left(M_{F}\right) \otimes \mathrm{CH}\left(M^{F}\right)$ satisfies the Hodge-Riemann relations for ℓ_{F} by Proposition 4.6. From the identity $\operatorname{deg}_{F}:=\operatorname{deg}_{M_{F}} \otimes \operatorname{deg}_{M^{F}}=\operatorname{deg}_{M} \circ \psi_{M^{\prime}}^{F}$, we see that

$$
\operatorname{deg}_{F}\left(\ell_{F}^{r-2 k-1} \eta_{F} \eta_{F}\right)=\operatorname{deg}_{M}\left(x_{F} \ell^{r-2 k-1} \eta \eta\right)
$$

Write $\ell=\sum_{F} c_{F} x_{F}$ where each c_{F} is positive, and observe that

$$
0=\operatorname{deg}_{M}\left(\ell^{r-2 k} \eta_{F} \eta_{F}\right)=\sum_{F} c_{F} \operatorname{deg}_{M}\left(x_{F} \ell^{r-2 k-1} \eta \eta\right)=\sum_{F} c_{F} \operatorname{deg}_{F}\left(\ell_{F}^{r-2 k-1} \eta_{F} \eta_{F}\right) .
$$

Since c_{F} is positive for every F, we find that $\operatorname{deg}_{F}\left(\ell_{F}^{r-2 k-1} \eta_{F} \eta_{F}\right)=0$ for every F. Since η_{F} lies in the kernel of $\ell_{F}^{r-2 k}$, the Hodge-Riemann relations for $\mathrm{CH}\left(M_{F}\right) \otimes \mathrm{CH}\left(M^{F}\right)$ imply that $\eta_{F}=0$. Since $\psi_{M}^{F}\left(\eta_{F}\right)=x_{F} \eta$, we have shown that $x_{F} \eta=0$ for every F as required.
Step 2: Reduction of the Hodge-Riemann relations from the ample cone to a single nef class. We show that if the Hodge-Riemann relations are true with respect to a nef class of M, then they are true with respect to every ample class of M.

Let $\lambda \in \mathrm{CH}^{1}(M)$ be a nef class for which the Hodge-Riemann form

$$
(\mu, v) \mapsto(-1)^{k} \operatorname{deg}_{M}\left(\lambda^{r-2 k} \mu v\right)
$$

on $\mathrm{CH}^{k}(M)$ is positive-definite on the kernel of $\lambda^{r-2 k+1}$ for each $k \leqslant r / 2$. The hard Lefschetz theorem is therefore valid for λ. Thus, there is a decomposition

$$
\mathrm{CH}^{k}(M)=\lambda\left(\mathrm{CH}^{k-1}(M)\right) \oplus \operatorname{ker}\left(\lambda^{r-2 k+1}\right)
$$

for each $k \leqslant r / 2$ which is orthogonal with respect to the Hodge-Riemann form. By Lemma 4.7, the signature of the Hodge-Riemann form associated to λ on $\mathrm{CH}^{k}(M)$ is

$$
\sigma_{k}:=\sum_{j=0}^{k}(-1)^{k-j}\left(\operatorname{dim} \mathrm{CH}^{j}(M)-\operatorname{dim} \mathrm{CH}^{j-1}(M)\right) .
$$

If $\ell \in \mathrm{CH}^{1}(M)$ is ample, then $\ell_{t}:=t \ell+(1-t) \lambda$ is ample for each $t \in(0,1]$. Thus, the Hodge-Riemann form on $\mathrm{CH}^{k}(M)$ associated with ℓ_{t} is nondegenerate for each $t \in[0,1]$ by Step 1. It follows that the Hodge-Riemann forms on $\mathrm{CH}^{k}(M)$ associated with ℓ and λ have the same signature. Indeed, signature is the difference between the number of positive and negative eigenvalues, so it locally constant on the space of nondegenerate forms. The Hodge-Riemann relations for ℓ then follow from Lemma 4.7.
Step 3: For any $i \in E$ and $F \in \mathcal{S}_{i}$, the Hodge-Riemann relations for $x_{F \cup i} \mathrm{CH}_{(i)}$ are valid for $\vartheta_{i}(\ell)$ if $\ell \in \mathrm{CH}^{1}(M \backslash i)$ is ample. More precisely, the Hodge-Riemann form of $\vartheta_{i}(\ell)$ restricted to $x_{F \cup i} \mathrm{CH}_{(i)}^{k-1}$ is positive-definite on the kernel of

$$
\vartheta_{i}(\ell)^{r-2 k}: x_{F \cup i} \mathrm{CH}_{(i)}^{k-1} \rightarrow x_{F \cup i} \mathrm{CH}_{(i)}^{r-k-1}
$$

for each $k \leqslant r / 2$. Let ℓ_{F} be the image of ℓ under the map

$$
q \circ \varphi_{M \backslash i}^{F}: \mathrm{CH}(M \backslash i) \rightarrow \mathrm{CH}\left(M_{F \cup i}\right) \otimes \mathrm{CH}\left(M^{F}\right)
$$

appearing in Lemma 4.4 which defines the $\mathrm{CH}(M \backslash i)$-module structure on the tensor product. By the argument in Step 1, we know that

$$
\varphi_{M \backslash i}^{F}(\ell)=\ell^{\prime} \otimes 1+1 \otimes \ell^{\prime}
$$

where at least one of $\ell^{\prime}, \ell^{\prime \prime}$ is ample, and both are ample unless one of the two Chow rings is just a copy of \mathbf{R} in grading 0 . From the proof of Lemma 4.4, every flat of $M_{F \cup i}$ is a flat of $(M \backslash i)_{F}$ and the map q is the tensor product of the map

$$
q^{\prime}: \mathrm{CH}\left((M \backslash i)_{F}\right) \rightarrow \mathrm{CH}\left(M_{F \cup i}\right) \quad x_{G} \mapsto \begin{cases}x_{G} & G \text { is a flat of } M_{F \cup i} \\ 0 & \text { otherwise }\end{cases}
$$

with the identity $\mathrm{CH}\left((M \backslash i)^{F}\right) \rightarrow \mathrm{CH}\left(M^{F}\right)$. It is easy to see that q^{\prime} sends ample classes to ample classes. Since ℓ_{F} is of the form $q^{\prime}\left(\ell^{\prime}\right) \otimes 1+1 \otimes \ell^{\prime \prime}$, it follows from Proposition 4.6 that $\mathrm{CH}\left(M_{F \cup i}\right) \otimes \mathrm{CH}\left(M^{F}\right)$ satisfies the Hodge-Riemann relations for ℓ_{F}.

