Problem Set 1: A Set-Theory diagnostic

Solution 1.

	$A \subset B$ and $B \subset C$		$\subset (B \cup C)$	$\Rightarrow \leftarrow$		None	
	$A \subset B$ and $B \subset C$		$\subset (B \cap C)$	$\Rightarrow \Leftarrow$		None	
(c)	$A \subset B \text{ or } B \subset C$		$\subset (B \cup C)$	$\Rightarrow \leftarrow$		None	
	$A \subset B \text{ or } B \subset C$	11 \	$\subset (B \cap C)$	$\Rightarrow \Leftarrow$		None	
(e)	$A \setminus (A \setminus B)$		B			None	
(f)	$A \setminus (B \setminus A)$		$A \setminus B$			None	
(g)	$A \cap (B \setminus C)$		$B) \setminus (A \cap C)$			None	
(h)	$A \cup (B \setminus C)$	Č Š	$B) \setminus (A \cup C)$	$\subset \supset$		None	
	$A \subset C$ and $B \subset D$		$B) \subset (C \times D)$	$\Rightarrow \leftarrow$	\Rightarrow	None	
(j) ($(A \times B) \cup (C \times D)$		$(C) \times (B \cup D)$		=	None	
(k) ($(A \times B) \cap (C \times D)$		$(C) \times (B \cap D)$		=	None	
(1)	$A \times (B \setminus C)$	$ = (A \times A) $	$B) \setminus (A \times C)$		= 1	None	
(m) ($(A \times B) \setminus (C \times D)$	$\supset (A \setminus C)$	$(C) \times (B \setminus D)$		= 1	None	
Solution 2.							
	$e \in \bigcup_{A \in \mathcal{A}} A$ \Leftrightarrow		east one $A \in \mathcal{A}$	$ \Rightarrow$	$\Leftrightarrow \Rightarrow$	None	
(o) x	$x \in \bigcup_{A \in \mathcal{A}} A$ \Leftarrow $x \in A$ for every $A \in \mathcal{A}$			$\Rightarrow \Leftarrow \Leftrightarrow $ None			
	$x \in \bigcap_{A \in \mathcal{A}} A$ \Rightarrow $x \in A$ for at least one $A \in \mathcal{A}$			$ \Rightarrow$	$\Rightarrow \Leftarrow \Leftrightarrow$ None		
(q) x	$e \in \bigcap_{A \in \mathcal{A}} A$ \Leftrightarrow	$x \in A$ for e	every $A \in \mathcal{A}$	\Rightarrow	$\Leftrightarrow \Leftrightarrow $	None	
Solution 3.							
(r)	$g \circ f$ is injective, then f is inj.			inj. s	surj. b	ij. none.	
(s)	$g \circ f$ is injective	None	inj. s	surj. b	ij, none.		
(t)	$g \circ f$ is surjectiv	None	inj. s	surj. b	ij. none.		
(u)	$g \circ f$ is surjectiv	surj.	inj. s	surj. b	ij. none.		
	Let $A_0 \subset A$. If A		Ť		None		
(v)	for some $B_0 \subset B$, t	$ = A_0 $	\subset	$\supset =$	none		
(w)	Let $B_0 \subset B$. If then ff^{-1}	$=$ B_0	\subset	\supset =	None		

Solution 4. a. Define the inverse map

$$\psi: A^C \times B^C \to (A \times B)^C$$

by sending (g, h) to the unique function that maps $c \in C$ to $(g(c), h(c) \in A \times B$. Let ϕ denote the given map $(A \times B)^C \to A^C \times B^C$. Given $f \in (A \times B)^C$, $\psi(\phi(f)) = \psi(p_1 \circ f, p_2 \circ f)$ sends c to $(p_1 \circ f(c), p_2 \circ f(c)) = f(c)$, for all $c \in C$, hence it is equal to f. On the other hand given $(g, h) \in A^C \times B^C$, $\phi(\psi(g, h)) = (p_1 \circ \psi(g, h), p_2 \circ \psi(g, h))$. But $\psi(g, h)$ sends $c \in C$ to (g(c), h(c); hence, $p_1 \circ \psi(g, h) = g$ and $p_2 \circ \psi(g, h) = h$. Thus $\phi(\psi(g, h)) = (g, h)$. Thus, ϕ and ψ are inverse to each other and ϕ is bijective.

