FOURIER SERIES

7A-1)

a) For \(\sin kt \), use the frequency \(k \),
and \((\text{frequency})(\text{period}) = 2\pi\).
\[\frac{\pi}{3} \cdot P = 2\pi, \quad P = 6 \]

b) Period is \(\frac{2\pi}{3} \): \(\sin(kx) = \sin(kt) \)

\(\cos kt \) has period \(\frac{2\pi}{k} \). (As problem 4)
\(\cos^2 kt \) has period \(\frac{\pi}{k} \). (As in part b).
\[\cos^2 x = \left(\frac{\cos 2x}{2} \right)^2 = \left(\cos^2 x \right)^2 = \left(\cos (3x) \right)^2 \]

7A-2)

\[a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos nt \cos \frac{t}{n} \, dt = \frac{\sin \frac{2\pi}{n}}{\pi n} \int_{-\pi}^{\pi} dt = 0 \]
\[(a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} dt = \pi) \]

\[b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin nt \sin \frac{t}{n} \, dt = \frac{\cos \frac{2\pi}{n}}{\pi n} \int_{-\pi}^{\pi} dt = \frac{(-1)^n - (-1)^{n-1}}{\pi n} \]
\[= \frac{1}{n}, \quad n \text{ even} \]
\[= \frac{2}{n}, \quad n \text{ odd} \]

Then: (b)
\[a = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \, dt = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \, dt + \frac{1}{\pi} \int_{0}^{\pi} f(t) \, dt \]
\[= \frac{1}{\pi} \int_{0}^{\pi} f(t) \, dt + \frac{1}{\pi} \int_{0}^{\pi} f(t) \, dt \quad \text{by the first part} \]
\[f(t) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos \frac{nt}{n} + b_n \sin \frac{nt}{n} \right] \]

f(t) \sim \frac{\pi}{2} - \frac{4}{\pi} \left(\cos \frac{3t}{3^2} + \cos \frac{5t}{5^2} + \ldots \right)
\[7B-1. \]
\[a_n = 2 \int_0^1 (1-t) \cos nt \, dt = 2t - t^2 \bigg|_0^1 = 1 \]

\[b_n = 2 \int_0^1 (1-t) \sin nt \, dt \quad \text{Integ by parts:} \]
\[= 2 \left[(1-t) \frac{\sin nt}{nt} - \int_{-1}^1 \cos nt \, dt \right]_0^1 \]
\[= 2 \left[(1-t) \frac{\sin nt}{nt} \bigg|_0^1 + \cos nt \bigg|_0^1 \right] \]
\[= \frac{2}{n \pi} \left[(-1)^n - 1 \right] = \begin{cases} 0, & n \text{ even} \\ \frac{4}{n \pi^2}, & n \text{ odd} \end{cases} \]

\[f(t) \sim \frac{1}{2} + \frac{4}{\pi^2} \left(\frac{\cos t + \cos 3t + \cos 5t + \cdots}{3} \right) \]

\[\text{Fourier cosine series (picture below)} \]

\[b_n = 2 \int_0^1 (1-t) \sin nt \, dt \quad \text{Integ by parts:} \]
\[= 2 \left[(1-t) \frac{\cos nt}{nt} - \int_{-1}^1 \sin nt \, dt \right]_0^1 \]
\[= 2 \left[(0 + \frac{1}{nt}) \right] \]
\[= \frac{2}{nt} \left[\sin nt + \sin 3nt + \sin 5nt + \cdots \right] \]

\[\text{Fourier sine series (picture below)} \]

\[7B-3 \]
\[\int_0^1 f(t) \, dt = \int_0^1 (f(u)) \, du = \int_a^b (f(u)) \, du \]
\[f\text{ even} \quad (t + t = -u) \quad f(-u) = f(u) \]
\[f\text{ odd} \quad -a \quad a \quad -a \quad a \quad -a \quad a \]

\[7B-1a \]
\[t \sim \frac{\pi}{2} - \frac{4}{\pi} \left(\cos t + \cos 3t + \cos 5t + \cdots \right) \]

