
Solutions for Problem Set 7: Models,

compactifications, identifying spaces,

characterizing subspaces

Read the notes on the course website related to the subspace topology and
quotient topology (sections 3 and 5, though you might enjoy 1 and 2 as well).

Problem 1 (8). Have you done the reading?

Solution 1. Yes.

Problem 2 (8). Prove that a map f : A → X is a homeomorphism on its
image if and only if f : A→ X satisfies the universal property of the subspace
topology. (If you get stuck, go back and read the notes, which contains a proof
of a very similar statement. Then try to prove this statement again. Repeat this
procedure until you can understand and prove this result without consulting the
notes.)

Solution 2. Let B = f(A)
i−→ X be the image with the subspace topology.

Then B
i−→ X satisfies the mentioned universal property. If f satisfies it too,

then as Im(i) = Im(f), there are unique maps φ : A→ B and ψ : B → A such
that i ◦ φ = f and f ◦ ψ = i. Then ψ ◦ φ : A→ A is a map commuting with f .
But idA is also such a map and by universal property this map is unique; hence,
ψ ◦ φ = idA. Similarly, φ ◦ ψ = idB . Thus, φ and ψ are homeomorphisms. But,
φ is obtained from f by just restricting the target, hence f is a homeomorphism
onto its image.

The converse is easier, if f is homeomorphism onto B then, let φ again de-
note the map with restricted target and i denote the inclusion of B. But it is
generally true that composition with isomorphisms of a category preserve uni-
versal properties, hence, f satisfies it as i◦φ = f and φ is an isomorphism(More
concretely, you can use f to identify A with B).

Problem 3 (9). Let f : X → Y be a continuous surjection of topological
spaces.

a. Give an example to show that f may be an open map and at the same
time not be a closed map.

b. Give an example to show that f may be a closed map and at the same
time not be an open map.
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c. Prove that if f is either open or closed, then the topology on Y is equal
to the quotient topology coming from the relation: r, s ∈ X are equivalent
iff f(r) = f(s).

Solution 3. a. An example for this can be given by taking X to be coprod-
uct of open subsets of Y , for which at least one of the open subsets is not
closed. For instance, let Y = R and X = R>−1 × {0} ∪ R<0 × {1} ⊂ R2

and let f be the projection to the first component. Then, this is clearly
open, but the closed subset R>−1 × {0} maps onto R>−1, which is not
closed.

b. An example of the above spirit can be given easily for instance replace
R>−1 and R<0 by R≥−1 and R≤0 respectively. Then, R≥−1 ×{0} is open
but maps to the set R≥−1, which is not open.

c. Recall that a subset A ⊂ Y is open(resp. closed) in the quotient topology
if and only if f−1(A) is open(resp. closed) in X. We have to show this
statement is true for subsets of Y . The only if part follows from continuity
of f . But, if f is open then as f(f−1(A)) = A (by surjectivity), the if
part also follows, i.e. if f−1(A) is open, then f(f−1(A)) = A is open. It
is similar for closed maps.

Problem 4 (12). This problem will define the one-point compactification and
ask you to prove some theorems about it. Recall that a space X is called locally
compact if for every point p ∈ X, there exists a compact set K ⊂ X such
that p ∈ K. Note that every compact space is locally compact (prove this to
yourself).

a. Give an example of space which is locally compact and not compact.

Recall that the one-point compactification of a space X, if it exists, consists of

• a compact Hausdorff space Y

• an embedding i : X ↪→ Y

such that

• Y \ i(X) is a set containing exactly one element (we call that element “∞”
for convenience).

• i(X) = Y .

b. Prove that if X is a space with one-point compactifications i : X ↪→ Y
and j : X ↪→ Z that there is a unique homeomorphism h : Y → Z such
that h ◦ i = j.

Observe that if X has a one-point compactification, then X must be Hausdorff
(if this is not clear, prove it to yourself!). We might also imagine that if X fits
inside a compact space, then it can’t be that far off from being compact itself.
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c. Prove that if X has a one-point compactification, then X must be locally
compact.

So far in this problem you have proved that if X has a one-point compactifi-
cation, X must be locally compact and Hausdorff. These seem to be the only
“obvious” pieces of information we can extract about X if we know it has a
one-point compactification. One question to ask, then, is the following:

d. if a space X is locally compact (but not compact) and Hausdorff, does it
have a one-point compactification? (Hint: try using the construction we
gave in class to build one.)

