
Solutions to Problem Set 4: Connectedness

Problem 1 (8). Let X be a set, and T0 and T1 topologies on X. If T0 ⊂ T1,
we say that T1 is finer than T0 (and that T0 is coarser than T1).

a. Let Y be a set with topologies T0 and T1, and suppose idY : (Y, T1) →
(Y, T0) is continuous. What is the relationship between T0 and T1? Justify
your claim.

b. Let Y be a set with topologies T0 and T1 and suppose that T0 ⊂ T1.
What does connectedness in one topology imply about connectedness in
the other?

c. Let Y be a set with topologies T0 and T1 and suppose that T0 ⊂ T1. What
does one topology being Hausdorff imply about the other?

d. Let Y be a set with topologies T0 and T1 and suppose that T0 ⊂ T1. What
does convergence of a sequence in one topology imply about convergence
in the other?

Solution 1. a. By definition, idY is continuous if and only if preimages of
open subsets of (Y, T0) are open subsets of (Y, T1). But, the preimage of
U ⊂ Y is U itself. Hence, the map is continuous if and only if open subsets
of (Y, T0) are open in (Y, T1), i.e. T0 ⊂ T1, i.e. T1 is finer than T0.

b. If Y is disconnected in T0, it can be written as Y = U
∐
V , where U, V ∈ T0

are non-empty. Then U and V are also open in T1; hence, Y is disconnected
in T1 too. Thus, connectedness in T1 imply connectedness in T0. The
other way is not true, consider discrete and indiscrete topologies on R for
instance.

c. Hausdorff means one can seperate different points with open subsets, thus
if the coarser topology T0 has enough opens to seperate all points, so does
T1. Thus, if T0 is Hausdorff then so is T1. The converse is false: the
example in part b provides a counter-example.

d. Convergence is preserved by continuous maps, so if a sequence/net con-
verges in T1 then it converges in T0 by part a.

Problem 2 (8). Given a space X, we define an equivalence relation on the
elements of X as follows: for all x, y ∈ X,

x ∼ y ⇐⇒ there is a connected subset A ⊂ X with x, y ∈ A.
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The equivalence classes are called the components of X.

a. (0) Prove to yourself that the components of X can also be described as
connected subspaces A of X which are as large as possible, ie, connected
subspaces A ⊂ X that have the property that whenever A ⊂ A′ for A′ a
connected subset of X, A = A′.

b. (4) Compute the connected components of Q.

c. (4) Let X be a Hausdorff topological space, and f, g : R→ X be continu-
ous maps such that for every x ∈ Q, f(x) = g(x). Show that f = g.

Solution 2. a. First, the components are connected. To show this let A =
[x] ⊂ U ∪ V , where U and V are open and U ∩ V ∩ A = ∅. Then either
x ∈ U \ V or x ∈ V \ U , assume the former. Given y ∈ A, there exist
a connected set B ⊂ X, containing x and y. Clearly, B ⊂ A, so B ⊂ U
or B ⊂ V . The latter cannot happen by assumption that x ∈ B, so
y ∈ B ⊂ U . As this holds for any y ∈ A, A ⊂ U ; hence, as U and V were
arbitrary A is connected. Clearly, it is maximal: if A ⊂ A′, where A′ is
connected, then x ∈ A′, so A′ ⊂ A as above. Thus, A = A′. On the other
hand, maximal connected subsets are connected components of the points
they contain by similar arguments.

b. Let ∅ 6= A ⊂ Q be connected. If A contains more than one elements,
say x < y ∈ Q, then for a given irrational r between x and y, (−∞, r)
and (r,∞) seperate A into two disjoint, non-empty open subset. Thus
it cannot be connected, so it should contain at most one element, so the
connected components are {x}, for x ∈ Q.

c. Hausdorff property is equivalent to closedness of the diagonal ∆ ⊂ X×X.
If this is the case, its preimage under f × g : R → X ×X is also closed.
But this set is equal to {x ∈ R : f(x) = g(x)}, which contains Q. As
Q is dense, this closed set is all R, hence f = g. A different way would
be taking rational sequences converging to a given real number and using
uniqueness of the limit in Hausdorff spaces.

