
Topic 7 Notes
Jeremy Orloff

7 Taylor and Laurent series

7.1 Introduction

We originally defined an analytic function as one where the derivative, defined as a limit
of ratios, existed. We went on to prove Cauchy’s theorem and Cauchy’s integral formula.
These revealed some deep properties of analytic functions, e.g. the existence of derivatives
of all orders.

Our goal in this topic is to express analytic functions as infinite power series. This will lead
us to Taylor series. When a complex function has an isolated singularity at a point we will
replace Taylor series by Laurent series. Not surprisingly we will derive these series from
Cauchy’s integral formula.

Although we come to power series representations after exploring other properties of analytic
functions, they will be one of our main tools in understanding and computing with analytic
functions.

7.2 Geometric series

Having a detailed understanding of geometric series will enable us to use Cauchy’s integral
formula to understand power series representations of analytic functions. We start with the
definition:

Definition. A finite geometric series has one of the following (all equivalent) forms.

Sn = a(1 + r + r2 + r3 + . . .+ rn)

= a+ ar + ar2 + ar3 + . . .+ arn

=
n∑
j=0

arj

= a
n∑
j=0

rj

The number r is called the ratio of the geometric series because it is the ratio of consecutive
terms of the series.

Theorem. The sum of a finite geometric series is given by

Sn = a(1 + r + r2 + r3 + . . .+ rn) =
a(1− rn+1)

1− r
. (1)

Proof. This is a standard trick that you’ve probably seen before.

Sn = a+ ar + ar2 + . . .+ arn

rSn = ar + ar2 + . . .+ arn +arn+1

1
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When we subtract these two equations most terms cancel and we get

Sn − rSn = a− arn+1

Some simple algebra now gives us the formula in Equation 1.

Definition. An infinite geometric series has the same form as the finite geometric series
except there is no last term:

S = a+ ar + ar2 + . . . = a
∞∑
j=0

rj .

Note. We will usually simply say ‘geometric series’ instead of ‘infinite geometric series’.

Theorem. If |r| < 1 then the infinite geometric series converges to

S = a
∞∑
j=0

rj =
a

1− r
(2)

If |r| ≥ 1 then the series does not converge.

Proof. This is an easy consequence of the formula for the sum of a finite geometric series.
Simply let n→∞ in Equation 1.

Note. We have assumed a familiarity with convergence of infinite series. We will go over
this in more detail in the appendix to this topic.

7.2.1 Connection to Cauchy’s integral formula

Cauchy’s integral formula says

f(z) =
1

2πi

∫
C

f(w)

w − z
dw.

Inside the integral we have the expression

1

w − z
which looks a lot like the sum of a geometric series. We will make frequent use of the
following manipulations of this expression.

1

w − z
=

1

w
· 1

1− z/w
=

1

w

(
1 + (z/w) + (z/w)2 + . . .

)
(3)

The geometric series in this equation has ratio z/w. Therefore, the series converges, i.e. the
formula is valid, whenever |z/w| < 1, or equivalently when

|z| < |w|.

Similarly,
1

w − z
= −1

z
· 1

1− w/z
= −1

z

(
1 + (w/z) + (w/z)2 + . . .

)
(4)

The series converges, i.e. the formula is valid, whenever |w/z| < 1, or equivalently when

|z| > |w|.
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7.3 Convergence of power series

When we include powers of the variable z in the series we will call it a power series. In
this section we’ll state the main theorem we need about the convergence of power series.
Technical details will be pushed to the appendix for the interested reader.

Theorem 7.1. Consider the power series

f(z) =

∞∑
n=0

an(z − z0)n.

There is a number R ≥ 0 such that:

1. If R > 0 then the series converges absolutely to an analytic function for |z − z0| < R.

2. The series diverges for |z − z0| > R. R is called the radius of convergence. The disk
|z − z0| < R is called the disk of convergence.

3. The derivative is given by term-by-term differentiation

f ′(z) =
∞∑
n=0

nan(z − z0)n−1

The series for f ′ also has radius of convergence R.

4. If γ is a bounded curve inside the disk of convergence then the integral is given by
term-by-term integration ∫

γ
f(z) dz =

∞∑
n=0

∫
γ
an(z − z0)n

Notes.