Solution 4. a. The simplest ones are R with Euclidean topology and any
infinite set with discrete topology.

b. For simplicity identify X with its image under i and j. then idX : X → X

uniquely extends to a bijection Y
f−→ Z, namely ∞Y 7→ ∞Z . We check

that the map is closed and applied to f−1 this proves continuity as well.
Let F ⊂ Y be a closed subset. Then it is compact, as Y is compact
Hausdorff. If F ⊂ X, then it carries the same topology as a subset of Y
and Z(as X carries the subspace topology). Hence, f(F ), it is compact
and so is closed. If F * X, i.e. ∞Y ∈ F , then F \ {∞Y } is closed in X,

hence f(F )∩X = f(F ) \ {∞Z} closed in X. Thus f(F ) = f(F ), hence it
is closed.

Thus, f is a homeomorphism. Uniqueness is almost a set theoretic state-
ment in this case.

c. A one sentence proof can be given by stating that compact Hausdorff
spaces are locally compact and open subsets of locally compact spaces are
locally compact(the proof for this may be easier or harder depending on
the definition of local compactness you start with). For a longer proof, let
x ∈ X ⊂ Y , where Y is a one point compactification as above. Then there
exists open subsets U, V ⊂ Y such that x ∈ U , ∞ ∈ V and U ∩ V = ∅.
Then, Y \ V ⊂ X is a closed subset of Y , hence compact. U ⊂ Y \ V ;
hence, Y \ V is compact neighborhood of x in X. Hence, X is locally
compact.

d. Yes it is. Set theoretically we know what it should be so start with X ∪
{∞}. Declare a subset to be open if it is contained in X and open in there
or it contains ∞ and its complement is a compact subset of X. Hausdorff
property of X is enough to prove this is a topology. That it is compact
also follows from that, if we have an open cover, then at least one of them
contains ∞, hence has a compact complement which lives in X. Then,
finitely many of the remaining open subsets can be chosen to cover this
compact set, hence, these finitely many subset with the first chosen one
cover X ∪ {∞}.
Locally compactness of X is necessary to prove X ∪{∞} is Hausdorff. To
see this we just need to see ∞ can be separated from any point x ∈ X:
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just choose x ∈ U ⊂ K ⊂ X, where U is open and K is compact. Then U
and (X ∪ {∞}) \K separate x and ∞. Hence, X ∪ {∞} is Hausdorff.

Problem 5 (12). For the following problem, the notation (0, 1) will refer to the
open interval in the real line.

a. Prove that Dn ∼= Rn.

b. Prove that (intDn)+ ∼= Sn.

c. Many of you argued that
(
S1 × (0, 1)

)+
is homeomorphic to a “pinched

torus.” Give a model for the pinched torus and prove that it is homeo-
morphic to the one-point compactification of S1 × (0, 1).

Solution 5. a. I assume Dn refers to open unit disc {x ∈ Rn : ||x|| < 1}.
Then I can write down a homoemorphism which just rescales elements
by a number that only depends on its norm. To be more precise let
φ : [0, 1)→ R≥0 be an order preserving homeomorphism, such as tangent
function tan( 2x

π ). Then the map x 7→ φ(||x||)x is a homeomorphism, with
an inverse of the same type.

b. Stereographic projection

(x1, . . . , xn+1) 7→
( x1

1− xn+1
, . . . ,

xn
1− xn+1

)
gives us a homeomorphism Sn \ {(0, . . . , 0, 1)} onto Rn with an obvious
inverse

(y1, . . . , yn) 7→
( 2y1
||y||2 + 1

, . . . ,
2yn

||y||2 + 1
,
||y||2 − 1

||y||2 + 1

)
Hence, Rn embeds into Sn as a dense open subset with a complement
consisting of a single point. As we know Sn is compact Hausdorff, this
implies it is one point compactification of Rn. By part (a), it is also one
point compactification of int(Dn) = Dn.

c. Well, you can take this to be your model and the question becomes a
tautology. But, this is not the simplest model. Let T 2 = S1 × S1. choose
a base point e ∈ S1 and I would call T 2/(S1 × {e}) a pinched torus.
Note for a closed subset A ⊂ X of a space X, I denote X/A to be the
space obtained by identifying the points of A and nothing else, endowed
with quotient topology. In this simple situation it is easy to show it is
Hausdorff. In general if X is strongly regular, i.e. you can separate closed
subsets from points by functions, this still holds.

Now, take an open embedding i : (0, 1) ↪→ S1 with image S1 \ {e}. Then,
it is easy to see that the composition

S1 × (0, 1)
id×i−−−→ S1 × S1 → T 2/(S1 × {e})

is an open embedding with a dense image which has a complement con-
sisting of a single point namely the pinched part (S1 × {e})/(S1 × {e}).
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