
Problem Set 2: Topological spaces

Your name:

Due: Thursday, February 11

Problem 1 (7). Let (M,d) be a metric space, and let x be a point in M . Show
that the subset M \ {x} is open in the metric topology ⌧

d

.

Solution 1. To check this we have to show that for any y 2 M \ {x}, there
exist an ✏ > 0 such that B(y, ✏) ⇢ M \ {x}, i.e. x 62 B(y, ✏). But as y 6= x,
hence we can just take ✏ = d(x, y) > 0.

Problem 2 (12). Let X be a space.

a. Suppose (⌧
i

)
i2I

is a family of topologies on X indexed by I. Prove thatT
i2I

⌧

i

is a topology on X.

b. Suppose ⌧, ⌧ 0 are topologies on X. Is ⌧ [⌧

0 a topology on X? Justify your
claim.

c. Let A be a basis for a topology on X, and let I be the collection of
topologies ⌧ on X such that A ⇢ ⌧ . Prove that ⌧A =

T
⌧2I

⌧ . In other
words, ⌧

A

is the coarsest topology that contains A. Is this true if A is
only a sub-basis for a topology on X?

Solution 2. a. We have to check the axioms. X, ; 2
T

i2I

⌧

i

as they are
in all ⌧

i

. Let (U
j

)
j2J

be a family of elements in
T

i2I

⌧

i

. Then it is a
family of elements of any ⌧

i

and so
S

j2J

U

j

2 ⌧

i

for all i. Thus
S

j2J

U

j

2T
i2I

⌧

i

.The third axiom is checked similarly; given U, V 2
T

i2I

⌧

i

, we
have U, V 2 ⌧

i

for all i; hence, U \ V 2 ⌧

i

as ⌧

i

is a topology. But this
implies U \ V 2

T
i2I

⌧

i

. Hence,
T

i2I

⌧

i

is a topology.

b. The answer is no. A simple counterexample is as follows: Let X = R,
A = R�0 ⇢ R and B = (�1, 0] ⇢ R. Let ⌧ = {;, A,X} and ⌧

0 = {;, B,X},
they can easily seen to be topologies. Then both A and B are in ⌧ [ ⌧

0

but A \ B = {0} 62 ⌧ [ ⌧

0. Hence, it is not a topology. Union axiom fails
as well.

c. Let ⌧0 =
T

⌧2I

⌧ . As A ⇢ ⌧A, ⌧A 2 I. Thus, ⌧0 ⇢ ⌧A. On the other hand,
given ⌧ 2 I and U 2 ⌧A, we can write U as a union of elements of A ⇢ ⌧ ,
hence as a union of open subsets of ⌧ . This implies U itself is in ⌧ . Hence,
⌧A ⇢ ⌧ for all ⌧ 2 I, i.e. ⌧A ⇢

T
⌧2I

⌧ = ⌧0. Thus, ⌧A = ⌧ . The same
holds for sub-bases A, if we define ⌧A to be the topology with basis the
set of finite intersections of A.
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Problem 3 (18). A totally ordered set is a set X together with a subset R ⇢
X ⇥X satisfying the following properties:

• for every x 2 X, (x, x) does not belong to R;

• for every x, y 2 X, exactly one of (x, y) and (y, x) belongs to R.

• for every x, y, z 2 X, if (x, y) and (y, z) belong to R then (x, z) belongs to
R.

We often write x < y as an abbreviation for (x, y) 2 R. The subset R is called
the total ordering. Given a, b 2 X, we define the following subsets of X:

(�1, a) ⌘ {x 2 X : x < a}
(a,1) ⌘ {x 2 X : a < x}
(a, b) ⌘ (a,1) \ (�1, b).

Denote by B the collection of all such subsets, as well as X itself.

a. Show that B is a basis for a topology ⌧

R

on X.

b. Recall that R has a total ordering, x < y () y�x is positive. Prove that
the order topology on R coincides with the standard (metric) topology on
R.

c. Note that R2 = R⇥ R has a total order defined as follows:

(a, b) < (c, d) () a < c or (a = c and b < d).