Problem 3 (9). Prove that no pair of the following subspaces of R are home-
omorphic:

(0, 1), (0, 1], [0, 1].

Solution 3. The distinguishing property is the minimal number of connected
components when we take out two points: Such a procedure will always seperate
(0, 1) into 3 components. If we choose one of them to be a boundary point it is
2 for (0, 1], but not less. If we take of two boundary points from [0, 1], it will
remain connected, hence, this number is 1 for it.

Problem 4 (8). Let (Xi)i∈I be a family of topological spaces, and (Yi)i∈I be a
family of subsets Yi ⊂ Xi. Note that the set

∏
i∈I Yi has two possible topologies:
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• first give each Yi the subspace topology, and then take the product topol-
ogy on the product

• give the product the subspace topology as a subset of the product topology
on
∏

i∈I Xi.

Are these two topologies the same? Prove or disprove using the universal prop-
erties of the subset and the product.

Solution 4. Let τp and τs denote the subset and product topologies on Y =∏
i∈I Yi. We will write the natural maps from one to the other, which will turn

out to be identity. To write a map to a product we have to write maps to each
component. Set theoretically they are just projections from (

∏
i∈I Yi, τs) to Yi

but we need continuity. But inclusion map from (
∏

i∈I Yi, τs) to
∏

i∈I Xi is
continuous and projection from the latter to Xi is continuous; hence, projection
from (

∏
i∈I Yi, τs) to Xi is continuous with image in Yi. Thus the projection

to Yi is continuous and this tells us that the identity from (
∏

i∈I Yi, τs) to
(
∏

i∈I Yi, τp) is continuous. Hence, the subset topology is finer. On the other
hand (

∏
i∈I Yi, τp)→ (

∏
i∈I Xi, τprod) is continuous because of the continuity of

the composition (
∏

i∈I Yi, τp) → Yi ↪→ Xi. But its image is in (
∏

i∈I Yi, τs) so
the map to subspace is also continuous, i.e. id : (

∏
i∈I Yi, τp)→ (

∏
i∈I Yi, τs) is

also continuous. Thus product topology is also finer, hence they are the same
topologies.

Problem 5 (12 – problem seminar). In this problem, we will investigate the
notion of convergence in the product and box topologies on spaces of functions.

a. Let X be a space and I be a set. Recall that the set of maps XI is also the
product

∏
i∈I X, and so has a natural topology (the product topology).

Let (fn)n∈N be a sequence of maps in XI , and let f ∈ XI . Show that
fn → f in XI if and only if, for every i, fn(i) → f(i) in X. For this
reason, the product topology T∏ is also called the topology of pointwise
convergence.

b. Show that the topology of pointwise convergence on RR does not come
from a metric.

The topology of uniform convergence T∞ on RR is defined as follows: a subset
U ⊂ RR belongs to T∞ iff for every f ∈ U there exists ε > 0 such that{

g : R→ R : sup
x∈R
|f(x)− g(x)| < ε

}
⊂ U.

Convince yourself that this is a topology. Justify to yourself the name of T∞
(by figuring out what it means for a sequence to converge in T∞).

c. Show that T∏ ⊂ T∞ ⊂ T�
d. Show that T∏ 6= T∞.
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e. Show that the sequence of constant functions x 7→ 1
n+1 does not converge

to 0 in the box topology. Conclude that T∞ 6= T�.

f. Find a sequence of functions fn ∈ RR such that sup
x∈R
|f(x)| ≥ 1

n+1 and that

converges to the constant function 0 in the box topology.

Solution 5. a. If fn → f , then for any i ∈ I, pi(fn) → pi(f), where pi is
the projection to the ith factor. This is true because continuity preserves
convergence. But, pi(fn) = fn(i) and pi(f) = f(i); hence, fn(i)→ f(i).

