
5. Triple Integrals

5A. Triple integrals in rectangular and cylindrical coordinates

5A-1 a)

∫ 2

0

∫ 1

−1

∫ 1

0

(x+ y + z)dx dy dz Inner: 1
2x

2 + x(y + z)
]1

x=0
= 1

2 + y + z

Middle: 1
2y +

1
2y

2 + yz
]1

y=−1
= 1 + z − (−z) = 1 + 2z Outer: z + z2

]2

0
= 6

b)

∫ 2

0

∫

√
y

0

∫ xy

0

2xy2z dz dx dy Inner: xy2z2
]xy

0
= x3y4

Middle: 1
4x

4y4
]

√
y

0
= 1

4y
6 Outer: 1

28y
7
]2

0
= 32

7 .

5A-2

a) (i)

∫ 1

0

∫ 1

0

∫ 1−y

0

dz dy dx (ii)

∫ 1

0

∫ 1−y

0

∫ 1

0

dx dz dy (iii)

∫ 1

0

∫ 1

0

∫ 1−z

0

dy dx dz x

y

z

y+z=1

1

1

1

c) In cylindrical coordinates, with the polar coordinates r and θ
in xz-plane, we get

∫∫∫

R

r dy dr dθ =

∫ π/2

0

∫ 1

0

∫ 2

0

r dy dr dθ
1

2

d) The sphere has equation x2 + y2 + z2 = 2, or r2 + z2 = 2 in cylindrical
coordinates.

The cone has equation z2 = r2, or z = r. The circle in which they intersect has
a radius r found by solving the two equations z = r and z2+r2 = 2 simultaneously;
eliminating z we get r2 = 1, so r = 1. Putting it all together, we get

∫ 2π

0

∫ 1

0

∫

√
2−r2

r

r dz dr dθ. cross-section view

z

y

1

2

5A-3 By symmetry, x̄ = ȳ = z̄, so it suffices to calculate just one of these, say z̄. We have

z-moment =

∫∫∫

D

z dV =

∫ 1

0

∫ 1−x

0

∫ 1−x−y

0

z dz dy dx

Inner: 1
2z

2
]1−x−y

0
= 1

2 (1− x− y)2 Middle: − 1
6 (1− x− y)3

]1−x

0
= 1

6 (1− x)3

Outer: − 1
24 (1− x)4

]1

0
= 1

24 = z̄ moment.

mass of D = volume of D = 1
3 (base)(height) =

1
3 ·

1
2 · 1 = 1

6 .
1

1

1

1

y=  -x1

z=  -x-y

Therefore z̄ = 1
24/

1
6 = 1

4 ; this is also x̄ and ȳ, by symmetry.

5A-4 Placing the cone as shown, its equation in cylindrical coordinates is z = r
and the density is given by δ = r. By the geometry, its projection onto the xy-plane
is the interior R of the origin-centered circle of radius h.

h

h
z

y

vertical cross-section

0
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a) Mass of solid D =

∫∫∫

D

δ dV =

∫ 2π

0

∫ h

0

∫ h

r

r · r dz dr dθ

Inner: (h− r)r2; Middle:
hr3

3
−

r4

4

]h

0

=
h4

12
; Outer:

2πh4

12

b) By symmetry, the center of mass is on the z-axis, so we only have to compute its
z-coordinate, z̄.

z-moment of D =

∫∫∫

D

z δ dV =

∫ 2π

0

∫ h

0

∫ h

r

zr · r dz dr dθ

Inner: 1
2z

2r2
]h

r
= 1

2 (h
2r2 − r4) Middle:

1

2

(

h2 r
2

3
−

r5

5

)h

0

=
1

2
h5

·
2

15

Outer:
2πh5

15
. Therefore, z̄ =

2
15πh

5

2
12πh

4
=

4

5
h.

5A-5 Position S so that its base is in the xy-plane and its diagonal D lies along the x-axis
(the y-axis would do equally well). The octants divide S into four tetrahedra, which by
symmetry have the same moment of inertia about the x-axis; we calculate the one in the
first octant. (The picture looks like that for 5A-3, except the height is 2.)

The top of the tetrahedron is a plane intersecting the x- and y-axes at 1, and the z-axis
at 2. Its equation is therefore x+ y + 1

2z = 1.

The square of the distance of a point (x, y, z) to the axis of rotation (i.e., the x-axis) is
given by y2 + z2. We therefore get:

moment of inertia = 4

∫ 1

0

∫ 1−x

0

∫ 2(1−x−y)

0

(y2 + z2) dz dy dx.