This is called the lexicographical order (think of how words are ordered
in the dictionary). Denote this ordering L ⇢ R2 ⇥ R2. Observe that the
subset C = [0, 1]⇥ [0, 1] ⇢ R2 inherits a total ordering from R2, which we
denote by T ⇢ C⇥C. This means we have three topologies on [0, 1]⇥[0, 1]:

• (⌧
L

)[0,1]⇥[0,1], the subspace topology from the ordering on R2;

• ⌧

T

, the topology from the induced ordering on [0, 1]⇥ [0, 1];

• the subspace topology on [0, 1]⇥ [0, 1] from the standard topology on
R2.

Compute the closure of the set A = {(x, 0) : x 2 [0, 1)} in each of these
topologies.

Solution 3. a. One needs to check that finite intersections of elements of B
can be covered by elements of B. But clearly intersection of two elements,
is again in B, for instance (a, b) \ (c, d) = (max{a, c},min{b, d}). Hence,
B is a basis.
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b. Let ⌧
d

and ⌧

o

denote the metric and order topologies respectively. Clearly,
elements of B are open in ⌧

d

: finite intervals are balls centered around their
mid-points and infinite ones are infinite unions of finite intervals. Hence,
⌧

o

⇢ ⌧

d

as in the previous question. On the other hand, given U 2 ⌧

d

we
can form U

o =
S

(a,b)⇢U , finite interval(a, b) ⇢ U and this set is open in order
topology. But given x 2 U , there exist an ✏ > 0 such that (x�✏, x+✏) ⇢ U

so (x � ✏, x + ✏) ⇢ U

o. Thus U = U

o is also open in order topology and
⌧

d

= ⌧

o

.

c. • For any x 2 [0, 1), ((x, 0), (x, 2))\C is open in the subspace topology
for the order topology on R2. But this set is just {x} ⇥ (0, 1]. Sim-
ilarly, {1} ⇥ [0, 1] = ((1,�1), (1, 2)) \ C, where the interval is taken
with respect to given order on R2, is open. But, these sets cover all
the compliment of A in C. Hence A is closed and its closure is itself.

• Any basic open set, i.e. an open interval, in the complement would be
supported in a single x-coordinate, otherwise it would intersect the
elements of A with x-coordinate in between. So the basis elements
in the complement are subsets of the intervals ((x, 0), (x, 1)), for 0 
x < 1 and subsets of the interval ((1, 0), (1, 1)). Thus the complement
of union of all such, i.e. the closure of A is equal to [0, 1]⇥ {0, 1}.

• A clearly accumulates to (x, 0) for all x 2 [0, 1] and clearly to nothing
else. Hence, the closure of A in this topology is [0, 1]⇥ {0}.

Problem 4 (18). Let X and Y be topological spaces.

a. Let BQ be the collection of subsets of X ⇥ Y of the form U ⇥ V ,where U

is open in X and V is open in Y . Show that BQ is a basis for a topology
on X ⇥ Y . This topology is called the product topology.

b. Let B` be the collection of subsets of X

`
Y of the form U ⇥ {0} or

V ⇥ {1},where U is open in X and V is open in Y . Show that B` is a
basis for a topology on X

`
Y . This topology is called the sum topology.

c. Consider R equipped with its standard metric topology. Show that the
product topology on R ⇥ R is the same as the standard metric topology
on R2.

Solution 4. a. If we have two elements U ⇥ V and U

0 ⇥ V

0 of BQ, where U

and U

0 are open in X and V and V

0 are open in Y , then their intersection
is (U \U

0)⇥ (V \V

0), which is in BQ as well. Hence, for any two elements
of BQ and any a 2 X ⇥ Y in their intersection, there exist an element
of BQ that contains a and that is in the intersection, namely take the
intersection itself. Hence, BQ is a basis.

b. Again, to check this, checking that B` is closed under finite non-empty
intersections is enough. Intersections of two sets, U ⇥ {0} and U

0 ⇥ {0},
where U and U

0 are open in X, is equal to U \ U

0 ⇥ {0}, which is again
in B`. It is similar for two sets of the type V ⇥ {1} in B`. On the other
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hand, U ⇥ {0} \ V ⇥ {1} = ;, B` satisfies the desired property; hence, it
is a basis.