• The theorem doesn’t say what happens when |z − z0| = R.

• If R =∞ the function f(z) is entire.

• If R = 0 the series only converges at the point z = z0. In this case, the series does
not represent an analytic function on any disk around z0.

• Often (not always) we can find R using the ratio test.

The proof of this theorem is in the appendix.

7.3.1 Ratio test and root test

Here are two standard tests from calculus on the convergence of infinite series.

Ratio test. Consider the series
∑∞

0 cn. If L = limn→∞ |cn+1/cn| exists, then:

1. If L < 1 then the series converges absolutely.
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2. If L > 1 then the series diverges.

3. If L = 1 then the test gives no information.

Note. In words, L is the limit of the absolute ratios of consecutive terms.

Again the proof will be in the appendix. (It boils down to comparison with a geometric
series.)

Example 7.2. Consider the geometric series 1+z+z2 +z3 + . . .. The limit of the absolute
ratios of consecutive terms is

L = lim
n→∞

|zn+1|
|zn|

= |z|

Thus, the ratio test agrees that the geometric series converges when |z| < 1. We know this
converges to 1/(1−z). Note, the disk of convergence ends exactly at the singularity z = 1.

Example 7.3. Consider the series f(z) =

∞∑
n=0

zn

n!
. The limit from the ratio test is

L = lim
n→∞

|zn+1|/(n+ 1)!

|zn|/n!
= lim

|z|
n+ 1

= 0.

Since L < 1 this series converges for every z. Thus, by Theorem 7.1, the radius of conver-
gence for this series is ∞. That is, f(z) is entire. Of course we know that f(z) = ez.

Root test. Consider the series
∑∞

0 cn. If L = limn→∞ |cn|1/n exists, then:

1. If L < 1 then the series converges absolutely.

2. If L > 1 then the series diverges.

3. If L = 1 then the test gives no information .

Note. In words, L is the limit of the nth roots of the (absolute value) of the terms.

The geometric series is so fundamental that we should check the root test on it.

Example 7.4. Consider the geometric series 1 + z + z2 + z3 + . . .. The limit of the nth
roots of the terms is

L = lim
n→∞

|zn|1/n = lim |z| = |z|

Happily, the root test agrees that the geometric series converges when |z| < 1.

7.4 Taylor series

The previous section showed that a power series converges to an analytic function inside its
disk of convergence. Taylor’s theorem completes the story by giving the converse: around
each point of analyticity an analytic function equals a convergent power series.

Theorem 7.5. (Taylor’s theorem) Suppose f(z) is an analytic function in a region A. Let
z0 ∈ A. Then,

f(z) =
∞∑
n=0

an(z − z0)n,
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where the series converges on any disk |z − z0| < r contained in A. Furthermore, we have
formulas for the coefficients

an =
f (n)(z0)

n!
=

1

2πi

∫
γ

f(z)

(z − z0)n+1
dz. (5)

(Where γ is any simple closed curve in A around z0, with its interior entirely in A.)

We call the series the power series representing f around z0.

The proof will be given below. First we look at some consequences of Taylor’s theorem.

Corollary. The power series representing an analytic function around a point z0 is unique.
That is, the coefficients are uniquely determined by the function f(z).

Proof. Taylor’s theorem gives a formula for the coefficients.

7.4.1 Order of a zero

Theorem. Suppose f(z) is analytic on the disk |z − z0| < r and f is not identically 0.
Then there is an integer k ≥ 0 such that ak 6= 0 and f has Taylor series around z0 given by

f(z) = (z − z0)k(ak + ak+1(z − z0) + . . .) = (z − z0)k
∞∑
n=k

an(z − z0)n−k. (6)

Proof. Since f(z) is not identically 0, not all the Taylor coefficients are zero. So, we take k
to be the index of the first nonzero coefficient.

Theorem 7.6. Zeros are isolated. If f(z) is analytic and not identically zero then the zeros
of f are isolated. (By isolated we mean that we can draw a small disk around any zeros
that doesn’t contain any other zeros.)

Isolated zero at z0: f(z0) = 0, f(z) 6= 0 elsewhere in the disk.

