Problem Set 1:

Solution 1.
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by sending (g, k) to the unique function that maps ¢ € C to (g(c), h(c) €
A x B. Let ¢ denote the given map (A x B)® — AY x BY. Given
fe(AxB)%, ¥((f) = b(pio f,paof) sends ¢ to (prof(c),p2o f(c)) =
f(e), for all ¢ € C, hence it is equal to f. On the other hand given
(9.h) € A9 x B, ¢(1(g,h)) = (p1 0 ¥(g,h),p2 o (g, h)). But ¢(g,h)
sends ¢ € C to (g(c), h(c); hence, p; o 9(g,h) = g and ps o (g, h) = h.
Thus ¢(¢(g,h)) = (g,h). Thus, ¢ and ¢ are inverse to each other and ¢
is bijective.

b. Denote the given map by 6. We will define its inverse
n:C*x CP — cAUB

by (g,h) — {(z,0) — g(z),for x € A and (y,1) — h(y),for y € B}. Then,
to show they are inverse to each other take f € CAL B, Clearly, n(8(f)) =
n(f oiy, foiz) sends (z,0) € A x {0} to foii(z) = f(x,0) and (y,1) €
B x {1} to f(y,1), thus it is equal to f. On the other hand, given
(g,h) € CAxCP, 0(n(g,h)) = (n(g, h)oir, n(g, h)oiz). But n(g, h)oir(x) =
n(g,h)(x,0) = g(x) for x € A, by definition. Similarly for y € B,
n(g, h) oia(y) = h(y). Thus 8(n(g,h)) = (g,h) and € and 7 are inverse to
each other.

Solution 5.  a. By definition h(C) = h(U,,cn Cn) = Unen M(Cn) = U,eny Cnt1 =
Unens, Cn- Hence, C =J,,cy Cn = Co U, ey, Cn = Co UR(C).

b. A\C C A\ Cy = Im(g). So given x € A\ C there exist a unique y € B
such that z = g(y). If y € f(C), then x € g(f(C)) = h(C) C C by part a.
But this cannot happen by assumption, so y € B\ f(C). Thus A\ C C
g(B\ f(C)). Conversely, given y € B\ f(C), if g(y) € C = Cy U h(C),
then it is in h(C) as Cy N Im(g) = 0. Thus the iclusion holds the other
way as well, and we have A\ C = g(B\ f(C)).

c. A\C C Im(g) and g is injective thus g~! defines a bijection onto its image,
which is B\ f(C) by the above part. On the other hand, injectivity of
implies, its restriction to C' defines a bijection onto f(C). This implies the
map k : A — B defined by

f(z) zeC
g lz) ze€A\C

is a bijection.

d. The function tan defines a bijection from (—m/2,7/2) to R. On the other
hand, there is a unique linear function sending a to —7/2 and b to 7/2
which is a bijection. The composition of these two functions give a bijec-
tion from (a,b) to R.



e. To use part ¢, we need to find injections both ways. The inclusion gives an
injection from U to R. On the other hand, the composition of a bijection
from R to the interval contained in U, which exists by part d, with the
inclusion map from the interval, gives as an injection from R to U. Hence
by part c, there is a bijection between U and R.



