
Solutions to Problem Set 5: Category theory

Read sections 1.1–1.4 and 3.1 of Categories in Context by Emily Riehl (link
here and on course webpage) OR read sections 1.4, 2.4, 3.1, 3.3, 3.4, 5.4 of
Category theory by Steve Awodey (link here and on course webpage).

Problem 1 (8). Did you do your reading assignment?

Solution 1. Yes.

Problem 2 (8).

a. What is a functor between groups, regarded as one-object categories?
What is a natural transformation between a parallel pair of such func-
tors?

b. What is a functor between preorders, regarded as categories? What is a
natural transformation between a parallel pair of such functors?

Solution 2. a. Let G and H be two groups. Denote the corresponding cat-
egories by the letters. Giving a functor F : G → H is the same as
giving functions between set of objects, which are one object sets in our
case so the function can be only one thing, and set of morphisms com-
patible with compositions and the identity. This is the same as saying
F (gh) = F (g ◦ h) = F (g) ◦ F (h) = F (g)F (h) and F (1) = 1. So giving a
functor is equivalent to giving an homomorphism of groups.

Similarly, given F, F ′ : G→ H functors/group homomorphisms, a natural
transformation Φ : F → F ′ is determined by the morphism Φx : F (x) →
F ′(x), where x is the unique object of G and Φx ∈ H. Choice of such
Φ = Φx ∈ H gives a natural transformation if and only if ΦF (g) = F ′(g)Φ,
for all g ∈ G. Thus, a natural transformation is just a conjugation relation,
together with conjugating element Φ between F and F ′.

b. Let P and Q be preorders and denote the corresponding categories by
the same letter. A functor induces a function Ob(P ) → Ob(Q). As there
is at most a unique morphism between any two objects, the functor is
uniquely determined by this function between sets of objects. Moreover, a
function F0 : Ob(P )→ Ob(Q) extends to a functor only if it carries pairs
of objects x, x′ such that P (x, x′) 6= to objects with the same property.
This is equivalent to saying that if x ≤ x′, then F0(x) ≤ F0(x′). Clearly,
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this is also sufficient. Thus functors in between are just order preserving
functions of preorders.

A natural transformation F → F ′ is an assignment of a morphism Φx :
F (x) → F ′(x). Note, the commutativity of the squares is immediate
as there is at most one morphism between any two objects(Indeed any
diagram commutes). But, such there can be at most one such assignment,
and its existence is equivalent to F (x) ≤ F ′(x) for any x ∈ P , i.e. a
natural transformation F → F ′ is a relation F ≤ F ′ on all objects.

Problem 3 (8). Prove that functors carry commutative diagrams to commu-
tative diagrams. Note: part of this exercise is to formalize the notion of com-
mutative diagram.

Solution 3. A diagram in C, informally is a collection of objects and morphisms
in between. A better way of phrasing this is functions f0 : X0 → Ob(C) =: C0

and f1 : X1 → Mor(C) =: C1, where X0 and X1 are sets with ”domain and
target maps” X1 → X0 and the functions are compatible with them(you can
picture it as a directed graph, if you wish). X0 and X1 can easily be completed
to a category Xf by declaring Ob(Xf ) = X0 and morphisms x → x′ to be
directed paths from x to x′(where the trivial path is the identity). Then a
diagram is just a functor from Xf to C. The commutativity of a diagram is
that two paths around certain 2-cells giving the same composition in C(Think of
triangles for simplicity). But we can declare this at a more universal level at Xf ,
by identifying two such paths in this category. We obtain a new category, X,
and a commutative diagram is just a functor X → C. After long philosophical
discussion, I take this as the definition of an X-shaped diagram in C.

Then, everything is clear: If we have a commutative diagram, i.e. a functor
f : X → C and another functor F : C → D, then F carries the diagram to
F ◦ f , which is also a commutative diagram by definition, as the composition of
functors is a functor.

Problem 4 (8). Let X be a space and LX be the category associated to the
directed set (TX ,⊂). Convince yourself that you know what the objects and
morphisms of LX are.

a. In what way is the construction X 7→ LX functorial? (That is, how can
you make it into a functor?)

b. Let {Xi}i∈I be a family of objects of LX . Does the product
∏
i∈I
Xi exist?

Does the coproduct
∐
i∈I
Xi exist? When?

Solution 4. It is easy to see that the objects are the open subsets and the
morphism U → V is an inclusion relation U ⊂ V .

a. For each set X the power set PX can be made a category in a similar
way, and the category LX is a full subcategory of PX , for a space X. The
construction of PX is functorial in two ways:
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i. Send the map f : X → Y to the function PX → PY sending U ⊂ X
to f(U). Note this is covariant.

ii. Send the map f : X → Y to the function PY → PX sending V ⊂ Y
to f−1(V ). Note this is contravariant.

The second works well for X 7→ LX as well: just replace the words PX by
LX . But, the first one does not: continuous functions does not even carry
LX ⊂ PX to PY . But we have a quick remedy for this: send f : X → Y
to U 7→ int(f(U)). Clearly, this is a function between LX and LY and
it preserves inclusion relation, so it is a functor LX → LY . It is easy to
check this is compatible with compositions and the identities.

b. A product
∏
i∈I
Xi comes with the morphisms

∏
i∈I
Xi → Xi. But there are

such morphisms if and only if
∏
i∈I
Xi ⊂ Xi for all i ∈ I, i.e.