On the other hand, assume fn(i)→ f(i) for any i ∈ I. This implies for any
neighborhood of f , of type p−1i (U), where U is a neighborhood of f(i) in
X, all but finitely many of fn are in p−1i (U). But, any neighborhood of f
contains a finite intersection of this type of sets and this finite intersection
contains all but finitely of fn. Thus, fn → f .

b. It is easy to see that every point in a metric space has a local basis, i.e. a
sequence {Un}n∈N of neighborhoods such that for any other neighborhood
U there exist a n ∈ N such that Un ⊂ U and this property depends only on
the topology. On the other hand, RI has ”too many” neighborhoods of any
point: for instance p−1i ((−1, 1)) is a neighborhood of (0)i∈I for each i ∈ I,
where pi is the projection to the ith component. But any neighborhood of
(0)i∈I contains p−1i1

(−ε1, ε1) ∩ p−1i2
(−ε2, ε2) ∩ · · · ∩ p−1ik

(−εk, εk), for some
i1, . . . , ik ∈ I and ε1, . . . , εk > 0. Hence, it contains the a subset of the
form p−1i1

(0) ∩ p−1i2
(0) ∩ · · · ∩ p−1ik

(0). Thus, if {Un} is a countable family
of neighborhoods, by choosing such a finite set of indices for each Un we
can obtain a countable set J ⊂ I of indices such that

⋂
j∈J p

−1
j (0) ⊂⋂

n∈N Un. If {Un} were a local basis,
⋂

j∈J p
−1
j (0) would be contained in

any neighborhood of (0)i∈I , clearly implying I = J . Thus, if we start with
an uncountable index set, such as R as above, this cannot happen and our
topology cannot come from a metric space.

c. As the product topology is the smallest topology containing open sets of
the form p−1i (U), where U ⊂ R is open, it is enough to show that sets
of this type are open in the uniform convergence topology, for any U and
i ∈ R. Let f ∈ p−1i (U), i.e. f(i) ∈ U . Then, there exist an ε > 0 such that
(f(i)− ε, f(i) + ε) ⊂ U . Then, clearly {g : R→ R : sup

x∈R
|f(x)− g(x)| < ε}

is a subset of p−1i ((f(i) − ε, f(i) + ε)) ⊂ p−1i (U). Hence, p−1i (U) ∈ T∞.
This implies T∏ ⊂ T∞.

On the other hand, let U ∈ T∞. Given f ∈ U , there exist an ε > 0
such that {g : R → R : sup

x∈R
|f(x) − g(x)| < ε} ⊂ U . But then, f ∈∏

i∈R(f(i) − ε/2, f(i) + ε/2) ⊂ U . Thus, U can be written as a union of
boxes

∏
i∈R(ai, bi); thus, it is open in box topology. Hence, T∞ ⊂ T�.

d. One way of doing this would be finding sequences of functions converging
uniformly but not pointwisely. An easier way is noting {g : R → R :
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sup
x∈R
|g(x)| < ε} ∈ T∞. But, for any neighborhood U of the 0 function in

product topology there exist an i such that pi(U) = R. This clearly does
not hold for the set above. Hence it is not in T∏. Thus, T∞ 6= T∏.

e. Box topology contains any
∏

i∈R(ai, bi). We can choose ai < 0 < bi
such that sup{ai : i ∈ R} = inf{bi : i ∈ R} = 0. Clearly, this set
does not contain any of the constant functions, except 0. But it contains
0, thus the constant functions x 7→ 1

n+1 does not converge to x 7→ 0.
But they uniformly converge to it, hence clearly they converge in uniform
convergence topology. This implies T∏ 6= T�.

f. Obviously, this cannot be continuous, hence we should look for discontin-
uous examples. For a very simple one, let

fn(x) =

{
1

n+1 x = 0

0 x 6= 0

This sequence obviously satisfies the desired properties.
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