5A-6 Placing D so its axis lies along the positive z-axis and its base is the origin-centered

disc of radius a in the xy-plane, the equation of the hemisphere is z =
√

a2 − x2 − y2, or

z =
√

a2 − r2 in cylindrical coordinates. Doing the inner and outer integrals mentally:

z-moment of inertia ofD =

∫∫∫

D

r2 dV =

∫ 2π

0

∫ a

0

∫

√
a2−r2

0

r2 dz r dr dθ = 2π

∫ a

0

r3
√

a2 − r2dr.

The integral can be done using integration by parts (write the integrand r2 · r
√

a2 − r2),
or by substitution; following the latter course, we substitute r = a sinu, dr = a cosu du, and
get (using the formulas at the beginning of exercises 3B)

∫ a

0

r3
√

a2 − r2dr =

∫ π/2

0

a3 sin3 u · a2 cos2 u du

= a5
∫ π/2

0

(

sin3 u− sin5 u
)

du = a5
(

2

3
−

2 · 4

1 · 3 · 5

)

=
2

15
a5. Ans:

4π

15
a5.
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5A-7 The solid D is bounded below by z = x2 + y2 and above by z = 2x. The main
problem is determining the projection R of D to the xy-plane, since we need to know this
before we can put in the limits on the iterated integral.

The outline of R is the projection (i.e., vertical shadow) of the curve
in which the paraboloid and plane intersect. This curve is made up of
the points in which the graphs of z = 2x and z = x2 + y2 intersect,
i.e., the simultaneous solutions of the two equations. To project the
curve, we omit the z-coordinates of the points on it. Algebraically, this
amounts to solving the equations simultaneously by eliminating z from
the two equations; doing this, we get as the outline of R the curve

2

D

z z
4

cross-section of D view of      along     axisD x

x y

x2 + y2 = 2x or, completing the square, (x− 1)2 + y2 = 1.

This is a circle of radius 1 and center at (1, 0), whose polar equation is therefore r = 2 cos θ.

We use symmetry to calculate just the right half of D and double the answer:

z-moment of inertia of D = 2

∫ π/2

0

∫ 2 cos θ

0

∫ 2x

x2+y2

r2 dz r dr dθ

= 2

∫ π/2

0

∫ 2 cos θ

0

∫ 2r cos θ

r2
r3 dz dr dθ = 2

∫ π/2

0

∫ 2 cos θ

0

r3(2r cos θ−r2) dr dθ

Inner:
2

5
r5 cos θ −

1

6
r6
]2 cos θ

0
=

2

5
· 32 cos6 θ −

1

3
· 32 cos6 θ

Outer: ·
32

15

∫ π/2

0

cos6 θ dθ = ·
32

15
·
1 · 3 · 5

2 · 4 · 6
·
π

2
=

π

3
. Ans:

2π

3

5B. Triple Integrals in spherical coordinates

5B-1 a) The angle between the central axis of the cone and any of the lines on the cone is

π/4; the sphere is ρ =
√

2; so the limits are (no integrand given)::

∫ 2π

0

∫ π/4

0

∫

√
2

0

dρ dφ dθ.

b) The limits are (no integrand is given):

∫ π/2

0

∫ π/2

0

∫ ∞

0

dρ dφ dθ

c) To get the equation of the sphere in spherical coordinates, we note
that AOP is always a right triangle, for any position of P on the sphere.
Since AO = 2 and OP = ρ, we get according to the definition of the
cosine, cosφ = ρ/2, or ρ = 2 cosφ. (The picture shows the cross-section
of the sphere by the plane containing P and the central axis AO.) cross-section

O

A
P2

1
φ

The plane z = 1 has in spherical coordinates the equation ρ cosφ = 1, or ρ = secφ.
It intersects the sphere in a circle of radius 1; this shows that π/4 is the maximum value
of φ for which the ray having angle φ intersects the region.. Therefore the limits are (no
integrand is given):

∫ 2π

0

∫ π/4

0

∫ 2 cosφ

secφ

dρ dφ dθ.
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5B-2 Place the solid hemisphere D so that its central axis lies along the positive z-axis
and its base is in the xy-plane. By symmetry, x̄ = 0 and ȳ = 0, so we only need z̄. The
integral for it is the product of three separate one-variable integrals, since the integrand is
the product of three one-variable functions and the limits of integration are all constants.

z̄-moment =

∫∫∫

D

z dV =

∫ 2π

0

∫ π/2

0

∫ a

0

(ρ cosφ)ρ2 sinφ dρ dφ dθ

= 2π ·

(

1

4
ρ4
)a

0

·

(

1

2
sin2 φ

)π/2

0

= 2π ·
1

4
a4 ·

1

2
=

πa4

4
.