By Proposition 4.5, an arbitrary nonzero element in the kernel of

$$
\vartheta_{i}(\ell)^{r-2 k}: x_{F \cup i} \mathrm{CH}_{(i)}^{k-1} \rightarrow x_{F \cup i} \mathrm{CH}_{(i)}^{r-k-1}
$$

is of the form $\Psi_{i}^{F}(\mu)$ for some $\mu \in \mathrm{CH}\left(M_{F \cup i}\right) \otimes \mathrm{CH}\left(M^{F}\right)$ in grading $k-1$. Next

$$
0=\vartheta_{i}(\ell)^{r-2 k+1} \Psi_{i}^{F}(\mu)=\Psi_{i}^{F}\left(\ell_{F}^{r-2 k+1} \mu\right)
$$

because Ψ_{i}^{F} is a $\mathrm{CH}(M \backslash i)$-module map. Poincaré duality for $M_{F \cup i}$ and M^{F} imply that Ψ_{i}^{F} is injective so

$$
\ell_{F}^{(r-2)-2(k-1)+1} \mu=0 .
$$

By the Hodge-Riemann relations for ℓ_{F}, it follows that

$$
0<(-1)^{k-1}\left(\operatorname{deg}_{M_{F \cup i}} \otimes \operatorname{deg}_{M^{F}}\right)\left(\ell_{F}^{r-2 k+1} \mu \mu\right)=(-1)^{k} \operatorname{deg}_{M}\left(\vartheta_{i}(\ell)^{r-2 k+1} \Psi_{i}^{F}(\mu) \Psi_{i}^{F}(\mu)\right)
$$

as required.
Step 4: If $i \in E$ is not a coloop and $\ell \in \mathrm{CH}^{1}(M \backslash i)$ is ample, then $\mathrm{CH}(M)$ satisfies the Hodge-Riemann relations with respect to the nef class $\vartheta_{i}(\ell)$. It is straightforward to verify that $\vartheta_{i}(\ell)$ is nef. We have the semi-small decomposition

$$
\mathrm{CH}(M)=\mathrm{CH}_{(i)} \oplus \bigoplus_{F \in \delta_{i}} x_{F \cup i} \mathrm{CH}_{(i)}
$$

which is orthogonal with respect to the Poincare pairing. Because $\vartheta_{i}(\ell) \in \mathrm{CH}_{(i)}$, the induced decomposition of $\mathrm{CH}^{k}(M)$ is also orthogonal with respect to the Hodge-Riemann form. It therefore suffices to show that the Hodge-Riemann form is positive definite on the kernel of $\vartheta_{i}(\ell)^{r-2 k+1}$ on each summand. The summands of the form $x_{F \cup i} \mathrm{CH}_{(i)}$ for $F \in \mathcal{S}_{i}$ are handled by Step 3.

Fix a nonzero element $\vartheta_{i}(\mu)$ in the kernel of

$$
\vartheta_{i}(\ell)^{r-2 k+1}: \mathrm{CH}_{(i)}^{k} \rightarrow \mathrm{CH}_{(i)}^{r-k+1}
$$

Then $0=\vartheta_{i}(\ell)^{r-2 k+1} \vartheta_{i}(\mu)=\vartheta_{i}\left(\ell^{r-2 k+1} \mu\right)$. Because $M \backslash i$ satisfies Poincaré duality, the map ϑ_{i} is injective so $\mu \in \mathrm{CH}^{k}(M \backslash i)$ lies in the kernel of $\ell^{r-2 k+1}$. By the Hodge-Riemann relations for $M \backslash i$, we have that

$$
0<(-1)^{k} \operatorname{deg}_{M \backslash i}\left(\ell^{r-2 k} \mu \mu\right)=(-1)^{k} \operatorname{deg}_{M}\left(\vartheta_{i}(\ell)^{r-2 k} \vartheta_{i}(\mu) \vartheta_{i}(\mu)\right)
$$

Step 5: If $i \in E$ is a coloop and $\ell \in \mathrm{CH}^{1}(M \backslash i)$ is ample, then $\vartheta_{i}(\ell)+\varepsilon x_{E \backslash i} \in \mathrm{CH}^{1}(M)$ is nef for all sufficiently small $\varepsilon>0$. Let $\ell_{\varepsilon}=\vartheta_{i}(\ell)+\varepsilon x_{E \backslash i}$ for each $\varepsilon>0$. We show that ℓ_{ε} is nef when ε is sufficiently small by showing that for each flag \mathscr{F} of nonempty proper flats of M, the class ℓ_{ε} is convex at \mathscr{F} for sufficiently small ε. Since there are finitely many flags, the result follows.