Proof. Suppose f(z0) = 0. Write f as in Equation 6. There are two factors:

(z − z0)k

and
g(z) = ak + ak+1(z − z0) + . . .

Clearly (z − z0)k 6= 0 if z 6= z0. We have g(z0) = ak 6= 0, so g(z) is not 0 on some small
neighborhood of z0. We conclude that on this neighborhood the product is only zero when
z = z0, i.e. z0 is an isolated 0.

Definition. The integer k in Theorem 7.6 is called the order of the zero of f at z0.

Note, if f(z0) 6= 0 then z0 is a zero of order 0.
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7.5 Taylor series examples

The uniqueness of Taylor series along with the fact that they converge on any disk around
z0 where the function is analytic allows us to use lots of computational tricks to find the
series and be sure that it converges.

Example 7.7. Use the formula for the coefficients in terms of derivatives to give the Taylor
series of f(z) = ez around z = 0.

Solution: Since f ′(z) = ez, we have f (n)(0) = e0 = 1. So,

ez = 1 + z +
z2

2!
+
z3

3!
+ . . . =

∞∑
n=0

zn

n!

Example 7.8. Expand f(z) = z8e3z in a Taylor series around z = 0.

Solution: Let w = 3z. So,

e3z = ew =
∞∑
n=0

wn

n!
=
∞∑
k=0

3n

n!
zn

Thus,

f(z) =
∞∑
n=0

3n

n!
zn+8.

Example 7.9. Find the Taylor series of sin(z) around z = 0 (Sometimes the Taylor series
around 0 is called the Maclaurin series.)

Solution: We give two methods for doing this.

Method 1.

f (n)(0) =
dn sin(z)

dzn
=

{
(−1)m for n = 2m+ 1 = odd, m = 0, 1, 2, . . .

0 for n even

Method 2. Using

sin(z) =
eiz − e−iz

2i
,

we have

sin(z) =
1

2i

[ ∞∑
n=0

(iz)n

n!
−
∞∑
n=0

(−iz)n

n!

]
=

1

2i

∞∑
n=0

[(1− (−1)n)]
inzn

n!

(We need absolute convergence to add series like this.)

Conclusion:

sin(z) =
∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!
,

which converges for |z| <∞.

Example 7.10. Expand the rational function

f(z) =
1 + 2z2

z3 + z5
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around z = 0.

Solution: Note that f has a singularity at 0, so we can’t expect a convergent Taylor series
expansion. We’ll aim for the next best thing using the following shortcut.

f(z) =
1

z3
2(1 + z2)− 1

1 + z2
=

1

z3

[
2− 1

1 + z2

]
.

Using the geometric series we have

1

1 + z2
=

1

1− (−z2)
=
∞∑
n=0

(−z2)n = 1− z2 + z4 − z6 + . . .

Putting it all together

f(z) =
1

z3
(
2− 1 + z2 − z4 + . . .

)
=

(
1

z3
+

1

z

)
−
∞∑
n=0

(−1)nz2n+1

Note. The first terms are called the singular part, i.e. those with negative powers of z. The
summation is called the regular or analytic part. Since the geometric series for 1/(1 + z2)
converges for |z| < 1, the entire series is valid in 0 < |z| < 1

Example 7.11. Find the Taylor series for

f(z) =
ez

1− z

around z = 0. Give the radius of convergence.

Solution: We start by writing the Taylor series for each of the factors and then multiply
them out.

f(z) =

(
1 + z +

z2

2!
+
z3

3!
+ . . .

)(
1 + z + z2 + z3 + . . .

)
= 1 + (1 + 1)z +

(
1 + 1 +

1

2!

)
z2 +

(
1 + 1 +

1

2!
+

1

3!

)
z3 + . . .

The biggest disk around z = 0 where f is analytic is |z| < 1. Therefore, by Taylor’s theorem,
the radius of convergence is R = 1.

f(z) is analytic on |z| < 1 and has a singularity at z = 1.

Example 7.12. Find the Taylor series for

f(z) =
1

1− z
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around z = 5. Give the radius of convergence.

Solution: We have to manipulate this into standard geometric series form.

f(z) =
1

−4(1 + (z − 5)/4)
= −1

4

(
1−

(
z − 5

4

)
+

(
z − 5

4

)2

−
(
z − 5

4

)3

+ . . .

