
Problem Set 7: Models, compactifications,

identifying spaces, characterizing subspaces

Your name:

Due: Thursday, April 21

Read the notes on the course website related to the subspace topology and
quotient topology (sections 3 and 5, though you might enjoy 1 and 2 as well).

Problem 1 (8). Have you done the reading?

Problem 2 (8). Recall that a continuous map i : A→ X satisfies the universal
property of the subspace topology if for every continuous map f : Y → X such
that im(f) ⊂ im(i), there exists a unique continuous map f̂ : Y → A so that

i ◦ f̂ = f .
Prove that a map f : A→ X is a homeomorphism on its image if and only

if f : A → X satisfies the universal property of the subspace topology. (If you
get stuck, go back and read the notes, which contains a proof of a very similar
statement. Then try to prove this statement again. Repeat this procedure until
you can understand and prove this result without consulting the notes.)

Problem 3 (9). Let f : X → Y be a continuous surjection of topological
spaces.

a. Give an example to show that f may be an open map and at the same
time not be a closed map.

b. Give an example to show that f may be a closed map and at the same
time not be an open map.

c. Prove that if f is either open or closed, then the topology on Y is equal
to the quotient topology coming from the relation: r, s ∈ X are equivalent
iff f(r) = f(s).

Problem 4 (12). This problem will define the one-point compactification and
ask you to prove some theorems about it. Recall that a space X is called locally
compact if for every point p ∈ X, there exists a compact neighborhood K ⊂ X
such that p ∈ K. Note that every compact space is locally compact (prove this
to yourself).

a. Give an example of space which is locally compact and not compact.

Recall that the one-point compactification of a space X, if it exists, consists of
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• a compact Hausdorff space Y

• an embedding i : X ↪→ Y

such that

• Y \ i(X) is a set containing exactly one element (we call that element “∞”
for convenience).

• i(X) = Y .

b. Prove that if X is a space with one-point compactifications i : X ↪→ Y
and j : X ↪→ Z that there is a unique homeomorphism h : Y → Z such
that h ◦ i = j.

Observe that if X has a one-point compactification, then X must be Hausdorff
(if this is not clear, prove it to yourself!). We might also imagine that if X fits
inside a compact space, then it can’t be that far off from being compact itself.

c. Prove that if X has a one-point compactification, then X must be locally
compact.

So far in this problem you have proved that if X has a one-point compactifi-
cation, X must be locally compact and Hausdorff. These seem to be the only
“obvious” pieces of information we can extract about X if we know it has a
one-point compactification. One question to ask, then, is the following:

d. if a space X is locally compact (but not compact) and Hausdorff, does it
have a one-point compactification? (Hint: try using the construction we
gave in class to build one.)

Problem 5 (12). For the following problem, the notation (0, 1) will refer to the
open interval in the real line.

a. Prove that intDn ∼= Rn.

b. Prove that (intDn)+ ∼= Sn.

c. Many of you argued that
(
S1 × (0, 1)

)+
is homeomorphic to a “pinched

torus.” Give a model for the pinched torus and prove that it is homeo-
morphic to the one-point compactification of S1 × (0, 1).
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