- Suppose \mathscr{F} is a k-flag of nonempty proper flats $F_{1} \subsetneq \cdots \subsetneq F_{k}$ of M for which $F_{k}=E \backslash i$. Then $F_{1} \subsetneq \cdots \subsetneq F_{k-1}$ is a $(k-1)$-flag of nonempty proper flats of $M \backslash i$. Thus, we may write

$$
\ell_{\varepsilon}=\sum_{G} c_{G}\left(x_{G}+x_{G \cup i}\right)+\varepsilon x_{E \backslash i}
$$

where the sum ranges over nonempty proper flats G of $M \backslash i$ with the property that $c_{F_{j}}=0$ for $j=1, \ldots, k-1$ and $c_{G}>0$ for all nonempty proper flats G of M that extend \mathscr{F} to a $(k+1)$-flag. Indeed, any such flat G is also a nonempty proper flat of $M \backslash i$ which extends $F_{1} \subsetneq \cdots \subsetneq F_{k-1}$ to a k-flag of $M \backslash i$. Now let λ be an arbitrary linear function on M for which $\lambda\left(F_{j}\right)=0$ for $j=1, \ldots, k-1$ and $\lambda(E \backslash i)=1$. If $\varepsilon>0$ is sufficiently small, then the linear function $\varepsilon \lambda$ agrees with the piecewise linear function ℓ_{ε} on \mathscr{F} and $\varepsilon \lambda(G)<\mathcal{c}_{G}$ for any nonempty proper flat G of M extending \mathscr{F} to a $(k+1)$-flag. It follows that ℓ_{ε} is strictly convex at \mathscr{F} for sufficiently small $\varepsilon>0$.

- Assume \mathscr{F} is a k-flag of nonempty proper flats $F_{1} \subsetneq \cdots \subsetneq F_{k}$ of M for which $F_{k} \neq E \backslash i$. Then $F_{1} \backslash i \subseteq \cdots \subseteq F_{k} \backslash i$ is a flag of proper flats of $M \backslash i$. We may write

$$
\ell_{\varepsilon}=\sum_{G} c_{G}\left(x_{G}+x_{G \cup i}\right)+\varepsilon x_{E \backslash i}
$$

where the sum ranges over nonempty proper flats G of $M \backslash i$, so that the coefficient of $x_{F_{j}}$ is zero in this expression for each $j=1, \ldots, k$ and so that $c_{G}>0$ for each nonempty proper flat G of $M \backslash i$ that extends $F_{1} \backslash i \subseteq \cdots \subseteq F_{k} \backslash i$. If H is a nonempty proper flat of M extending \mathscr{F} to a ($k+1$)-flag, then $H \backslash i$ is comparable to each of $F_{1} \backslash i \subseteq \cdots \subseteq F_{k} \backslash i$. It follows the coefficient of x_{H} is nonnegative. Thus ℓ_{ε} is convex at \mathscr{F} independent of the choice of $\varepsilon>0$.

Step 6: If $i \in E$ is a coloop and $\ell \in \mathrm{CH}^{1}(M \backslash i)$ is ample, then $\mathrm{CH}(M)$ satisfies the Hodge-Riemann relations with respect to the nef class $\mathcal{\vartheta}_{i}(\ell)+\varepsilon x_{E \backslash i}$ for all sufficiently small $\varepsilon>0$. We have the semi-small decomposition

$$
\mathrm{CH}(M)=S \oplus \bigoplus_{F \in \mathcal{S}_{i}}^{\oplus} x_{F \cup i} \mathrm{CH}_{(i)} \quad \text { where } \quad S=\mathrm{CH}_{(i)} \oplus x_{E \backslash i} \mathrm{CH}_{(i)}
$$

whose induced decomposition of $\mathrm{CH}^{k}(M)$ is easily seen to be orthogonal with respect to the Hodge-Riemann form of ℓ_{ε}. It therefore suffices to prove the Hodge-Riemann relations for ℓ_{ε} on each summand. The summands $x_{F \cup i} \mathrm{CH}_{(i)}$ are handled by Step 3 because multiplication by ℓ_{ε} is the same as multiplication by $\vartheta_{i}(\ell)$ on $x_{F \cup i} \mathrm{CH}_{(i)}$. If $0 \leqslant k \leqslant(r-1) / 2$, then let $P^{k} \subseteq \mathrm{CH}^{k}(M \backslash i)$ denote the kernel of the map $\ell^{r-2 k}$ so that $\mathrm{CH}^{k}(M \backslash i)=P^{k} \oplus \ell\left(\mathrm{CH}^{k-1}(M \backslash i)\right)$ by the Hodge-Riemann relations for ℓ. Thus

$$
S^{k}=\vartheta_{i}\left(P^{k}\right) \oplus \vartheta_{i}(\ell) \mathrm{CH}_{(i)}^{k-1} \oplus x_{E \backslash i} \mathrm{CH}_{(i)}^{k-1} .
$$

If r is even and $k=r / 2$, then $\mathrm{CH}^{r / 2}(M \backslash i)=\ell\left(\mathrm{CH}^{r / 2-1}(M \backslash i)\right)$ so the same decomposition is valid after defining $P^{r / 2}=0$.

We will first show that the Hodge-Riemann form of ℓ_{ε} is nondegenerate on S^{k} for $k \leqslant r / 2$ for sufficiently small $\varepsilon>0$. To then prove the Hodge-Riemann relations for ℓ_{ε} on S^{k}, it suffices to show that the form is positive-definite on S^{0} and that its signature σ_{k} on S^{k} equals $\operatorname{dim} S^{k}-\operatorname{dim} S^{k-1}-\sigma_{k-1}$ for $1 \leqslant k \leqslant r / 2$. Note that this is equivalent to showing that $\sigma_{k}=\operatorname{dim} P^{k}$. Indeed $\operatorname{dim} P^{0}=\operatorname{dim} S^{0}$ and it is straightforward to verify that

$$
\operatorname{dim} S^{k}-\operatorname{dim} S^{k-1}-\operatorname{dim} P^{k-1}=\operatorname{dim} P^{k} .
$$

Our goal then is to show that the Hodge-Riemann form of ℓ_{ε} restricted to S^{k} is nondegenerate and has signature P^{k} for all small $\varepsilon>0$.