)

Since f(z) has a singularity at z = 1 the radius of convergence is R = 4. We can also see
this by considering the geometric series. The geometric series ratio is (z − 5)/4. So the
series converges when |z − 5|/4 < 1, i.e. when |z − 5| < 4, i.e. R = 4.

Disk of convergence stops at the singularity at z = 1.

Example 7.13. Find the Taylor series for

f(z) = log(1 + z)

around z = 0. Give the radius of convergence.

Solution: We know that f is analytic for |z| < 1 and not analytic at z = −1. So, the radius
of convergence is R = 1. To find the series representation we take the derivative and use
the geometric series.

f ′(z) =
1

1 + z
= 1− z + z2 − z3 + z4 − . . .

Integrating term by term (allowed by Theorem 7.1) we have

f(z) = a0 + z − z2

2
+
z3

3
− z4

4
+ . . . = a0 +

∞∑
n=1

(−1)n−1
zn

n

Here a0 is the constant of integration. We find it by evalating at z = 0.

f(0) = a0 = log(1) = 0.

Disk of convergence for log(1 + z) around z = 0.

Example 7.14. Can the series ∑
an(z − 2)n
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converge at z = 0 and diverge at z = 3.

Solution: No! We have z0 = 2. We know the series diverges everywhere outside its radius
of convergence. So, if the series converges at z = 0, then the radius of convergence is at
least 2. Since |3− z0| < 2 we would also have that z = 3 is inside the disk of convergence.

7.5.1 Proof of Taylor’s theorem

For convenience we restate Taylor’s Theorem 7.5.

Taylor’s theorem. (Taylor series) Suppose f(z) is an analytic function in a region A. Let
z0 ∈ A. Then,

f(z) =

∞∑
n=0

an(z − z0)n,

where the series converges on any disk |z − z0| < r contained in A. Furthermore, we have
formulas for the coefficients

an =
f (n)(z0)

n!
=

1

2πi

∫
γ

f(z)

(z − z0)n+1
dz (7)

Proof. In order to handle convergence issues we fix 0 < r1 < r2 < r. We let γ be the circle
|w − z0| = r2 (traversed counterclockise).

Disk of convergence extends to the boundary of A
r1 < r2 < r, but r1 and r2 can be arbitrarily close to r.

Take z inside the disk |z − z0| < r1. We want to express f(z) as a power series around z0.
To do this we start with the Cauchy integral formula and then use the geometric series.

As preparation we note that for w on γ and |z − z0| < r1 we have

|z − z0| < r1 < r2 = |w − z0|,

so
|z − z0|
|w − z0|

< 1.

Therefore,

1

w − z
=

1

w − z0
· 1

1− z−z0
w−z0

=
1

w − z0

∞∑
n=0

(
z − z0
w − z0

)n
=

∞∑
n=0

(z − z0)n

(w − z0)n+1
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Using this and the Cauchy formula gives

f(z) =
1

2πi

∫
γ

f(w)

w − z
dw

=
1

2πi

∫
γ

∞∑
n=0

f(w)

(w − z0)n+1
(z − z0)n dw

=
∞∑
n=0

(
1

2πi

∫
γ

f(w)

(w − z0)n+1
dw

)
(z − z0)n

=

∞∑
n=0

f (n)(z0)

n!
(z − z0)n

The last equality follows from Cauchy’s formula for derivatives. Taken together the last
two equalities give Taylor’s formula. QED

7.6 Singularities

Definition. A function f(z) is singular at a point z0 if it is not analytic at z0

Definition. For a function f(z), the singularity z0 is an isolated singularity if f is analytic
on the deleted disk 0 < |z − z0| < r for some r > 0.

Example 7.15. f(z) =
z + 1

z3(z2 + 1)
has isolated singularities at z = 0,±i.

Example 7.16. f(z) = e1/z has an isolated singularity at z = 0.

Example 7.17. f(z) = log(z) has a singularity at z = 0, but it is not isolated because a
branch cut, starting at z = 0, is needed to have a region where f is analytic.

