Problem Set 6: Compactness and The Zariski topology

Your name:

Due: Thursday, April 7

Read the notes on the Zariski topology posted on the web page.

Problem 1 (8). Did you do your reading assignment?

Problem 2 (24).

a. Let R be a commutative ring with unit ($1 \in R$). Prove that $\text{spec}(R)$ is compact.

b. When is $\text{spec}(R)$ Hausdorff?

Consider the map

$$i : \mathbb{R}^n \to \text{spec}(\mathbb{R}[x_1, \ldots, x_n])$$

that is defined by taking the n-tuple (r_1, \ldots, r_n) to the ideal generated by the degree one polynomials

$$x_1 - r_1, \ldots, x_n - r_n.$$

c. Prove that the map i is injective. Identifying \mathbb{R}^n with its image under the map, it acquires a topology as a subspace of $\text{spec}(\mathbb{R}[x_1, \ldots, x_n])$. Denote \mathbb{R}^n with this topology by \mathbb{A}^n

d. What is the closure of $\{(n, \frac{1}{n}) : n \in \mathbb{N} \setminus \{0\}\} \subset \mathbb{A}^n$?