With respect to the given splitting of S^{k}, let the symmetric matrix

$$
\left(\begin{array}{lll}
H_{11}(\varepsilon) & H_{12}(\varepsilon) & H_{13}(\varepsilon) \\
H_{21}(\varepsilon) & H_{22}(\varepsilon) & H_{23}(\varepsilon) \\
H_{31}(\varepsilon) & H_{23}(\varepsilon) & H_{33}(\varepsilon)
\end{array}\right)
$$

represent the Hodge-Riemann form of ℓ_{ε} restricted to S^{k}. This matrix is congruent to

$$
H(\varepsilon)=\left(\begin{array}{ccc}
\varepsilon^{-1} H_{11}(\varepsilon) & \varepsilon^{-1} H_{12}(\varepsilon) & H_{13}(\varepsilon) \\
\varepsilon^{-1} H_{21}(\varepsilon) & \varepsilon^{-1} H_{22}(\varepsilon) & H_{23}(\varepsilon) \\
H_{31}(\varepsilon) & H_{23}(\varepsilon) & \varepsilon H_{33}(\varepsilon)
\end{array}\right) .
$$

Each entry is a polynomial in ε, so we may define $H(0)$ to be the limit of the matrices $H(\varepsilon)$ as $\varepsilon \rightarrow 0$. We show that $H(0)$ is nondegenerate and has signature $\operatorname{dim} P^{k}$, which implies the same for $H(\varepsilon)$ for all sufficiently small ε. First, we explicitly calculate $H(0)$. If $\mu, v \in P^{k}$, then

$$
\begin{aligned}
\frac{(-1)^{k}}{\varepsilon} \operatorname{deg}_{M}\left(\ell_{\varepsilon}^{r-2 k} \vartheta_{i}(\mu) \vartheta_{i}(v)\right) & =(-1)^{k} \operatorname{deg}_{M}\left((r-2 k) x_{E \backslash i} \vartheta_{i}\left(\ell^{r-1-2 k} \mu v\right)\right)+O(\varepsilon) \\
& =(r-2 k)(-1)^{k} \operatorname{deg}_{M \backslash i}\left(\ell^{r-1-2 k} \mu v\right)+O(\varepsilon)
\end{aligned}
$$

so the limit of $\varepsilon^{-1} H_{11}(\varepsilon)$ as $\varepsilon \rightarrow 0$ is just a positive multiple of the Hodge-Riemann form of ℓ restricted to P^{k} when $r>2 k$. If $r=2 k$, then $\varepsilon^{-1} H_{11}(\varepsilon)$ is just the empty matrix. By similar calculations, we find that $\varepsilon^{-1} H_{12}(\varepsilon), H_{13}(\varepsilon)$, and $\varepsilon H_{33}(\varepsilon)$ go to zero as $\varepsilon \rightarrow 0$. We also find that $\varepsilon^{-1} H_{22}(\varepsilon)$ and $H_{23}(\varepsilon)$ both limit to negative multiples of the Hodge-Riemann form of ℓ on $\mathrm{CH}^{k-1}(M \backslash i)$. In particular

$$
H(0)=\left(\begin{array}{ccc}
\left.(r-2 k) Q_{\ell}^{k}\right|_{P^{k}} & 0 & 0 \\
0 & -(r-2 k) Q_{\ell}^{k-1} & -Q_{\ell}^{k-1} \\
0 & -Q_{\ell}^{k-1} & 0
\end{array}\right)
$$

where $\left.Q_{\ell}^{k}\right|_{P^{k}}$ is the Hodge-Riemann form of ℓ restricted to $P^{k} \subseteq \mathrm{CH}^{k}(M \backslash i)$ and where Q_{ℓ}^{k-1} is the Hodge-Riemann form of ℓ on $\mathrm{CH}^{k-1}(M \backslash i)$. It follows from the nondegeneracy of $\left.Q_{\ell}^{k}\right|_{P^{k}}$ and Q_{ℓ}^{k-1} that $H(0)$ is nondegenerate.

The signature of $H(0)$ is just the sum of the dimension of P^{k} with the signature of

$$
\left(\begin{array}{ll}
A & B \\
B & 0
\end{array}\right):=\left(\begin{array}{cc}
-(r-2 k) Q_{\ell}^{k-1} & -Q_{\ell}^{k-1} \\
-Q_{\ell}^{k-1} & 0
\end{array}\right)
$$

because $\left.Q_{\ell}^{k}\right|_{P^{k}}$ is positive-definite. We claim that the signature of this 2×2 matrix is zero. Note that both A and B are symmetric matrices, and B is invertible. If $r>2 k$, then A is also invertible. In this case

$$
\left(\begin{array}{cc}
A & B \\
B & 0
\end{array}\right)=\left(\begin{array}{cc}
\mathrm{Id} & 0 \\
B A^{-1} & \mathrm{Id}
\end{array}\right)\left(\begin{array}{cc}
A & 0 \\
0 & -B A^{-1} B
\end{array}\right)\left(\begin{array}{cc}
\mathrm{Id} & A^{-1} B \\
0 & \mathrm{Id}
\end{array}\right)
$$

from which the result follows because A and $B A^{-1} B$ have the same signature. If $r=2 k$, then $A=0$. Let $A(\delta)$ be an invertible symmetric matrix for each $\delta>0$ for which $A(\delta) \rightarrow A(0):=0$ as $\delta \rightarrow 0$. Then the signature of

$$
\left(\begin{array}{cc}
A(\delta) & B \\
B & 0
\end{array}\right)
$$

is zero for all $\delta>0$ and so the signature is also zero when $\delta=0$ by nondegeneracy of the matrix. Thus $H(0)$ is nondegenerate and has signature $\operatorname{dim} P^{k}$ from which it follows that the same is true for the Hodge-Riemann form of ℓ_{ε} on S^{k} for sufficiently small $\varepsilon>0$.