Example 7.18. f(z) =
1

sin(π/z)
has singularities at z = 0 and z = 1/n for n = ±1,±2, . . .

The singularities at ±1/n are isolated, but the one at z = 0 is not isolated.

Every neighborhood of 0 contains zeros at 1/n for large n.

7.7 Laurent series

Theorem 7.19. (Laurent series). Suppose that f(z) is analytic on the annulus

A : r1 < |z − z0| < r2.

Then f(z) can be expressed as a series

f(z) =
∞∑
n=1

bn
(z − z0)n

+
∞∑
n=0

an(z − z0)n.
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The coefficients have the formulus

an =
1

2πi

∫
γ

f(w)

(w − z0)n+1
dw

bn =
1

2πi

∫
γ
f(w)(w − z0)n−1 dw,

where γ is any circle |w − z0| = r inside the annulus, i.e. r1 < r < r2.

Furthermore

• The series
∞∑
n=0

an(z − z0)n converges to an analytic function for |z − z0| < r2.

• The series

∞∑
n=1

bn
(z − z0)n

converges to an analytic function for |z − z0| > r1.

• Together, the series both converge on the annulus A where f is analytic.

The proof is given below. First we define a few terms.

Definition. The entire series is called the Laurent series for f around z0. The series

∞∑
n=0

an(z − z0)n

is called the analytic or regular part of the Laurent series. The series

∞∑
n=1

bn
(z − z0)n

is called the singular or principal part of the Laurent series.

Note. Since f(z) may not be analytic (or even defined) at z0 we don’t have any formulas
for the coefficients using derivatives.

Proof. (Laurent series). Choose a point z in A. Now set circles C1 and C3 close enough to
the boundary that z is inside C1 +C2−C3−C2 as shown. Since this curve and its interior
are contained in A, Cauchy’s integral formula says

f(z) =
1

2πi

∫
C1+C2−C3−C2

f(w)

w − z
dw

The contour used for proving the formulas for Laurent series.
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The integrals over C2 cancel, so we have

f(z) =
1

2πi

∫
C1−C3

f(w)

w − z
dw.

Next, we divide this into two pieces and use our trick of converting to a geometric series.
The calculuations are just like the proof of Taylor’s theorem. On C1 we have

|z − z0|
|w − z0|

< 1,

so

1

2πi

∫
C1

f(w)

w − z
dw =

1

2πi

∫
C1

f(w)

w − z0
· 1(

1− z−z0
w−z0

) dw
=

1

2πi

∫
C1

∞∑
n=0

f(w)

(w − z0)n+1
(z − z0)n dw

=
∞∑
n=0

(
1

2πi

∫
C1

f(w)

(w − z0)n+1
dw

)
(z − z0)n

=

∞∑
n=0

an(z − z0)n.

Here an is defined by the integral formula given in the statement of the theorem. Examining
the above argument we see that the only requirement on z is that |z − z0| < r2. So, this
series converges for all such z.

Similarly on C3 we have
|w − z0|
|z − z0|

< 1,

so

1

2πi

∫
C3

f(w)

w − z
dw =

1

2πi

∫
C3

− f(w)

z − z0
· 1(

1− w−z0
z−z0

) dw
= − 1

2πi

∫
C3

∞∑
n=0

f(w)
(w − z0)n

(z − z0)n+1
dw

= − 1

2πi

∞∑
n=0

(∫
C1

f(w)(w − z0)n dw
)

(z − z0)−n−1

= −
∞∑
n=1

bn
(z − z0)n

.

In the last equality we changed the indexing to match the indexing in the statement of the
theorem. Here bn is defined by the integral formula given in the statement of the theorem.
Examining the above argument we see that the only requirement on z is that |z − z0| > r1.
So, this series converges for all such z.

Combining these two formulas we have

f(z) =
1

2πi

∫
C1−C3

f(w)

w − z
dw =

∞∑
n=1

bn
(z − z0)n

+
∞∑
n=0

an(z − z0)n
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The last thing to note is that the integrals defining an and bn do not depend on the exact
radius of the circle of integration. Any circle inside A will produce the same values. We
have proved all the statements in the theorem on Laurent series. QED

7.7.1 Examples of Laurent series

In general, the integral formulas are not a practical way of computing the Laurent coef-
ficients. Instead we use various algebraic tricks. Even better, as we shall see, is the fact
that often we don’t really need all the coefficients and we will develop more techniques to
compute those that we do need.