∏
i∈I
Xi ⊂⋂

i∈I
Xi. Clearly, this is the case if and only if

∏
i∈I
Xi ⊂ int(

⋂
i∈I
Xi). But,

int(
⋂
i∈I
Xi) is an object of LX and there are morphisms int(

⋂
i∈I
Xi)→ Xi.

The discussion tells us that any such object with morphisms to Xi, i.e.
inside Xi, is a subset of int(

⋂
i∈I
Xi), i.e. the morphisms factor(uniquely)

through int(
⋂
i∈I
Xi). Hence, int(

⋂
i∈I
Xi) is the product, with the obvious

morphisms to Xi.

A similar discussion shows that the coproduct, if exists, has to be an open
set containing

⋃
i∈I
Xi. This set is already open and it is very easy to see

that it is the coproduct.

Problem 5 (16). Let C be a category. For a diagram X : J → C, denote the
colimit of the diagram (if it exists) by (colim

J
(X), {ιj}j∈ob J) where

colim
J

(X) ∈ obC

is the universal object of the colimit and

ιj : X(j)→ colim
J

(X)

are the universal morphisms.
A functor F : C → D is said to preserve colimits if for every diagram

X : J → C such that the colimit of X exists, the colimit colim
J

(FX) also exists,

and the map

colim
J

(FX)→ F
(

colim
J

X
)
,

which is induced by the maps Fιj : F (X(j))→ F (colim
J

(X)) and the universal

property of colim
J

(FX), is an isomorphism.
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a. Give an example of a functor that does not preserve colimits.

b. Give an example of a functor that preserves colimits.

c. Let C be a category. Prove that any functor F : Set → C that preserves
colimits is determined by the image under F of any set with one-element.

d. Let C be a category. LetD be one of the following categories: Group,VectR,Top.
Is there a collection of subobjectsG ⊂ obD so that any functor F : D → C
that preserves colimits is determined by its values on G? What if we allow
G to be a subcategory?

Solution 5. a. There can be many different examples. One is the covari-
ant Yoneda functor V ect(X,−), from V ect to V ect, where I denote the
category of (possibly infinite dimensional) vector spaces over R by V ect
and where X is infinite dimensional. Then the coproducts are the direct
sums and this functor does not commute with them, for instance write
X =

⊕
Xi, where Xi are finite dimensional. Then the image of identity

is not in
⊕
V ect(X,Xi), so it does not identify with V ect(X,X).

There are other examples in the same spirit, such as the covariant Yoneda
functor associated to a non-compact space or to an infinite set, etc.

b. Again, there can be many examples, such as the identity functor or the for-
getful functor from Spaces to Sets. An example of the above spirit, is tak-
ing X to be finite dimensional, i.e. covariant Yoneda functor V ect(X,−),
from V ect to V ect, where X is finite dimensional. It is then an easy linear
algebra exercise to show this preserves colimits.

Again, Yoneda functors over Spaces and Sets corresponding to compact
spaces/finite sets give us different examples.

c. This is intuitively clear: In Sets coproducts are disjoint unions and hence
every set is a coproduct of one element sets. To be more precise, for
every set X, {ix : 1→ X} is a coproduct diagram, where 1 is a fixed one
element set and ix sends that element to x. Then we obtain a coproduct
diagram {jx : F (1)→ F (X)}(Clearly, the domains of these diagrams is the
category with set of objects X and with only identity morphisms). If we
have another colimit preserving functor F ′ such that F (1) ∼= F ′(1), then
the isomorphism induce natural isomorphisms of diagrams {jx : F (1) →
F (X)} and {j′x : F ′(1) → F ′(X)}; hence, isomorphisms of F (X) and
F ′(X). But as the construction of the above diagram is natural in X,
so is the constructed isomorphism, so we have a natural transformation
between the functors, which is an isomorphism. Thus, the image of 1
determines the functor.

d. If we allow G to be a subcategory, then the answer is trivial: just take it
to be the whole category(Yet things change if we put restrictions on the
cardinality of Ob(G)).
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However, if we do not know anything about morphisms the answer is
negative, i.e. there are functors on D that act the same on objects, yet that
are not related by a natural isomorphism. To find an example, let us look
what can go wrong. If F, F ′ : D → C are two functors that act the same on
set of objects, then not only their action on morphisms should be different
but also the objects of C should lack the class of automorphisms that could
relate F and F ′. So I propose the following example for V ectR(Check it
though):

Take two embeddings of R into a field K that are not related by any (even
just linear) automorphisms. Then we obtain two base change functors,
i.e. V 7→ V ⊗R K(K has two different R-module structure, coming from
two embeddings, hence tensoring with it is different). Those are an exact
functors, clearly preserving the coproducts. Dimension of R turn into di-
mension over K, hence the images of objects under the will be isomorphic.
But the action on the hom-sets will be different, and will not be related
by any automorphisms as the embeddings of R are not related. Hence, we
have a counterexample.

For groups we can imitate this, after composing with coproduct preserving
abelinization functor, G 7→ G/[G,G]. Note the tensor product does not
preserve colimits in general and it has to be modified slightly.

For topological spaces, philosophically they are the same as a very spe-
cial class of commutative algebras(with some extra structure). So we
can imitate this, send X 7→ C(X), the algebra of real valued continuous
functions, considered as an object of CAlgopR , the opposite category of
commutative algebras over R. Then, we can again base change to same
field K above(note this time it is a functor between categories of algebras)
in two different ways and obtain a counterexample.
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