Appendix

We prove Buchberger's criterion and use it to verify Proposition 3.17 which asserts that the elements

$$
g_{F, G}=z_{F} z_{G} \quad F, G \text { are incomparable nonempty flats }
$$

$$
\begin{array}{ll}
g_{F, G}=z_{F}\left(\sum_{G \subseteq H} z_{H}\right)^{\mathrm{rk}_{M}(G)-\mathrm{rk}_{M}(F)} & F \subsetneq G \text { and } F, G \text { are nonempty flats } \\
g_{\varnothing, G}=\left(\sum_{G \subseteq H} z_{H}\right)^{\mathrm{rk} k_{M}(G)} & G \text { is a nonempty flat. }
\end{array}
$$

of $\mathbf{R}\left[x_{F} \mid F\right.$ is a nonempty flat $]$ form a Gröbner basis of

$$
\left.\mathscr{J}=\left\langle z_{F} z_{G}\right| F, G \text { incomparable }\right\rangle+\left\langle\sum_{i \in F} z_{F} \mid i \in E\right\rangle .
$$

Proof of Buchberger's criterion. If f is a nonzero polynomial, then its degree is the monomial of $L T(f)$. We compare the degrees of two polynomials by comparing the monomials using the monomial ordering.

Let f be a nonzero polynomial in I and write $f=\sum_{i} h_{i} g_{i}$ for some polynomials h_{1}, \ldots, h_{m}. Let M be the maximal degree among $h_{1} g_{1}, \ldots, h_{m} g_{m}$. If M equals the degree of f, then it follows that the leading term of f lies in the ideal generated by the leading terms of g_{1}, \ldots, g_{m}. Otherwise, M is greater than the degree of f. We will find a new collection of polynomials $h_{1}^{\prime}, \ldots, h_{m}^{\prime}$ for which $f=\sum_{i} h_{i}^{\prime} g_{i}$ and for which the maximal degree of the $h_{i}^{\prime} g_{i}$ is less than M. The result then follows from the assumption that a monomial ordering is a well ordering.

Let $J \subseteq\{1, \ldots, m\}$ be the set of indices j for which the degree of $h_{j} g_{j}$ is M. Then

$$
f=\sum_{j \in J} L T\left(h_{j}\right) g_{j}+\sum_{j \in J}\left(h_{j}-L T\left(h_{j}\right)\right) g_{j}+\sum_{i \notin J} h_{i} g_{i}
$$

where the degree of each term in the latter two sums is less than M. Note that the first sum

$$
s=\sum_{j \in J} L T\left(h_{j}\right) g_{j}
$$

therefore also has strictly smaller degree than M. We claim that s may be written as

$$
s=\sum_{i, j \in J} b_{i, j} S\left(L T\left(h_{i}\right) g_{i}, L T\left(h_{j}\right) g_{j}\right)
$$

where $b_{i, j}$ are constants in the ground field. To see this, first note that

$$
S\left(L T\left(h_{i}\right) g_{i} L T\left(h_{j}\right) g_{j}\right)=\lambda_{i} L T\left(h_{i}\right) g_{i}-\lambda_{j} L T\left(h_{j}\right) g_{j}
$$

where λ_{i}, λ_{j} are nonzero constants because $L T\left(h_{i}\right) g_{i}$ and $L T\left(h_{j}\right) g_{j}$ for $i, j \in J$ have the same degree M. It follows that the polynomials $L T\left(h_{j}\right) g_{j}$ for $j \in J$ have the span linear span as the syzygies $S\left(L T\left(h_{i}\right) g_{i}, L T\left(h_{j}\right) g_{j}\right)$ for $i, j \in J$ together with a fixed $L T\left(h_{k}\right) g_{k}$ for $k \in J$. Hence s is a linear combination of the syzygies along with $L T\left(h_{k}\right) g_{k}$, but because the degrees of s and the syzygies are strictly smaller than that of $L T\left(h_{k}\right) g_{k}$, the coefficient of $L T\left(h_{k}\right) g_{k}$ must be zero.

Hence

$$
f=\sum_{i, j \in J} b_{i, j} S\left(L T\left(h_{i}\right) g_{i} L T\left(h_{j}\right) g_{h}\right)+\sum_{j \in J}\left(h_{j}-L T\left(h_{j}\right)\right) g_{j}+\sum_{i \notin J} h_{i} g_{i}
$$

The degree of each $S\left(L T\left(h_{i}\right) g_{i}, L T\left(h_{j}\right) g_{j}\right)$ is less than M so if we can express each such syzygy as a sum $\sum_{k} \ell_{k} g_{k}$ where each $\ell_{k} g_{k}$ is of degree at most the degree of the syzygy, then we are done. Note that $S\left(L T\left(h_{i}\right) g_{i}, L T\left(h_{j}\right) g_{j}\right)$ is the product of $S\left(g_{i}, g_{j}\right)$ and a monomial term. Because long division of $S\left(g_{i}, g_{j}\right)$ by g_{1}, \ldots, g_{m} may be done to obtain $r=0$, it follows that $S\left(L T\left(h_{i}\right) g_{i}, L T\left(h_{j}\right) g_{j}\right)$ can indeed be expressed as a sum $\sum_{k} \ell_{k} g_{k}$ where each $\ell_{k} g_{k}$ has degree at most the degree of the syzygy.

Proof of Proposition 3.17. Because the elements $g_{F, G}$ generate \mathcal{J} by Lemma 3.19, it suffices by Buchberger's criterion to apply long division to each syzygy $S\left(g_{A, B}, g_{C, D}\right)$ by the elements $g_{F, G}$ and obtain $r=0$. Throughout, we use the convention that $z_{F}=1$ if $F=\varnothing$. Note that if a polynomial f is divisible by $g_{F, G}$, then $L T(f)$ is divisible by $L T\left(g_{F, G}\right)$. Thus if at any stage of long division, the polynomial f is divisible by some $g_{F, G}$, we are done.
Case: Both pairs $\{A, B\}$ and $\{C, D\}$ are incomparable. Then $S\left(z_{A} z_{B}, z_{C} z_{D}\right)=0$ since the syzygy of any two monomials is zero.
Case: One pair is incomparable while the other pair is comparable. We may assume that A, B are incomparable and $C \subsetneq D$. Let $d=\mathrm{rk}_{M}(D)-\mathrm{rk}_{M}(C)$ so that $L T\left(g_{C, D}\right)=z_{C} z_{D}^{d}$. If the sets $\{A, B\}$ and $\{C, D\}$ are disjoint, then the syzygy is just