Example 7.20. Find the Laurent series for

f(z) =
z + 1

z

around z0 = 0. Give the region where it is valid.

Solution: The answer is simply

f(z) = 1 +
1

z
.

This is a Laurent series, valid on the infinite region 0 < |z| <∞.

Example 7.21. Find the Laurent series for

f(z) =
z

z2 + 1

around z0 = i. Give the region where your answer is valid. Identify the singular (principal)
part.

Solution: Using partial fractions we have

f(z) =
1

2
· 1

z − i
+

1

2
· 1

z + i
.

Since
1

z + i
is analytic at z = i it has a Taylor series expansion. We find it using geometric

series.
1

z + i
=

1

2i
· 1

1 + (z − i)/(2i)
=

1

2i

∞∑
n=0

(
−z − i

2i

)n
So the Laurent series is

f(z) =
1

2
· 1

z − i
+

1

4i

∞∑
n=0

(
−z − i

2i

)n
The singular (principal) part is given by the first term. The region of convergence is
0 < |z − i| < 2.

Note. We could have looked at f(z) on the region 2 < |z − i| < ∞. This would have
produced a different Laurent series. We discuss this further in an upcoming example.

Example 7.22. Compute the Laurent series for

f(z) =
z + 1

z3(z2 + 1)



7 TAYLOR AND LAURENT SERIES 14

on the region A : 0 < |z| < 1 centered at z = 0.

Solution: This function has isolated singularities at z = 0,±i. Therefore it is analytic on
the region A.

f(z) has singularities at z = 0,±i.
At z = 0 we have

f(z) =
1

z3
(1 + z)(1− z2 + z4 − z6 + . . .).

Multiplying this out we get

f(z) =
1

z3
+

1

z2
− 1

z
− 1 + z + z2 − z3 − . . . .

The following example shows that the Laurent series depends on the region under consid-
eration.

Example 7.23. Find the Laurent series around z = 0 for f(z) =
1

z(z − 1)
in each of the

following regions:

(i) the region A1 : 0 < |z| < 1

(ii) the region A2 : 1 < |z| <∞.

Solution: For (i)

f(z) = −1

z
· 1

1− z
= −1

z
(1 + z + z2 + . . .) = −1

z
− 1− z − z2 − . . .

For (ii): Since the usual geometric series for 1/(1 − z) does not converge on A2 we need a
different form,

f(z) =
1

z
· 1

z(1− 1/z)
=

1

z2

(
1 +

1

z
+

1

z2
+ . . .

)
Since |1/z| < 1 on A2 our use of the geometric series is justified.

One lesson from this example is that the Laurent series depends on the region as well as
the formula for the function.

7.8 Digression to differential equations

Here is a standard use of series for solving differential equations.

Example 7.24. Find a power series solution to the equation

f ′(x) = f(x) + 2, f(0) = 0.
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Solution: We look for a solution of the form

f(x) =
∞∑
n=0

anx
n.

Using the initial condition we find f(0) = 0 = a0. Substituting the series into the differential
equation we get

f ′(x) = a1 + 2a2x+ 3a3x
3 + . . . = f(x) + 2 = a0 + 2 + a1x+ a2x

2 + . . .

Equating coefficients and using a0 = 0 we have

a1 = a0 + 2 ⇒ a1 = 2

2a2 = a1 ⇒ a2 = a1/2 = 1

3a3 = a2 ⇒ a3 = 1/3

4a4 = a3 ⇒ a4 = 1/(3 · 4)

In general

(n+ 1)an+1 = an ⇒ an+1 =
an

(n+ 1)
=

1

3 · 4 · 5 · · · (n+ 1)
.

You can check using the ratio test that this function is entire.

7.9 Poles

Poles refer to isolated singularities. So, we suppose f(z) is analytic on 0 < |z − z0| < r and
has Laurent series

f(z) =
∞∑
n=1

bn
(z − z0)n

+
∞∑
n=0

an(z − z0)n.