\[x(t) = \frac{A_0}{2} + \sum A_n \cos nt \]
\[x'' = -2n^2 A_n \cos nt \quad \text{Adding,} \]
\[t = A_0 + \sum A_n \cos nt \]
\[A_0 = \frac{\pi}{2}, \quad A_n = 0 \] if \(n \) even \(A_n = -\frac{4}{\pi n(n^2 - \frac{1}{4})} \] if \(n \) odd
\[f(t) = \frac{1}{\pi} + \frac{1}{\pi^2} \sum_{n=1}^{\infty} \frac{\cos \pi n t}{n^2} - \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{\sin \pi n t}{n} \]

This series doesn't converge (the sine terms don't add up to a finite sum). So it certainly can't converge to \(f(t) \).

7C-1

Preliminary remarks

\[mx'' + kx = F(t) \]

The natural frequency of the spring-mass system is \(\omega_0 = \sqrt{\frac{k}{m}} \).

The typical term of the Fourier expansion of \(F(t) \) is \(\cos \pi n t \), \(\sin \pi n t \); thus we get pure resonance if and only if the Fourier series has a \(\cos \pi n t \) or \(\sin \pi n t \) term where \(n \pi = \omega \).

a) \(\omega_0 = \sqrt{5} \) for spring-mass system

\[L = 1 \]

Fourier series is \(\sum b_n \sin \pi n t \)

\[n \pi = \sqrt{5} \]

\(\therefore \) no resonance

b) \(\omega_0 = 2\pi \)

\[L = 1 \]

Fourier series is \(\sum b_n \sin \pi n t \), and \(\pi n = 2\pi \) if \(n = 2 \).

Example 1, 8.4 shows that this term actually occurs in the Fourier series for \(f(t) \) just change scale. \(\therefore \) get resonance.

c) \(\omega_0 = 3 \)

Fourier series is a sine series (\(F(t) \) is odd):

\[F(t) = \sum b_n \sin \pi n t \]

all odd \(n \) occur (see Problem 8.3/11, or ex 1, 8.1)

\(n = 3 \) occurs, \(\therefore \) we get resonance.

7C-2

Fourier series for \(f(t) \)

will be same up to factor 2 as the Fourier sine series in Example 1, 8.3

\[F(t) = 4 \left(\sin t - \frac{1}{2} \sin 2t + \frac{1}{3} \sin 3t - \ldots \right) \]

\[x' = \sum b_n \sin nt \]

\[x'' = \sum -b_n n^2 \sin nt \]

Adding:

\[F(t) = \sum b_n \left(3 - n^2 \right) \sin nt \]

\[b_n = (-1)^{n+1} \frac{1}{n} \left(\frac{1}{3 - n^2} \right) = (-1)^n \frac{4}{n(n^2 - 3)} \]

7C-3a

The natural frequency of the undamped spring is \(\omega_0 = \sqrt{18/2} = 3 \).

This frequency occurs in the Fourier series for \(F(t) \) (Exercise 8.3). Thus the \(n = 3 \) term should dominate. (This actual series is)

\[x_{sp}(t) = \frac{4}{3} \sin (3t - 0.005) - 0.20 \sin (3t + 0.12) \]

\[4.14 \sin (3t - 1.5708) \]

\[t = 0 \quad \text{amplitude} = 0.7 \quad \text{sin} (4t - 3.1416) \]

7C-3b

The natural frequency of the undamped spring is \(\sqrt{30/3} = \sqrt{10} \).

Expanding the force \(f(t) \) as a Fourier series, since \(L = 1 \) (half-period), \(\therefore \) odd, it will be

\[F(t) = \sum b_n \sin \pi n t \]

It's virtually certain all terms will occur (since \(F(t) \) is so messy). (Check soln to 8.4/5 wi tech for work)

\[b_n \sin n t \]

should be the dominant term in the series (use checks with answer given in tech of book)

Note: Edwards, Penney 4th edn:
8.4 (16), p. 590 has a sign error in denominators - cf. (13), which is correct.