$$
S\left(g_{A, B}, g_{C, D}\right)=L T\left(g_{C, D}\right) g_{A, B}+L T\left(g_{A, B}\right) g_{C, D}=L T\left(g_{C, D}\right) g_{A, B}+g_{A, B} g_{C, D}
$$

and is therefore divisible by $g_{A, B}$. The two sets $\{A, B\}$ and $\{C, D\}$ cannot be equal, so we may assume that $A \in\{C, D\}$ and $B \notin\{C, D\}$. If $A=C$, then the syzygy is

$$
S\left(g_{A, B}, g_{A, D}\right)=z_{D}^{d} z_{A} z_{B}-z_{B} z_{A}\left(\sum_{D \subseteq H} z_{H}\right)^{d}
$$

which is again divisible by $g_{A, B}=z_{A} z_{B}$. Finally assume that $A=D$. Then

$$
-S\left(g_{A, B}, g_{C, A}\right)=z_{B} z_{C}\left(\sum_{A \subseteq H} z_{H}\right)^{d}-z_{B} z_{C} z_{A}^{d}
$$

One term in the expansion of the sum $z_{B} z_{C}\left(\sum_{A \subseteq H} z_{H}\right)^{d}$ is $z_{B} z_{C} z_{A}^{d}$ which is canceled. Among the rest of the terms, we may subtract the monomials that are divisible by $z_{A} z_{B}=g_{A, B}$. The result is

$$
z_{B} z_{C}\left(\sum_{A \subsetneq H} z_{H}\right)^{d}
$$

If B and C are incomparable, then the polynomial is divisible by $g_{B, C}$, so assume that they are comparable. It follows that $C \subsetneq B$ because B and A are incomparable. Now again by subtracting monomials in which two incomparable flats appear, we obtain

$$
z_{B} z_{C}\left(\sum_{\mathrm{cl}(A \cup B) \subseteq H} z_{H}\right)^{d}
$$

We claim that this polynomial is divisible by $g_{B, \mathrm{cl}(A \cup B)}$. Indeed

$$
\operatorname{rk}_{M}(A \cup B)-\operatorname{rk}_{M}(B) \leqslant \operatorname{rk}(A)-\operatorname{rk}(A \cap B) \leqslant \operatorname{rk}(A)-\operatorname{rk}(C)=d
$$

Case: Both pairs are comparable and $B=D$. We have $A \subsetneq B$ and $C \subsetneq B$. Let $d=\operatorname{rk}_{M}(B)-\operatorname{rk}_{M}(A)$ and $e=\operatorname{rk}_{M}(B)-\operatorname{rk}_{M}(C)$ and assume without loss of generality that $e \geqslant d$. Then the syzygy $S\left(g_{A, B}, g_{C, B}\right)$ is

$$
z_{C} z_{B}^{e-d} z_{A}\left(\sum_{B \subseteq H} z_{H}\right)^{d}-z_{A} z_{C}\left(\sum_{B \subseteq H} z_{H}\right)^{e}=z_{A} z_{C}\left(\sum_{B \subseteq H} z_{H}\right)^{d}\left(z_{B}^{e-d}-\left(\sum_{B \subseteq H} z_{H}\right)^{e-d}\right)
$$

which is divisible by $g_{A, B}$.
Case: Both pairs are comparable and $A=C$. Here $A \subsetneq B$ and $A \subsetneq D$. Let $d=\operatorname{rk}_{M}(B)-\operatorname{rk}_{M}(A)$ and $e=\operatorname{rk}_{M}(D)-\operatorname{rk}_{M}(A)$. Then the syzygy $S\left(g_{A, B}, g_{A, D}\right)$ is

$$
z_{D}^{e} z_{A}\left(\sum_{B \subseteq H} z_{H}\right)^{d}-z_{B}^{d} z_{A}\left(\sum_{D \subseteq H} z_{H}\right)^{e} .
$$

If B, D are incomparable, then by dropping incomparable terms, we obtain

$$
z_{D}^{e} z_{A}\left(\sum_{\mathrm{cl}(B \cup D) \subseteq H} z_{H}\right)^{d}-z_{B}^{d} z_{A}\left(\sum_{\mathrm{cl}(B \cup D) \subseteq H} z_{H}\right)^{e}
$$

There is no cancellation between these sums. The first sum is divisible by $g_{D, \mathrm{cl}(B \cup D)}$ while the second is divisible by $g_{B, \mathrm{cl}(B \cup D)}$. If B, D are comparable, then assume that $B \subsetneq D$ without loss of generality. In the syzygy, the lead terms of the two polynomials cancel, so the syzygy is difference of the two polynomials

$$
z_{A} z_{D}^{e}\left(\left(\sum_{B \subseteq H} z_{H}\right)^{d}-z_{B}^{d}\right)-z_{A} z_{B}^{d}\left(\left(\sum_{D \subseteq H} z_{H}\right)^{e}-z_{D}^{e}\right)
$$

