Problem Set 1: A Set-Theory diagnostic

Solution 1.

(a)	$A \subset B$ and $B \subset C$	\Rightarrow	$A \subset(B \cup C)$	\Rightarrow	\Leftarrow	\Leftrightarrow	None
(b)	$A \subset B$ and $B \subset C$	\Rightarrow	$A \subset(B \cap C)$	\Rightarrow	\Leftarrow	\Leftrightarrow	None
(c)	$A \subset B$ or $B \subset C$	None	$A \subset(B \cup C)$	\Rightarrow	\Leftarrow	\Leftrightarrow	None
(d)	$A \subset B$ or $B \subset C$	\Leftarrow	$A \subset(B \cap C)$	\Rightarrow	\Leftarrow	\Leftrightarrow	None
(e)	$A \backslash(A \backslash B)$	\subset	B	\subset	\bigcirc	$=$	None
(f)	$A \backslash(B \backslash A)$	\bigcirc	$A \backslash B$	\subset	\supset	$=$	None
(g)	$A \cap(B \backslash C)$	$=$	$(A \cap B) \backslash(A \cap C)$	\subset	\bigcirc	$=$	None
(h)	$A \cup(B \backslash C)$	\bigcirc	$(A \cup B) \backslash(A \cup C)$	\subset	\supset	$=$	None
(i)	$A \subset C$ and $B \subset D$	\Rightarrow	$(A \times B) \subset(C \times D)$	\Rightarrow	\Leftarrow	\Leftrightarrow	None
(j)	$(A \times B) \cup(C \times D)$	\subset	$(A \cup C) \times(B \cup D)$	\subset	\supset	$=$	None
(k)	$(A \times B) \cap(C \times D)$	=	$(A \cap C) \times(B \cap D)$	\subset	\bigcirc	$=$	None
(1)	$A \times(B \backslash C)$	$=$	$(A \times B) \backslash(A \times C)$	C	\supset	$=$	None
(m)	$(A \times B) \backslash(C \times D)$	\supset	$(A \backslash C) \times(B \backslash D)$	\subset	\bigcirc	$=$	None

Solution 2.

$\begin{array}{cccccccc}\text { (n) } & x \in \bigcup_{A \in \mathcal{A}} A & \Leftrightarrow & x \in A \text { for at least one } A \in \mathcal{A} & \Rightarrow & \Leftarrow & \Leftrightarrow & \text { None } \\ \text { (o) } & x \in \bigcup_{A \in \mathcal{A}} A & \Leftarrow & x \in A \text { for every } A \in \mathcal{A} & \Rightarrow & \Leftarrow & \Leftrightarrow & \text { None } \\ \text { (p) } & x \in \bigcap_{A \in \mathcal{A}} A & \Rightarrow & \Rightarrow & x \in A \text { for at least one } A \in \mathcal{A} & \Rightarrow & \Leftarrow & \Leftrightarrow \\ \text { (q) None } \\ \text { (q) } & x \in \bigcap_{A \in \mathcal{A}} A & \Leftrightarrow & x \in A \text { for every } A \in \mathcal{A} & \Rightarrow & \Leftrightarrow & \Leftrightarrow & \text { None }\end{array}$

Solution 3.

(r)	$g \circ f$ is injective, then f is	inj.		inj.	surj.	bij.	none.
(s)	$g \circ f$ is injective, then g is	None		inj.	surj.	bij,	none.
(t)	$g \circ f$ is surjective, then f is	None		inj.	surj.	bij.	none.
(u)	$g \circ f$ is surjective, then g is	surj.		inj.	surj.	bij.	none.
(v)	Let $A_{0} \subset A$. If $A_{0}=f^{-1}\left(B_{0}\right)$		$=$	A_{0}	\subset	$\supset=$	None
for some $B_{0} \subset B$, then $f^{-1} f\left(A_{0}\right)$							
(w)	Let $B_{0} \subset B$. If $B_{0} \subset f(A)$	$\square=$	B_{0}	\subset	$\supset=$	None	