b. Denote the given map by θ . We will define its inverse

$$\eta: C^A \times C^B \to C^A \coprod E$$

by $(g,h) \mapsto \{(x,0) \mapsto g(x), \text{ for } x \in A \text{ and } (y,1) \mapsto h(y), \text{ for } y \in B\}$. Then, to show they are inverse to each other take $f \in C^A \amalg^B$. Clearly, $\eta(\theta(f)) = \eta(f \circ i_1, f \circ i_2)$ sends $(x,0) \in A \times \{0\}$ to $f \circ i_1(x) = f(x,0)$ and $(y,1) \in B \times \{1\}$ to f(y,1), thus it is equal to f. On the other hand, given $(g,h) \in C^A \times C^B, \theta(\eta(g,h)) = (\eta(g,h) \circ i_1, \eta(g,h) \circ i_2)$. But $\eta(g,h) \circ i_1(x) = \eta(g,h)(x,0) = g(x)$ for $x \in A$, by definition. Similarly for $y \in B$, $\eta(g,h) \circ i_2(y) = h(y)$. Thus $\theta(\eta(g,h)) = (g,h)$ and θ and η are inverse to each other.

- **Solution 5.** a. By definition $h(C) = h(\bigcup_{n \in \mathbb{N}} C_n) = \bigcup_{n \in \mathbb{N}} h(C_n) = \bigcup_{n \in \mathbb{N}} C_{n+1} = \bigcup_{n \in \mathbb{N}>_1} C_n$. Hence, $C = \bigcup_{n \in \mathbb{N}} C_n = C_0 \cup \bigcup_{n \in \mathbb{N}>_1} C_n = C_0 \cup h(C)$.
 - b. $A \setminus C \subset A \setminus C_0 = Im(g)$. So given $x \in A \setminus C$ there exist a unique $y \in B$ such that x = g(y). If $y \in f(C)$, then $x \in g(f(C)) = h(C) \subset C$ by part a. But this cannot happen by assumption, so $y \in B \setminus f(C)$. Thus $A \setminus C \subset g(B \setminus f(C))$. Conversely, given $y \in B \setminus f(C)$, if $g(y) \in C = C_0 \cup h(C)$, then it is in h(C) as $C_0 \cap Im(g) = \emptyset$. Thus the iclusion holds the other way as well, and we have $A \setminus C = g(B \setminus f(C))$.
 - c. $A \setminus C \subset Im(g)$ and g is injective thus g^{-1} defines a bijection onto its image, which is $B \setminus f(C)$ by the above part. On the other hand, injectivity of implies, its restriction to C defines a bijection onto f(C). This implies the map $k : A \to B$ defined by

$$\begin{cases} f(x) & x \in C \\ g^{-1}(x) & x \in A \setminus C \end{cases}$$

is a bijection.

d. The function tan defines a bijection from $(-\pi/2, \pi/2)$ to \mathbb{R} . On the other hand, there is a unique linear function sending a to $-\pi/2$ and b to $\pi/2$ which is a bijection. The composition of these two functions give a bijection from (a, b) to \mathbb{R} .

e. To use part c, we need to find injections both ways. The inclusion gives an injection from U to \mathbb{R} . On the other hand, the composition of a bijection from \mathbb{R} to the interval contained in U, which exists by part d, with the inclusion map from the interval, gives as an injection from \mathbb{R} to U. Hence by part c, there is a bijection between U and \mathbb{R} .