Definition of poles. If only a finite number of the coefficients bn are nonzero we say z0 is
a finite pole of f . In this case, if bk 6= 0 and bn = 0 for all n > k then we say z0 is a pole of
order k.

• If z0 is a pole of order 1 we say it is a simple pole of f .

• If an infinite number of the bn are nonzero we say that z0 is an essential singularity
or a pole of infinite order of f .

• If all the bn are 0, then z0 is called a removable singularity. That is, if we define
f(z0) = a0 then f is analytic on the disk |z − z0| < r.

The terminology can be a bit confusing. So, imagine that I tell you that f is defined and
analytic on the punctured disk 0 < |z−z0| < r. Then, a priori we assume f has a singularity
at z0. But, if after computing the Laurent series we see there is no singular part we can
extend the definition of f to the full disk, thereby ‘removing the singularity’.
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We can explain the term essential singularity as follows. If f(z) has a pole of order k at
z0 then (z − z0)kf(z) is analytic (has a removable singularity) at z0. So, f(z) itself is not
much harder to work with than an analytic function. On the other hand, if z0 is an essential
singularity then no algebraic trick will change f(z) into an analytic function at z0.

7.9.1 Examples of poles

We’ll go back through many of the examples from the previous sections.

Example 7.25. The rational function

f(z) =
1 + 2z2

z3 + z5

expanded to

f(z) =

(
1

z3
+

1

z

)
−
∞∑
n=0

(−1)nz2n+1.

Thus, z = 0 is a pole of order 3.

Example 7.26. Consider

f(z) =
z + 1

z
= 1 +

1

z
.

Thus, z = 0 is a pole of order 1, i.e. a simple pole.

Example 7.27. Consider

f(z) =
z

z2 + 1
=

1

2
· 1

z − i
+ g(z),

where g(z) is analytic at z = i. So, z = i is a simple pole.

Example 7.28. The function

f(z) =
1

z(z − 1)

has isolated singularities at z = 0 and z = 1. Show that both are simple poles.

Solution: In a neighborhood of z = 0 we can write

f(z) =
g(z)

z
, where g(z) =

1

z − 1
.

Since g(z) is analytic at 0, z = 0 is a finite pole. Since g(0) 6= 0, the pole has order 1, i.e.
it is simple.

Likewise, in a neighborhood of z = 1,

f(z) =
h(z)

z − 1
, where h(z) =

1

z
.

Since h is analytic at z = 1, f has a finite pole there. Since h(1) 6= 0 it is simple.

Example 7.29. Consider

e1/z = 1 +
1

z
+

1

2!z2
+

1

3!z3
+ . . .

So, z = 0 is an essential singularity.

Example 7.30. log(z) has a singularity at z = 0. Since the singularity is not isolated, it
can’t be classified as either a pole or an essential singularity.
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7.9.2 Residues

In preparation for discussing the residue theorem in the next topic we give the definition
and an example here.

Note well, residues have to do with isolated singularites.

Definition 7.31. Consider the function f(z) with an isolated singularity at z0, i.e. defined
on 0 < |z − z0| < r and with Laurent series

f(z) =

∞∑
n=1

bn
(z − z0)n

+

∞∑
n=0

an(z − z0)n.

The residue of f at z0 is b1. This is denoted

Res(f, z0) or Res
z=z0

f = b1.

What is the importance of the residue? If γ is a small, simple closed curve that goes
counterclockwise around z0 then ∫

γ
f(z) = 2πib1.

γ is small enough to be inside |z − z0| < r, and surround z0.

This is easy to see by integrating the Laurent series term by term. The only nonzero integral
comes from the term b1/z.

Example 7.32. The function

f(z) = e1/(2z) = 1 +
1

2z
+

1

2(2z)2
+ . . .

has an isolated singularity at 0. From the Laurent series we see that

Res(f, 0) =
1

2
.

7.10 Appendix: convergence

This section needs to be completed. It will give some of the careful technical definitions and
arguments regarding convergence and manipulation of series. In particular it will define the
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notion of uniform convergence. The short description is that all of our manipulations of
power series are justified on any closed bounded region. Almost, everything we did can be
restricted to a closed disk or annulus, and so was valid.
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