Solution 4. a. Define the inverse map

$$
\psi: A^{C} \times B^{C} \rightarrow(A \times B)^{C}
$$

by sending (g, h) to the unique function that maps $c \in C$ to $(g(c), h(c) \in$ $A \times B$. Let ϕ denote the given map $(A \times B)^{C} \rightarrow A^{C} \times B^{C}$. Given $f \in(A \times B)^{C}, \psi(\phi(f))=\psi\left(p_{1} \circ f, p_{2} \circ f\right)$ sends c to $\left(p_{1} \circ f(c), p_{2} \circ f(c)\right)=$ $f(c)$, for all $c \in C$, hence it is equal to f. On the other hand given $(g, h) \in A^{C} \times B^{C}, \phi(\psi(g, h))=\left(p_{1} \circ \psi(g, h), p_{2} \circ \psi(g, h)\right)$. But $\psi(g, h)$ sends $c \in C$ to $\left(g(c), h(c)\right.$; hence, $p_{1} \circ \psi(g, h)=g$ and $p_{2} \circ \psi(g, h)=h$. Thus $\phi(\psi(g, h))=(g, h)$. Thus, ϕ and ψ are inverse to each other and ϕ is bijective.
b. Denote the given map by θ. We will define its inverse

$$
\eta: C^{A} \times C^{B} \rightarrow C^{A} \amalg^{B}
$$

by $(g, h) \mapsto\{(x, 0) \mapsto g(x)$, for $x \in A$ and $(y, 1) \mapsto h(y)$, for $y \in B\}$. Then, to show they are inverse to each other take $f \in C^{A} \amalg^{B}$. Clearly, $\eta(\theta(f))=$ $\eta\left(f \circ i_{1}, f \circ i_{2}\right)$ sends $(x, 0) \in A \times\{0\}$ to $f \circ i_{1}(x)=f(x, 0)$ and $(y, 1) \in$ $B \times\{1\}$ to $f(y, 1)$, thus it is equal to f . On the other hand, given $(g, h) \in C^{A} \times C^{B}, \theta(\eta(g, h))=\left(\eta(g, h) \circ i_{1}, \eta(g, h) \circ i_{2}\right)$. But $\eta(g, h) \circ i_{1}(x)=$ $\eta(g, h)(x, 0)=g(x)$ for $x \in A$, by definition. Similarly for $y \in B$, $\eta(g, h) \circ i_{2}(y)=h(y)$. Thus $\theta(\eta(g, h))=(g, h)$ and θ and η are inverse to each other.

Solution 5. a. By definition $h(C)=h\left(\bigcup_{n \in \mathbb{N}} C_{n}\right)=\bigcup_{n \in \mathbb{N}} h\left(C_{n}\right)=\bigcup_{n \in \mathbb{N}} C_{n+1}=$ $\bigcup_{n \in \mathbb{N} \geq 1} C_{n}$. Hence, $C=\bigcup_{n \in \mathbb{N}} C_{n}=C_{0} \cup \bigcup_{n \in \mathbb{N} \geq 1} C_{n}=C_{0} \cup h(C)$.
b. $A \backslash C \subset A \backslash C_{0}=\operatorname{Im}(g)$. So given $x \in A \backslash C$ there exist a unique $y \in B$ such that $x=g(y)$. If $y \in f(C)$, then $x \in g(f(C))=h(C) \subset C$ by part a. But this cannot happen by assumption, so $y \in B \backslash f(C)$. Thus $A \backslash C \subset$ $g(B \backslash f(C))$. Conversely, given $y \in B \backslash f(C)$, if $g(y) \in C=C_{0} \cup h(C)$, then it is in $h(C)$ as $C_{0} \cap \operatorname{Im}(g)=\emptyset$. Thus the iclusion holds the other way as well, and we have $A \backslash C=g(B \backslash f(C))$.
c. $A \backslash C \subset \operatorname{Im}(g)$ and g is injective thus g^{-1} defines a bijection onto its image, which is $B \backslash f(C)$ by the above part. On the other hand, injectivity of implies, its restriction to C defines a bijection onto $f(C)$. This implies the map $k: A \rightarrow B$ defined by

$$
\begin{cases}f(x) & x \in C \\ g^{-1}(x) & x \in A \backslash C\end{cases}
$$

is a bijection.
d. The function tan defines a bijection from $(-\pi / 2, \pi / 2)$ to \mathbb{R}. On the other hand, there is a unique linear function sending a to $-\pi / 2$ and b to $\pi / 2$ which is a bijection. The composition of these two functions give a bijection from (a, b) to \mathbb{R}.
e. To use part c, we need to find injections both ways. The inclusion gives an injection from U to \mathbb{R}. On the other hand, the composition of a bijection from \mathbb{R} to the interval contained in U, which exists by part d , with the inclusion map from the interval, gives as an injection from \mathbb{R} to U. Hence by part c, there is a bijection between U and \mathbb{R}.