Notice that every monomial term in the second polynomial is divisible by z_{B}^{d} while no term of the first polynomial is. Thus, there is no cancellation between the two polynomials. Every term of the second polynomial is divisible by the leading term of $g_{A, B}$, so we may add

$$
g_{A, B}\left(\left(\sum_{D \subseteq H} z_{H}\right)^{e}-z_{D}^{e}\right)
$$

to the syzygy. We thereby obtain

$$
\begin{aligned}
& z_{A} z_{D}^{e}\left(\left(\sum_{B \subseteq H} z_{H}\right)^{d}-z_{B}^{d}\right)+z_{A}\left(\left(\sum_{B \subseteq H} z_{H}\right)^{d}-z_{B}^{d}\right)\left(\left(\sum_{D \subseteq H} z_{H}\right)^{e}-z_{D}^{e}\right) \\
= & z_{A}\left(\left(\sum_{B \subseteq H} z_{H}\right)^{d}-z_{B}^{d}\right)\left(\sum_{D \subseteq H} z_{H}\right)^{e}
\end{aligned}
$$

which is divisible by $g_{A, D}$.
Case: Both pairs are comparable and $B=C$. Here $A \subsetneq B \subsetneq D$, and we let $d=\operatorname{rk}_{M}(B)-\operatorname{rk}_{M}(A)$ and $e=\operatorname{rk}_{M}(D)-\operatorname{rk}_{M}(B)$. The syzygy $S\left(g_{A, B}, g_{B, D}\right)$ is

$$
z_{A} z_{D}^{e}\left(\left(\sum_{B \subseteq H} z_{H}\right)^{d}-z_{B}^{d}\right)-z_{A} z_{B}^{d}\left(\left(\sum_{D \subseteq H} z_{H}\right)^{e}-z_{D}^{e}\right)
$$

Expressed as the difference of the two given polynomials, there is no cancellation between the two. The second polynomial is divisible by $L T\left(g_{A, B}\right)=z_{A} z_{B}^{d}$ so we add $g_{A, B}\left(\left(\sum_{D \subset H} z_{H}\right)^{e}-z_{D}^{e}\right)$ to syzygy to obtain

$$
z_{A}\left(\left(\sum_{B \subseteq H} z_{H}\right)^{d}-z_{B}^{d}\right)\left(\sum_{D \subseteq H} z_{H}\right)^{e}
$$

The sum of the terms that are divisible by $L T\left(g_{B, D}\right)=z_{B} z_{D}^{e}$ is

$$
z_{A}\left(\left(\sum_{B \subseteq H} z_{H}\right)^{d}-z_{B}^{d}-\left(\sum_{B \subsetneq H} z_{H}\right)^{d}\right) z_{D}^{e}
$$

We subtract the corresponding multiple of $g_{B, D}$

$$
z_{A}\left(\left(\sum_{B \subseteq H} z_{H}\right)^{d}-z_{B}^{d}-\left(\sum_{B \subseteq H} z_{H}\right)^{d}\right)\left(\sum_{D \subseteq H} z_{H}\right)^{e}
$$

from the expression to obtain

$$
z_{A}\left(\sum_{B \subsetneq H} z_{H}\right)^{d}\left(\sum_{D \subseteq H} z_{H}\right)^{e} .
$$

Suppose some monomial μ of $\left(\sum_{B \subsetneq H} z_{H}\right)^{d}$ is divisible by z_{Y} where $Y \subsetneq D$. Then $z_{A} \mu\left(\sum_{D \subseteq H} z_{H}\right)^{e}$ is divisible by $g_{Y, D}$ so we delete these terms. Of the remaining monomials of $\left(\sum_{B \subsetneq H} z_{H}\right)^{d}$, consider the ones from $\left(\sum_{D \subseteq H} z_{H}\right)^{d}$. The sum of their corresponding terms is $z_{A}\left(\sum_{D \subseteq H} z_{H}\right)^{d+e}$
which is just $g_{A, D}$ so we delete these as well. Every remaining term is divisible by a polynomial of the form $z_{A} z_{W}\left(\sum_{D \subseteq H} z_{H}\right)^{e}$ where $B \subsetneq W$ and W, D are incomparable. Note that by incomparability, this polynomial reduces to

$$
z_{A} z_{W}\left(\sum_{\mathrm{cl}(D \cup W) \subseteq H} z_{H}\right)^{e}
$$

which is divisible by $g_{W, \mathrm{cl}(D \cup W)}$.
Last case: Both pairs are comparable and $\{A, B\}$ and $\{C, D\}$ are disjoint. Here $A \subsetneq B$ and $C \subsetneq D$, and let $d=\operatorname{rk}_{M}(B)-\operatorname{rk}_{M}(A)$ and $e=\operatorname{rk}_{M}(D)-\operatorname{rk}_{M}(C)$. The syzygy $S\left(g_{A, B}, g_{C, D}\right)$ is

$$
z_{C} z_{D}^{e} z_{A}\left(\left(\sum_{B \subseteq H} z_{H}\right)^{d}-z_{B}^{d}\right)-z_{A} z_{B}^{d} z_{C}\left(\left(\sum_{D \subseteq H} z_{H}\right)^{e}-z_{D}^{e}\right)
$$

If A, C are incomparable, this polynomial is divisible by $g_{A, C}$. Assume they are comparable and that $A \subsetneq C$ without loss of generality.

- Subcase: B,C are incomparable. The second sum is divisible by $g_{B, C}$ so we drop it. If B, D are incomparable, then by further dropping incomparable terms, we obtain

$$
z_{A} z_{C} z_{D}^{e}\left(\sum_{\mathrm{cl}(B \cup D) \subseteq H} z_{H}\right)^{d}
$$

which is divisible by $g_{D, \mathrm{cl}(B \cup D)}$. If B, D are comparable, then $B \subsetneq D$ and by dropping incomparable terms, we have obtain

$$
z_{A} z_{C} z_{D}^{e}\left(\sum_{\mathrm{cl}(B \cup C) \subseteq H} z_{H}\right)^{d}
$$

which is divisible by $g_{C, \mathrm{cl}(B \cup C)}$.