Since the mass is
2

3
πa3, we have finally z̄ =

πa4/4

2πa3/3
=

3

8
a.

5B-3 Place the solid so the vertex is at the origin, and the central axis lies
along the positive z-axis. In spherical coordinates, the density is given by
δ = z = ρ cosφ, and referring to the picture, we have

M. of I. =

∫∫∫

D

r2 · z dV =

∫∫∫

D

(ρ sinφ)2(ρ cosφ) ρ2 sinφ dρ dφ dθ

=

∫ 2π

0

∫ π/6

0

∫ a

0

ρ5 sin3 φ cosφ dρ dφ dθ

z

y
cross-section 

6
π

r

φa

a

ρ

= 2π ·
a6

6
·
1

4
sin4 φ

]π/6

0
= 2π ·

a6

6
·
1

4

(

1

2

)4

=
πa6

26 · 3
.

5B-4 Place the sphere so its center is at the origin. In each case the iterated integral can be
expressed as the product of three one-variable integrals (which are easily calculated), since
the integrand is the product of one-variable functions and the limits are constants.

a)

∫ 2π

0

∫ π

0

∫ a

0

ρ · ρ2 sinφ dρ dφ dθ = 2π · 2 ·
1

4
a4 = πa4; average =

πa4

4πa3/3
=

3a

4
.

b) Use the z-axis as diameter. The distance of a point from the z-axis is r = ρ sinφ.
∫ 2π

0

∫ π

0

∫ a

0

ρ sinφ·ρ2 sinφ dρ dφ dθ = 2π ·
π

2
·
1

4
a4 =

π2a4

4
; average =

π2a4/4

4πa3/3
=

3πa

16
.

c) Use the xy-plane and the upper solid hemisphere. The distance is z = ρ cosφ.
∫ 2π

0

∫ π/2

0

∫ a

0

ρ cosφ ·ρ2 sinφ dρ dφ dθ = 2π ·
1

2
·
1

4
a4 =

πa4

4
; average =

πa4/4

2πa3/3
=

3a

8
.
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5C. Gravitational Attraction

5C-2 The top of the cone is given by z = 2; in spherical coordinates:
ρ cosφ = 2. Let α be the angle between the axis of the cone and any of its
generators. The density δ = 1. Since the cone is symmetric about its axis,
the gravitational attraction has only a k-component, and is

1

2
5

α

G

∫ 2π

0

∫ α

0

∫ 2/ cosφ

0

sinφ cosφ dρ dφ dθ.

Inner:
2

cosφ
sinφ cosφ Middle: −2 cosφ

]α

0

= −2 cosα+ 2 Outer: 2π · 2(1− cosα)

Ans: 4πG

(

1−
2
√

5

)

.

5C-3 Place the sphere as shown so that Q is at the origin. Since it is rotationally symmetric
about the z-axis, the force will be in the k -direction.

Equation of sphere: ρ = 2 cosφ Density: δ = ρ−1/2

Fz = G

∫ 2π

0

∫ π/2

0

∫ 2 cosφ

0

ρ−1/2 cosφ sinφ dρ dφ dθ

Inner: cosφ sinφ 2ρ1/2
]2 cosφ

0

= 2
√

2 cos3/2 φ sinφ

Middle: 2
√

2

[

−
2

5
cos5/2 φ

]π/2

0

=
4
√

2

5
Outer: 2πG

4
√

2

5
=

8
√

2

5
πG.

z

yQ

5C-4 Referring to the figure, the total gravitational attraction (which is in the k direction,
by rotational symmetry) is the sum of the two integrals

G

∫ 2π

0

∫ π/3

0

∫ 1

0

cosφ sinφ dρ dφ dθ + G

∫ 2π

0

∫ π/2

π/3

∫ 2 cosφ

0

cosφ sinφ dρ dφ dθ

= 2πG ·
1

2

(
√

3

2

)2

+ 2πG ·
2

3

(

1

2

)3

=
3

4
πG+

1

6
πG =

11

12
πG.

The two spheres are shown in cross-section. The spheres inter-
sect at the points where φ = π/3.

The first integral respresents the gravitational attraction of the
top part of the solid, bounded below by the cone φ = π/3 and
above by the sphere ρ = 1.

The second integral represents the bottom part of the solid,
bounded below by the sphere ρ = 2 cosφ and above by the cone.

y

z

π
3
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