c. The elements of BQ are open in the metric topology: If (x, y) 2 U ⇥ V ,
where U and V are open, then there exist ✏, ✏0 > 0 such that B(x, ✏) ⇢ U

and B(y, ✏0) ⇢ V . Then it is easy to show that B((x, y),min{✏, ✏0}) ⇢
U ⇥ V . As (x, y) 2 U ⇥ V was arbitrary, this shows that the sets U ⇥ V

are metric open. Thus, all the basis elements are metric open and the
topology they generate is contained in ⌧

d

, the metric topology. On the
other hand, as open subsets in metric topology are unions of ball, it is
enough to show that the balls are open in the product topology. Given
(x, y) = b 2 B(a, ✏0) ⇢ R2, we can find ✏ > 0 such that B(b, ✏) ⇢ B(a, ✏0).
Then, clearly (x� ✏/2, x+ ✏/2)⇥ (y� ✏/2, y+ ✏/2) ⇢ B((x, y), ✏) = B(b, ✏).
As b, a, ✏0 was arbitrary, this shows the open balls are product open, hence
metric open subsets are open in the product topology. Thus, they are the
same.

Problem 5 (20). The goal of this problem is to show that there are infinitely
many prime numbers. This result is known as Euclid’s theorem, its first recorded
proof having been published by Euclid around 300 B.C. The surprising topo-
logical proof that we will see here was discovered in 1955 by H. Furstenberg.

Recall that a natural number p 2 N is prime i↵ p 6= 1 and if its only divisors
are 1 and p. Let P ⇢ N be the set of all prime numbers.

a. Show that every natural number n 6= 1 is divisible by a prime number.

b. For x, n 2 Z let
x+ nZ = {x+ nz : z 2 Z}.

Call a subset U ⇢ Z open i↵ for every x 2 U there exists n 2 N \ {0} such
that x+ nZ ⇢ U . Show that this defines a topology on Z.

c. Show that for every n 2 N \ {0}, the set nZ is both open and closed in Z.

d. Using (a), show that

Z \ {1,�1} =
[

p2P
pZ.

e. Conclude that P is infinite.

Solution 5. a. Assume the converse and let n 6= 1 be the smallest natural
number not satisfying this condition. Every natural number p 6= 1 dividing
n should be less than than or equal to n but if p < n then p and hence n

is divisible by a prime number. This cannot happen by assumption; hence
every such p is equal to n, i.e. n is prime. But then it is divisible by a
prime, a contradiction; hence, the statement holds.
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b. First notice that the family {x+ nZ : x 2 Z, n 2 N \ {0}} is closed under
finite non-empty intersection: Indeed, if a 2 (x + nZ) \ (y + mZ), then
(a+nZ) = (x+nZ) and (a+mZ) = (y+mZ) and (x+nZ)\ (y+mZ) =
(a+nZ)\ (a+mZ) = a+ gcd(m,n)Z, which is of the same type. Now, to
check the given family of opens define a topology becomes easy: Openness
of ; and Z is vacuously true. Union axiom is also obvious. Hence we only
have to check this family of sets is closed under finite intersections. But
if U and V are open, then given x 2 U \ V , we have n and m such that
x + nZ ⇢ U and x +mZ ⇢ V . Thus their intersection x + gcd(m,n)Z is
a subset of U \ V . This implies U \ V is open as well and given family
defines a topology.

c. As x 2 y + nZ implies x + nZ = y + nZ, the sets x + nZ are open. In
particular, nZ and its complement

S
i=1,...,n�1 i + nZ are open, so nZ is

also closed.

d. Clearly the union is a subset of Z \ {1,�1} for 1 or -1 are not divisible by
any prime. On the other hand, given x 2 Z \ {1,�1}, part (a) implies it
is divisible by some p 2 P, i.e. x 2 pZ. So the result follows.

e. If P were finite the union
S

p2P pZ would be closed in the topology above,
by part (c), i.e. as pZ is closed. Thus by part (d), {�1, 1} would be open.
Thus it would contain 1 +mZ, for some m 6= 1, yet it is finite and this is
a contradiction. Thus, P is infinite.
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