- Subcase: $C \subsetneq B$. If B and D are incomparable, then by dropping incomparable terms, we obtain

$$
z_{C} z_{D}^{e} z_{A}\left(\sum_{\mathrm{cl}(B \cup D) \subseteq H} z_{H}\right)^{d}-z_{A} z_{B}^{d} z_{C}\left(\sum_{\mathrm{cl}(B \cup D) \subseteq H} z_{H}\right)^{e}
$$

with no cancellation. The first polynomial is divisible by $g_{D, \mathrm{cl}(B \cup D)}$ and the second is divisible by $g_{B, \mathrm{cl}(B \cup D)}$. If B and D are comparable, then the syzygy is the difference

$$
z_{A} z_{C} z_{D}^{e}\left(\left(\sum_{B \subseteq H} z_{H}\right)^{d}-z_{B}^{d}\right)-z_{A} z_{B}^{d} z_{C}\left(\left(\sum_{D \subseteq H} z_{H}\right)^{e}-z_{D}^{e}\right)
$$

with no cancellation. If $B \subsetneq D$, then add a multiple of $g_{A, B}$ to obtain

$$
z_{A} z_{C}\left(\left(\sum_{B \subseteq H} z_{H}\right)^{d}-z_{B}^{d}\right)\left(\sum_{D \subseteq H} z_{H}\right)^{e}
$$

which is a multiple of $g_{C, D}$. If $D \subsetneq B$, then subtract a multiple of $g_{C, D}$ to obtain

$$
z_{A} z_{C}\left(z_{D}^{e}-\left(\sum_{D \subseteq H} z_{H}\right)^{e}\right)\left(\sum_{B \subseteq H} z_{H}\right)^{d}
$$

which is a multiple of $g_{A, B}$.

- Subcase: $B \subsetneq C$. We write the syzygy as the difference

$$
z_{A} z_{C} z_{D}^{e}\left(\left(\sum_{B \subseteq H} z_{H}\right)^{d}-z_{B}^{d}\right)-z_{A} z_{B}^{d} z_{C}\left(\left(\sum_{D \subseteq H} z_{H}\right)^{e}-z_{D}^{e}\right)
$$

which has no cancellation. Adding the appropriate multiple of $g_{A, B}$ corresponding to the terms divisible by $z_{A} z_{B}^{d}$, we obtain

$$
z_{A} z_{C}\left(\left(\sum_{B \subseteq H} z_{H}\right)^{d}-z_{B}^{d}\right)\left(\sum_{D \subseteq H} z_{H}\right)^{e}
$$

which is divisible by $g_{C, D}$.

References

[ADH20] Federico Ardila, Graham Denham, and June Huh. Lagrangian geometry of matroids. arXiv:2004.13116, 2020.
[AHK17] Karim Adiprasito, June Huh, and Eric Katz. Hodge theory of matroids. Notices Amer. Math. Soc., 64(1):26-30, 2017.
[AHK18] Karim Adiprasito, June Huh, and Eric Katz. Hodge theory for combinatorial geometries. Ann. of Math. (2), 188(2):381-452, 2018.
[Bak18] Matthew Baker. Hodge theory in combinatorics. Bull. Amer. Math. Soc. (N.S.), 55(1):57-80, 2018.
[BES20] Spencer Backman, Christopher Eur, and Connor Simpson. Simplicial generation of chow rings of matroids. arXiv:1905.07114, 2020.
[$\left.\mathrm{BHM}^{+} 20\right]$ Tom Braden, June Huh, Jacob P. Matherne, Nicholas Proudfoot, and Botong Wang. A semi-small decomposition of the chow ring of a matroid. arXiv:2002.03341, 2020.
[DF04] David S. Dummit and Richard M. Foote. Abstract algebra. John Wiley \& Sons, Inc., Hoboken, NJ, third edition, 2004.
[FMSS95] W. Fulton, R. MacPherson, F. Sottile, and B. Sturmfels. Intersection theory on spherical varieties. J. Algebraic Geom., 4(1):181-193, 1995.
[FY04] Eva Maria Feichtner and Sergey Yuzvinsky. Chow rings of toric varieties defined by atomic lattices. Invent. Math., 155(3):515-536, 2004.
[Her72] A. P. Heron. Matroid polynomials. In Combinatorics (Proc. Conf. Combinatorial Math., Math. Inst., Oxford, 1972), pages 164-202, 1972.
[HK12] June Huh and Eric Katz. Log-concavity of characteristic polynomials and the Bergman fan of matroids. Math. Ann., 354(3):1103-1116, 2012.
[Hog74] S. G. Hoggar. Chromatic polynomials and logarithmic concavity. J. Combinatorial Theory Ser. B, 16:248-254, 1974.
[Huh12] June Huh. Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs. J. Amer. Math. Soc., 25(3):907-927, 2012.
[Huh18] June Huh. Combinatorial applications of the Hodge-Riemann relations. In Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. IV. Invited lectures, pages 3093-3111. World Sci. Publ., Hackensack, NJ, 2018.
[Kat16] Eric Katz. Matroid theory for algebraic geometers. In Nonarchimedean and tropical geometry, Simons Symp., pages 435-517. Springer, [Cham], 2016.
[Oxl03] James Oxley. What is a matroid? Cubo Mat. Educ., 5(3):179-218, 2003.
[Oxl11] James Oxley. Matroid theory, volume 21 of Oxford Graduate Texts in Mathematics. Oxford University Press, Oxford, second edition, 2011.
[Rea68] Ronald C. Read. An introduction to chromatic polynomials. J. Combinatorial Theory, 4:52-71, 1968.
[Rot71] Gian-Carlo Rota. Combinatorial theory, old and new. In Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 3, pages 229-233. 1971.
[Wel76] D. J. A. Welsh. Matroid theory. Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976. L. M. S. Monographs, No. 8.
[Zas87] Thomas Zaslavsky. The Möbius function and the characteristic polynomial. In Combinatorial geometries, volume 29 of Encyclopedia Math. Appl., pages 114-138. Cambridge Univ. Press, Cambridge, 1987.

[^0]: ${ }^{1}$ In fact, the sequence will be trapezoidal: there are indices $j \leqslant k$ for which $a_{0}<\cdots<a_{j}=\cdots=a_{k}>\cdots>a_{n}$.

[^1]: ${ }^{2}$ The author may return to this later to provide the details.

