Problem Set 8: Models, compactifications, identifying spaces, characterizing subspaces

Your name:

Due: Tuesday, April 26

Read the notes on the course website related to adjunctions, compactifications, and the compact-open topology (sections 1-8).

Problem 1 (8). Have you done the reading?

Problem 2 (B8). Let X be a compact space and Y be a metric space. Prove that the metric topology on the set of continuous functions hom(X, Y) (defined by the metric $d(f,g) = \sup_{x \in X} \{d_Y(f(x),g(x))\}\)$ is the same as the compact open topology.

Problem 3 (8). Give a model for the space of rays starting at the origin in \mathbb{R}^n and prove that it is homeomorphic to S^{n-1} .

Problem 4 (16). Prove that \mathbb{RP}^2 is not homeomorphic to \mathbb{D}^2 .

Problem 5 (B8). Consider two points, α and β , in the mapping space hom $(S^1, \mathbb{R}^2 \setminus \{0\})$.

- a. Describe geometrically what it would mean for there to be a path from α to β in this space.
- b. Give an example of two points that are in the same path component of this space.
- c. Give an example of two points that are not in the same path component.

Problem 6 (8). Let $f : S^n \to \mathbb{R}$ be a continuous function. For any point $x \in S^n$, denote by τx the antipodal point to x. Prove that there is at least one point $x \in S^n$ so that $f(x) = f(\tau x)$.

Problem 7 (24). This problem deals with a variant of \mathbb{RP}^2 .

- a. Give a model for the space of two distinct lines passing through the origin in \mathbb{R}^2 —I will call this space L.
- b. Prove that L is not compact, and describe a compactification Y for this space.

- c. What does the space $Y \setminus L$ look like?
- d. When does a continuous function $L\to\mathbb{R}$ extend to a continuous function $Y\to\mathbb{R}?$